Articles | Volume 18, issue 15
https://doi.org/10.5194/acp-18-11493-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-11493-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates
Indian Institute of Tropical Meteorology, Pune, India
Chaitri Roy
Indian Institute of Tropical Meteorology, Pune, India
Rajib Chattopadhyay
Indian Institute of Tropical Meteorology, Pune, India
Christopher E. Sioris
Air Quality Research Division, Environment and Climate Change, Toronto, Canada
Alexandru Rap
School of Earth and Environment, University of Leeds, Leeds, UK
Rolf Müller
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research
– Stratosphere (IEK-7), Jülich, Germany
K. Ravi Kumar
Atmospheric Sciences, Indian Institute of Technology, Delhi, India
Raghavan Krishnan
Indian Institute of Tropical Meteorology, Pune, India
Related authors
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Suvarna Fadnavis, Yasin Elshorbany, Jerald Ziemke, Brice Barret, Alexandru Rap, P. R. Satheesh Chandran, Richard Pope, Vijay Sagar, Domenico Taraborrelli, Eric Le Flochmoen, Juan Cuesta, Catherine Wespes, Folkert Boersma, Isolde Glissenaar, Isabelle De Smedt, Michel Van Roozendael, Hervé Petetin, and Isidora Anglou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3050, https://doi.org/10.5194/egusphere-2024-3050, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Satellites and model simulations show enhancement in tropospheric ozone, which is highly impacted by human-produced Nitrous oxides compared to volatile organic compounds. The increased amount of ozone enhances ozone radiative forcing. The ozone enhancement and associated radiative forcing are highest over South and East Asia. The emissions of Nitrous oxides show a higher influence in shifting ozone photochemical regimes than volatile organic compounds.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Suvarna Fadnavis, Bernd Heinold, T. P. Sabin, Anne Kubin, Katty Huang, Alexandru Rap, and Rolf Müller
Atmos. Chem. Phys., 23, 10439–10449, https://doi.org/10.5194/acp-23-10439-2023, https://doi.org/10.5194/acp-23-10439-2023, 2023
Short summary
Short summary
The influence of the COVID-19 lockdown on the Himalayas caused increases in snow cover and a decrease in runoff, ultimately leading to an enhanced snow water equivalent. Our findings highlight that, out of the two processes causing a retreat of Himalayan glaciers – (1) slow response to global climate change and (2) fast response to local air pollution – a policy action on the latter is more likely to be within the reach of possible policy action to help billions of people in southern Asia.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Suvarna Fadnavis, Rolf Müller, Gayatry Kalita, Matthew Rowlinson, Alexandru Rap, Jui-Lin Frank Li, Blaž Gasparini, and Anton Laakso
Atmos. Chem. Phys., 19, 9989–10008, https://doi.org/10.5194/acp-19-9989-2019, https://doi.org/10.5194/acp-19-9989-2019, 2019
Short summary
Short summary
This paper highlights the impact of Asian anthropogenic emission changes in SO2 on sulfate loading in the Asian upper troposphere–lower stratosphere from a global chemistry–climate model and satellite remote sensing. Estimated seasonal mean direct radiative forcing at the top of the atmosphere induced by the increase in Indian SO2 is −0.2–−1.5 W m2 over India. Chinese SO2 emission reduction leads to a positive radiative forcing of ~0.6–6 W m2 over China. It will likely decrease Indian rainfall.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Suvarna Fadnavis, Gayatry Kalita, K. Ravi Kumar, Blaž Gasparini, and Jui-Lin Frank Li
Atmos. Chem. Phys., 17, 11637–11654, https://doi.org/10.5194/acp-17-11637-2017, https://doi.org/10.5194/acp-17-11637-2017, 2017
Short summary
Short summary
In this study, the model simulations show that monsoon convection over the Bay of Bengal, the South China Sea and southern flanks of the Himalayas transports Asian carbonaceous aerosol into the UTLS. Carbonaceous aerosol induces enhancement in heating rate, vertical velocity and water vapor transport in the UTLS. Doubling of carbonaceous aerosols creates an anomalous warming over the TP. It generates monsoon Hadley circulation and thus increases precipitation over India and northeast China.
Chaitri Roy, Suvarna Fadnavis, Rolf Müller, D. C. Ayantika, Felix Ploeger, and Alexandru Rap
Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, https://doi.org/10.5194/acp-17-1297-2017, 2017
Short summary
Short summary
In the monsoon season, Asian NOx emissions are rapidly transported to the UTLS and can impact ozone in the UTLS. From chemistry–climate model simulations, we show that increasing Asian NOx emissions have enhanced ozone radiative forcing over Southeast Asia, which leads to significant warming over the Tibetan Plateau and increase precipitation over India. However, a further increase in NOx emissions elicited negative precipitation due to reversal of monsoon Hadley circulation.
Suvarna Fadnavis, K. Ravi Kumar, Yogesh K. Tiwari, and Luca Pozzoli
Ann. Geophys., 34, 279–291, https://doi.org/10.5194/angeo-34-279-2016, https://doi.org/10.5194/angeo-34-279-2016, 2016
Short summary
Short summary
Analysis of 10 years (2000–2009) of Carbon Tracker (CT-2010) model CO2 fluxes gives insights into the regional variation of CO2 fluxes over the Indian land mass. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines, and other industrial and urban centres. CO2 sink regions coincide with locations of dense forests with less industrial centres. CO2 fossil fuel emissions show good agreement with two bottom-up inventories REAS v1.11 and EDGAR v4.2.
S. Fadnavis, K. Semeniuk, M. G. Schultz, M. Kiefer, A. Mahajan, L. Pozzoli, and S. Sonbawane
Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, https://doi.org/10.5194/acp-15-11477-2015, 2015
Short summary
Short summary
The model and MIPAS satellite data show that there are three regions which contribute substantial pollution to the south Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. Simulations show that westerly winds drive North American and European pollutants eastward where they can become part of the ASM and lifted to LS.
S. D. Bansod, S. Fadnavis, and S. P. Ghanekar
Ann. Geophys., 33, 1051–1058, https://doi.org/10.5194/angeo-33-1051-2015, https://doi.org/10.5194/angeo-33-1051-2015, 2015
Short summary
Short summary
In this paper inter-annual variability of tropospheric air temperature over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
S. Fadnavis, K. Semeniuk, M. G. Schultz, A. Mahajan, L. Pozzoli, S. Sonbawane, and M. Kiefer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20159-2014, https://doi.org/10.5194/acpd-14-20159-2014, 2014
Revised manuscript not accepted
S. Fadnavis, K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, S. Das, and R. Kakatkar
Atmos. Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, https://doi.org/10.5194/acp-13-8771-2013, 2013
Yiran Zhang-Liu, Rolf Müller, Jens-Uwe Grooß, Sabine Robrecht, Bärbel Vogel, Abdul Mannan Zafar, and Ralph Lehmann
Atmos. Chem. Phys., 24, 12557–12574, https://doi.org/10.5194/acp-24-12557-2024, https://doi.org/10.5194/acp-24-12557-2024, 2024
Short summary
Short summary
HCl null cycles in Antarctica are important for maintaining high values of ozone-destroying chlorine in Antarctic spring. These HCl null cycles are not affected by (1) using the most recent recommendations of chemical kinetics (compared to older recommendations), (2) accounting for dehydration in the Antarctic winter vortex, and (3) considering the observed (but unexplained) depletion of HCl in mid-winter in the Antarctic vortex throughout Antarctic winter.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
Atmos. Chem. Phys., 24, 11759–11774, https://doi.org/10.5194/acp-24-11759-2024, https://doi.org/10.5194/acp-24-11759-2024, 2024
Short summary
Short summary
This study provided estimates of the occurrence of ice polar stratospheric clouds (PSCs) observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and their connection with temperatures above the frost point (Tice) using a Lagrangian model derived from ERA5. We found that ice PSCs above Tice with temperature fluctuations along the backward trajectory are 33 % in the Arctic and 9 % in the Antarctic. This quantitative assessment enhances our understanding of ice PSCs.
Suvarna Fadnavis, Yasin Elshorbany, Jerald Ziemke, Brice Barret, Alexandru Rap, P. R. Satheesh Chandran, Richard Pope, Vijay Sagar, Domenico Taraborrelli, Eric Le Flochmoen, Juan Cuesta, Catherine Wespes, Folkert Boersma, Isolde Glissenaar, Isabelle De Smedt, Michel Van Roozendael, Hervé Petetin, and Isidora Anglou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3050, https://doi.org/10.5194/egusphere-2024-3050, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Satellites and model simulations show enhancement in tropospheric ozone, which is highly impacted by human-produced Nitrous oxides compared to volatile organic compounds. The increased amount of ozone enhances ozone radiative forcing. The ozone enhancement and associated radiative forcing are highest over South and East Asia. The emissions of Nitrous oxides show a higher influence in shifting ozone photochemical regimes than volatile organic compounds.
Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, and Alexandru Rap
EGUsphere, https://doi.org/10.5194/egusphere-2024-1573, https://doi.org/10.5194/egusphere-2024-1573, 2024
Short summary
Short summary
Contrail cirrus is the largest, but also most uncertain contribution of aviation to global warming. We evaluate for the first time the impact of the host climate model on contrail cirrus properties. Substantial differences exist between contrail cirrus formation, persistence, and radiative effects in the host climate models. Reliable contrail cirrus simulations require advanced representation of cloud optical properties and microphysics, which should be better constrained by observations.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820, https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Reinhold Spang, Rolf Müller, and Alexandru Rap
Atmos. Chem. Phys., 24, 1213–1230, https://doi.org/10.5194/acp-24-1213-2024, https://doi.org/10.5194/acp-24-1213-2024, 2024
Short summary
Short summary
Cirrus clouds play an important role in the radiation budget of the Earth. Despite recent progress in their observation, the radiative impact of ultra-thin cirrus clouds (UTC) in the tropopause region and in the lowermost stratosphere remains poorly constrained. Sensitivity model simulations with different ice parameters provide an uncertainty range for the radiative effect of UTCs. There is a need for better observed UTCs to enable the simulation of their potentially large effect on climate.
Jan Clemens, Bärbel Vogel, Lars Hoffmann, Sabine Griessbach, Nicole Thomas, Suvarna Fadnavis, Rolf Müller, Thomas Peter, and Felix Ploeger
Atmos. Chem. Phys., 24, 763–787, https://doi.org/10.5194/acp-24-763-2024, https://doi.org/10.5194/acp-24-763-2024, 2024
Short summary
Short summary
The source regions of the Asian tropopause aerosol layer (ATAL) are debated. We use balloon-borne measurements of the layer above Nainital (India) in August 2016 and atmospheric transport models to find ATAL source regions. Most air originated from the Tibetan plateau. However, the measured ATAL was stronger when more air originated from the Indo-Gangetic Plain and weaker when more air originated from the Pacific. Hence, the results indicate important anthropogenic contributions to the ATAL.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Rolf Müller, Ulrich Pöschl, Thomas Koop, Thomas Peter, and Ken Carslaw
Atmos. Chem. Phys., 23, 15445–15453, https://doi.org/10.5194/acp-23-15445-2023, https://doi.org/10.5194/acp-23-15445-2023, 2023
Short summary
Short summary
Paul J. Crutzen was a pioneer in atmospheric sciences and a kind-hearted, humorous person with empathy for the private lives of his colleagues and students. He made fundamental scientific contributions to a wide range of scientific topics in all parts of the atmosphere. Paul was among the founders of the journal Atmospheric Chemistry and Physics. His work will continue to be a guide for generations of scientists and environmental policymakers to come.
Suvarna Fadnavis, Bernd Heinold, T. P. Sabin, Anne Kubin, Katty Huang, Alexandru Rap, and Rolf Müller
Atmos. Chem. Phys., 23, 10439–10449, https://doi.org/10.5194/acp-23-10439-2023, https://doi.org/10.5194/acp-23-10439-2023, 2023
Short summary
Short summary
The influence of the COVID-19 lockdown on the Himalayas caused increases in snow cover and a decrease in runoff, ultimately leading to an enhanced snow water equivalent. Our findings highlight that, out of the two processes causing a retreat of Himalayan glaciers – (1) slow response to global climate change and (2) fast response to local air pollution – a policy action on the latter is more likely to be within the reach of possible policy action to help billions of people in southern Asia.
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Sabine Robrecht, Bärbel Vogel, Simone Tilmes, and Rolf Müller
Atmos. Chem. Phys., 21, 2427–2455, https://doi.org/10.5194/acp-21-2427-2021, https://doi.org/10.5194/acp-21-2427-2021, 2021
Short summary
Short summary
Column ozone protects life on Earth from radiation damage. Stratospheric chlorine compounds cause immense ozone loss in polar winter. Whether similar loss processes can occur in the lower stratosphere above North America today or in future is a matter of debate. We show that these ozone loss processes are very unlikely today or in future independently of whether sulfate geoengineering is applied and that less than 0.1 % of column ozone would be destroyed by this process in any future scenario.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Joram J. D. Hooghiem, Maria Elena Popa, Thomas Röckmann, Jens-Uwe Grooß, Ines Tritscher, Rolf Müller, Rigel Kivi, and Huilin Chen
Atmos. Chem. Phys., 20, 13985–14003, https://doi.org/10.5194/acp-20-13985-2020, https://doi.org/10.5194/acp-20-13985-2020, 2020
Short summary
Short summary
Wildfires release a large quantity of pollutants that can reach the stratosphere through pyro-convection events. In September 2017, a stratospheric plume was accidentally sampled during balloon soundings in northern Finland. The source of the plume was identified to be wildfire smoke based on in situ measurements of carbon monoxide (CO) and stable isotope analysis of CO. Furthermore, the age of the plume was estimated using backwards transport modelling to be ~24 d, with its origin in Canada.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Mark W. Shephard, Enrico Dammers, Karen E. Cady-Pereira, Shailesh K. Kharol, Jesse Thompson, Yonatan Gainariu-Matz, Junhua Zhang, Chris A. McLinden, Andrew Kovachik, Michael Moran, Shabtai Bittman, Christopher E. Sioris, Debora Griffin, Matthew J. Alvarado, Chantelle Lonsdale, Verica Savic-Jovcic, and Qiong Zheng
Atmos. Chem. Phys., 20, 2277–2302, https://doi.org/10.5194/acp-20-2277-2020, https://doi.org/10.5194/acp-20-2277-2020, 2020
Short summary
Short summary
Presented is a description and survey demonstrating the capabilities of the CrIS ammonia product for monitoring, air quality forecast model evaluation, dry deposition estimates, and emission estimates of an agricultural hotspot.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
Suvarna Fadnavis, Rolf Müller, Gayatry Kalita, Matthew Rowlinson, Alexandru Rap, Jui-Lin Frank Li, Blaž Gasparini, and Anton Laakso
Atmos. Chem. Phys., 19, 9989–10008, https://doi.org/10.5194/acp-19-9989-2019, https://doi.org/10.5194/acp-19-9989-2019, 2019
Short summary
Short summary
This paper highlights the impact of Asian anthropogenic emission changes in SO2 on sulfate loading in the Asian upper troposphere–lower stratosphere from a global chemistry–climate model and satellite remote sensing. Estimated seasonal mean direct radiative forcing at the top of the atmosphere induced by the increase in Indian SO2 is −0.2–−1.5 W m2 over India. Chinese SO2 emission reduction leads to a positive radiative forcing of ~0.6–6 W m2 over China. It will likely decrease Indian rainfall.
Dan Weaver, Kimberly Strong, Kaley A. Walker, Chris Sioris, Matthias Schneider, C. Thomas McElroy, Holger Vömel, Michael Sommer, Katja Weigel, Alexei Rozanov, John P. Burrows, William G. Read, Evan Fishbein, and Gabriele Stiller
Atmos. Meas. Tech., 12, 4039–4063, https://doi.org/10.5194/amt-12-4039-2019, https://doi.org/10.5194/amt-12-4039-2019, 2019
Short summary
Short summary
This work assesses water vapour profiles acquired by Atmospheric Chemistry Experiment (ACE) satellite instruments in the upper troposphere and lower stratosphere (UTLS) using comparisons to radiosondes and ground-based Fourier transform infrared spectrometer measurements acquired at a Canadian high Arctic measurement site in Eureka, Nunavut. Additional comparisons are made between these Eureka measurements and other water vapour satellite datasets for context, including AIRS, MLS, and others.
Matthew J. Rowlinson, Alexandru Rap, Stephen R. Arnold, Richard J. Pope, Martyn P. Chipperfield, Joe McNorton, Piers Forster, Hamish Gordon, Kirsty J. Pringle, Wuhu Feng, Brian J. Kerridge, Barry L. Latter, and Richard Siddans
Atmos. Chem. Phys., 19, 8669–8686, https://doi.org/10.5194/acp-19-8669-2019, https://doi.org/10.5194/acp-19-8669-2019, 2019
Short summary
Short summary
Wildfires and meteorology have a substantial effect on atmospheric concentrations of greenhouse gases such as methane and ozone. During the 1997 El Niño event, unusually large fire emissions indirectly increased global methane through carbon monoxide emission, which decreased the oxidation capacity of the atmosphere. There were also large regional changes to tropospheric ozone concentrations, but contrasting effects of fire and meteorology resulted in a small change to global radiative forcing.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Bärbel Vogel, Rolf Müller, Gebhard Günther, Reinhold Spang, Sreeharsha Hanumanthu, Dan Li, Martin Riese, and Gabriele P. Stiller
Atmos. Chem. Phys., 19, 6007–6034, https://doi.org/10.5194/acp-19-6007-2019, https://doi.org/10.5194/acp-19-6007-2019, 2019
Short summary
Short summary
We identified the transport pathways of air masses from the region of the Asian monsoon (e.g. pollution and greenhouse gases caused by increasing population and growing industries in Asia) into the lower stratosphere. Even small changes of the chemical composition of the lower stratosphere have an impact on surface climate (e.g. surface temperatures). Therefore, it is important to identify transport pathways to the stratosphere to allow potential environmental risks to be assessed.
Sabine Robrecht, Bärbel Vogel, Jens-Uwe Grooß, Karen Rosenlof, Troy Thornberry, Andrew Rollins, Martina Krämer, Lance Christensen, and Rolf Müller
Atmos. Chem. Phys., 19, 5805–5833, https://doi.org/10.5194/acp-19-5805-2019, https://doi.org/10.5194/acp-19-5805-2019, 2019
Short summary
Short summary
The potential destruction of stratospheric ozone in the mid-latitudes has been discussed recently. We analysed this ozone loss mechanism and its sensitivities. In a certain temperature range, we found a threshold in water vapour, which has to be exceeded for ozone loss to occur. We show the dependence of this water vapour threshold on temperature, sulfate content and air composition. This study provides a basis to estimate the impact of potential sulphate geoengineering on stratospheric ozone.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-11, https://doi.org/10.5194/esd-2019-11, 2019
Manuscript not accepted for further review
Short summary
Short summary
Both drivers from the mid-latitudes and from the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Lars Hoffmann, Gebhard Günther, Dan Li, Olaf Stein, Xue Wu, Sabine Griessbach, Yi Heng, Paul Konopka, Rolf Müller, Bärbel Vogel, and Jonathon S. Wright
Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, https://doi.org/10.5194/acp-19-3097-2019, 2019
Short summary
Short summary
ECMWF's new ERA5 reanalysis provides higher spatiotemporal resolution, yielding an improved representation of meso- and synoptic-scale features of the atmosphere. We assessed the impact of this challenging new data set on Lagrangian trajectory calculations for the free troposphere and stratosphere. Key findings are considerable transport deviations between the ERA5 and ERA-Interim simulations as well as significantly improved conservation of potential temperature in the stratosphere for ERA5.
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019, https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Short summary
We present Lagrangian simulations of polar stratospheric clouds (PSCs) for the Arctic winter 2009/2010 and the Antarctic winter 2011 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The paper comprises a detailed model description with ice PSCs and related dehydration being the focus of this study. Comparisons between our simulations and observations from different satellites on season-long and vortex-wide scales as well as for single PSC events show an overall good agreement.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Short summary
Balloon-borne measurements performed over Lhasa in August 2013 are investigated using CLaMS trajectory calculations. Here, we focus on high ozone mixing ratios in the free troposphere. Our findings demonstrate that both stratospheric intrusions and convective transport of air pollution play a major role in enhancing middle and upper tropospheric ozone.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Jens-Uwe Grooß, Rolf Müller, Reinhold Spang, Ines Tritscher, Tobias Wegner, Martyn P. Chipperfield, Wuhu Feng, Douglas E. Kinnison, and Sasha Madronich
Atmos. Chem. Phys., 18, 8647–8666, https://doi.org/10.5194/acp-18-8647-2018, https://doi.org/10.5194/acp-18-8647-2018, 2018
Short summary
Short summary
We investigate a discrepancy between model simulations and observations of HCl in the dark polar stratosphere. In early winter, the less-well-studied period of the onset of chlorine activation, observations show a much faster depletion of HCl than simulations of three models. This points to some unknown process that is currently not represented in the models. Various hypotheses for potential causes are investigated that partly reduce the discrepancy. The impact on polar ozone depletion is low.
Liubov Poshyvailo, Rolf Müller, Paul Konopka, Gebhard Günther, Martin Riese, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 18, 8505–8527, https://doi.org/10.5194/acp-18-8505-2018, https://doi.org/10.5194/acp-18-8505-2018, 2018
Short summary
Short summary
Water vapour (H2O) in the UTLS is a key player for global radiation, which is critical for predictions of future climate change. We investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O, using the Chemical Lagrangian Model of the Stratosphere. Our sensitivity studies provide new insights into the leading processes controlling stratospheric H2O, important for assessing and improving climate model projections.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Mengchu Tao, Rolf Müller, Michelle L. Santee, Jianchun Bian, and Martin Riese
Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, https://doi.org/10.5194/acp-18-8079-2018, 2018
Short summary
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes.
Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018, https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary
Short summary
This study explores future ozone radiative forcing (RF) and the relative contribution due to different drivers. Climate-induced ozone RF is largely the result of the interplay between lightning-produced ozone and enhanced ozone destruction in a warmer and wetter atmosphere. These results demonstrate the importance of stratospheric–tropospheric interactions and the stratosphere as a key region controlling a large fraction of the tropospheric ozone RF.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Rolf Müller, Jens-Uwe Grooß, Abdul Mannan Zafar, Sabine Robrecht, and Ralph Lehmann
Atmos. Chem. Phys., 18, 2985–2997, https://doi.org/10.5194/acp-18-2985-2018, https://doi.org/10.5194/acp-18-2985-2018, 2018
Short summary
Short summary
This paper revisits the chemistry leading to strong ozone depletion in the Antarctic. We focus on the heart of the ozone layer in the lowermost stratosphere in the core of the vortex. We argue that chemical cycles (referred to as HCl null cycles) that have hitherto been largely neglected counteract the deactivation of chlorine and are therefore key to ozone depletion in the core of the Antarctic vortex. The key process to full activation of chlorine is the photolysis of formaldehyde.
Christian Rolf, Bärbel Vogel, Peter Hoor, Armin Afchine, Gebhard Günther, Martina Krämer, Rolf Müller, Stefan Müller, Nicole Spelten, and Martin Riese
Atmos. Chem. Phys., 18, 2973–2983, https://doi.org/10.5194/acp-18-2973-2018, https://doi.org/10.5194/acp-18-2973-2018, 2018
Short summary
Short summary
The Asian monsoon is a pronounced circulation system linked to rapid vertical transport of surface air from India and east Asia in the summer months. We found, based on aircraft measurements, higher concentration of water vapor in the lowermost stratosphere caused by the Asian monsoon. Enrichment of water vapor concentrations in the lowermost stratosphere impacts the radiation budget and thus climate. Understanding those variations in water vapor is important for climate projections.
Suvarna Fadnavis, Gayatry Kalita, K. Ravi Kumar, Blaž Gasparini, and Jui-Lin Frank Li
Atmos. Chem. Phys., 17, 11637–11654, https://doi.org/10.5194/acp-17-11637-2017, https://doi.org/10.5194/acp-17-11637-2017, 2017
Short summary
Short summary
In this study, the model simulations show that monsoon convection over the Bay of Bengal, the South China Sea and southern flanks of the Himalayas transports Asian carbonaceous aerosol into the UTLS. Carbonaceous aerosol induces enhancement in heating rate, vertical velocity and water vapor transport in the UTLS. Doubling of carbonaceous aerosols creates an anomalous warming over the TP. It generates monsoon Hadley circulation and thus increases precipitation over India and northeast China.
Dan Weaver, Kimberly Strong, Matthias Schneider, Penny M. Rowe, Chris Sioris, Kaley A. Walker, Zen Mariani, Taneil Uttal, C. Thomas McElroy, Holger Vömel, Alessio Spassiani, and James R. Drummond
Atmos. Meas. Tech., 10, 2851–2880, https://doi.org/10.5194/amt-10-2851-2017, https://doi.org/10.5194/amt-10-2851-2017, 2017
Short summary
Short summary
We have compared techniques used by several PEARL instruments to measure atmospheric water vapour. No single instrument can comprehensively map the atmosphere. We documented how well these techniques perform and quantified the agreement and biases between them. This work showed that new FTIR datasets at PEARL capture accurate measurements of High Arctic water vapour.
Cristen Adams, Adam E. Bourassa, Chris A. McLinden, Chris E. Sioris, Thomas von Clarmann, Bernd Funke, Landon A. Rieger, and Douglas A. Degenstein
Atmos. Chem. Phys., 17, 8063–8080, https://doi.org/10.5194/acp-17-8063-2017, https://doi.org/10.5194/acp-17-8063-2017, 2017
Short summary
Short summary
We measured the relationship between volcanic aerosol and trace gases in the stratosphere using the OSIRIS and MIPAS satellite instruments between 2002 and 2014. We found that levels of stratospheric NO2 and N2O5 both decreased significantly in the presence of volcanic aerosol. These decreases were consistent with the modeling results.
Shailesh K. Kharol, Chris A. McLinden, Christopher E. Sioris, Mark W. Shephard, Vitali Fioletov, Aaron van Donkelaar, Sajeev Philip, and Randall V. Martin
Atmos. Chem. Phys., 17, 5921–5929, https://doi.org/10.5194/acp-17-5921-2017, https://doi.org/10.5194/acp-17-5921-2017, 2017
Dan Li, Bärbel Vogel, Jianchun Bian, Rolf Müller, Laura L. Pan, Gebhard Günther, Zhixuan Bai, Qian Li, Jinqiang Zhang, Qiujun Fan, and Holger Vömel
Atmos. Chem. Phys., 17, 4657–4672, https://doi.org/10.5194/acp-17-4657-2017, https://doi.org/10.5194/acp-17-4657-2017, 2017
Short summary
Short summary
High-resolution ozone and water vapour profiles over Lhasa, China, were measured in August 2013. The correlations between ozone and water vapour profiles show a strong variability in the upper troposphere. These relationships were investigated using CLaMS trajectory calculations. The model results demonstrate that three tropical cyclones (Jebi, Utor, and Trami), occurring over the western Pacific, had a strong impact on the vertical structure of ozone and water vapour profiles.
Christopher E. Sioris, Landon A. Rieger, Nicholas D. Lloyd, Adam E. Bourassa, Chris Z. Roth, Douglas A. Degenstein, Claude Camy-Peyret, Klaus Pfeilsticker, Gwenaël Berthet, Valéry Catoire, Florence Goutail, Jean-Pierre Pommereau, and Chris A. McLinden
Atmos. Meas. Tech., 10, 1155–1168, https://doi.org/10.5194/amt-10-1155-2017, https://doi.org/10.5194/amt-10-1155-2017, 2017
Short summary
Short summary
A new OSIRIS NO2 retrieval algorithm is described and validated using > 40 balloon-based profile measurements. The validation results indicate a slight improvement relative to the existing operational algorithm in terms of the bias versus the balloon data, particularly in the lower stratosphere. The implication is that this new algorithm should replace the operational one. The motivation was to combine spectral fitting and the SaskTRAN radiative transfer model to achieve an improved product.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
Christopher E. Sioris, Chris A. McLinden, Mark W. Shephard, Vitali E. Fioletov, and Ihab Abboud
Atmos. Chem. Phys., 17, 1931–1943, https://doi.org/10.5194/acp-17-1931-2017, https://doi.org/10.5194/acp-17-1931-2017, 2017
Short summary
Short summary
The contribution of the oil sands region to the local aerosol optical depth (AOD) is sought. Satellite data are used since they provide spatial coverage over many years. Satellites measure AOD with high correlation and small biases relative to coincident AERONET AODs. Trends are determined using annual mean AODs, and an increasing trend is found near the Shell mines. Spatially variable and high surface albedo is challenging for some sensors. Measuring polarization appears to be an asset.
Chaitri Roy, Suvarna Fadnavis, Rolf Müller, D. C. Ayantika, Felix Ploeger, and Alexandru Rap
Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, https://doi.org/10.5194/acp-17-1297-2017, 2017
Short summary
Short summary
In the monsoon season, Asian NOx emissions are rapidly transported to the UTLS and can impact ozone in the UTLS. From chemistry–climate model simulations, we show that increasing Asian NOx emissions have enhanced ozone radiative forcing over Southeast Asia, which leads to significant warming over the Tibetan Plateau and increase precipitation over India. However, a further increase in NOx emissions elicited negative precipitation due to reversal of monsoon Hadley circulation.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
William J. Gutowski Jr., Filippo Giorgi, Bertrand Timbal, Anne Frigon, Daniela Jacob, Hyun-Suk Kang, Krishnan Raghavan, Boram Lee, Christopher Lennard, Grigory Nikulin, Eleanor O'Rourke, Michel Rixen, Silvina Solman, Tannecia Stephenson, and Fredolin Tangang
Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, https://doi.org/10.5194/gmd-9-4087-2016, 2016
Short summary
Short summary
The Coordinated Regional Downscaling Experiment (CORDEX) is a diagnostic MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global output to produce downscaled projected changes in regional climates, and assess sources of uncertainties in the projections.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Marc von Hobe, Rolf Müller, and Martin Riese
Atmos. Meas. Tech., 9, 4399–4423, https://doi.org/10.5194/amt-9-4399-2016, https://doi.org/10.5194/amt-9-4399-2016, 2016
Short summary
Short summary
A new method for detecting aerosol in the UTLS based on infrared limb emission measurements is presented. The method was developed using radiative transfer simulations (including scattering) and Envisat MIPAS measurements. Results are presented for volcanic ash and sulfate aerosol originating from the Grimsvötn (Iceland), Puyehue–Cordon Caulle (Chile), and Nabro (Eritrea) eruptions in 2011 and compared with AIRS volcanic ash and SO2 measurements.
Zarashpe Z. Kapadia, Dominick V. Spracklen, Steve R. Arnold, Duncan J. Borman, Graham W. Mann, Kirsty J. Pringle, Sarah A. Monks, Carly L. Reddington, François Benduhn, Alexandru Rap, Catherine E. Scott, Edward W. Butt, and Masaru Yoshioka
Atmos. Chem. Phys., 16, 10521–10541, https://doi.org/10.5194/acp-16-10521-2016, https://doi.org/10.5194/acp-16-10521-2016, 2016
Short summary
Short summary
Using a coupled tropospheric chemistry-aerosol microphysics model this research paper investigates the effect of variations in aviation fuel sulfur content (FSC) on surface PM2.5 concentrations, increases in aviation-induced premature mortalities, low-level cloud condensation nuclei and radiative effect.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Jörn Ungermann, Mandfred Ern, Martin Kaufmann, Rolf Müller, Reinhold Spang, Felix Ploeger, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, https://doi.org/10.5194/acp-16-8389-2016, 2016
Short summary
Short summary
This paper presents an analysis of temperature and the trace gases PAN and O3 in
the Asian Summer Monsoon (ASM) region. The positive PAN anomaly consisting of
polluted air is confined vertically within the main ASM anticyclone, whereas a
recently shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal
tropopause. This implies that eddy shedding provides a very rapid horizontal
transport pathway of Asian pollution into the extratropical lowermost
stratosphere.
Charlotte Marinke Hoppe, Felix Ploeger, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 16, 6223–6239, https://doi.org/10.5194/acp-16-6223-2016, https://doi.org/10.5194/acp-16-6223-2016, 2016
Stefan Noël, Klaus Bramstedt, Michael Hilker, Patricia Liebing, Johannes Plieninger, Max Reuter, Alexei Rozanov, Christopher E. Sioris, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 9, 1485–1503, https://doi.org/10.5194/amt-9-1485-2016, https://doi.org/10.5194/amt-9-1485-2016, 2016
Short summary
Short summary
Stratospheric methane (CH4) and carbon dioxide (CO2) profiles have been derived from solar occultation measurements of the SCIAMACHY satellite instrument. The accuracy of these profiles is estimated to be about 5–10 % for CH4 and 2–3 % for CO2, mainly limited by unexpected vertical oscillations. Results are available for August 2002 to April 2012 and latitudes between about 50 and 70° N. From these, time series trends have been estimated, which are in reasonable agreement with total column trends.
Christopher E. Sioris, Jason Zou, David A. Plummer, Chris D. Boone, C. Thomas McElroy, Patrick E. Sheese, Omid Moeini, and Peter F. Bernath
Atmos. Chem. Phys., 16, 3265–3278, https://doi.org/10.5194/acp-16-3265-2016, https://doi.org/10.5194/acp-16-3265-2016, 2016
Short summary
Short summary
The AM (annular mode) is the most important internal mode of climatic variability at high latitudes. Upper tropospheric water vapour (UTWV) at high latitudes increases by up to ~ 50 % during the negative phase of the AMs. The response of water vapour to the AMs vanishes above the tropopause. The ultimate goal of the study was to improve UTWV trend uncertainties by explaining shorter-term variability, and this was achieved by accounting for the AM-related response in a multiple linear regression.
Christopher E. Sioris, Jason Zou, C. Thomas McElroy, Chris D. Boone, Patrick E. Sheese, and Peter F. Bernath
Atmos. Chem. Phys., 16, 2207–2219, https://doi.org/10.5194/acp-16-2207-2016, https://doi.org/10.5194/acp-16-2207-2016, 2016
Short summary
Short summary
This paper shows that volcanic eruptions occurring at higher latitudes in windy environments can lead to significant perturbations to upper tropospheric (UT) humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes.
This research was performed for the purpose of determining long-term trends in high-latitude UT water vapour. The steps involve building a monthly climatology and using it to deseasonalize the time series. Large observed anomalies are then studied.
Suvarna Fadnavis, K. Ravi Kumar, Yogesh K. Tiwari, and Luca Pozzoli
Ann. Geophys., 34, 279–291, https://doi.org/10.5194/angeo-34-279-2016, https://doi.org/10.5194/angeo-34-279-2016, 2016
Short summary
Short summary
Analysis of 10 years (2000–2009) of Carbon Tracker (CT-2010) model CO2 fluxes gives insights into the regional variation of CO2 fluxes over the Indian land mass. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines, and other industrial and urban centres. CO2 sink regions coincide with locations of dense forests with less industrial centres. CO2 fossil fuel emissions show good agreement with two bottom-up inventories REAS v1.11 and EDGAR v4.2.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, and M. Riese
Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, https://doi.org/10.5194/acp-15-13699-2015, 2015
Short summary
Short summary
The Asian summer monsoon circulation is an important global circulation system associated with strong upward transport of tropospheric source gases. We show that the contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intra-seasonal variability and that emissions from Asia have a significant impact on the chemical compositions of the lowermost stratosphere of the Northern Hemisphere at the end of the monsoon season in Sep./Oct. 2012.
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
C. E. Scott, D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster, P. Artaxo, M. Kulmala, L. V. Rizzo, E. Swietlicki, G. W. Mann, and K. J. Pringle
Atmos. Chem. Phys., 15, 12989–13001, https://doi.org/10.5194/acp-15-12989-2015, https://doi.org/10.5194/acp-15-12989-2015, 2015
Short summary
Short summary
To understand the radiative effects of biogenic secondary organic aerosol (SOA) it is necessary to consider the manner in which it is distributed across the existing aerosol size distribution. We explore the importance of the approach taken by global-scale models to do this, when calculating the direct radiative effect (DRE) & first aerosol indirect effect (AIE) due to biogenic SOA. This choice has little effect on the DRE, but a substantial impact on the magnitude and even sign of the first AIE
S. Fadnavis, K. Semeniuk, M. G. Schultz, M. Kiefer, A. Mahajan, L. Pozzoli, and S. Sonbawane
Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, https://doi.org/10.5194/acp-15-11477-2015, 2015
Short summary
Short summary
The model and MIPAS satellite data show that there are three regions which contribute substantial pollution to the south Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. Simulations show that westerly winds drive North American and European pollutants eastward where they can become part of the ASM and lifted to LS.
M. V. S Ramarao, R. Krishnan, J. Sanjay, and T. P. Sabin
Earth Syst. Dynam., 6, 569–582, https://doi.org/10.5194/esd-6-569-2015, https://doi.org/10.5194/esd-6-569-2015, 2015
Short summary
Short summary
This study using a variable resolution global climate model having high-resolution zooming over the South Asian region indicates that the anthropogenic effects have influenced the recent weakening of the monsoon circulation and decline of precipitation. The simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. This summer time soil drying is detectable under RCP4.5 scenario.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
S. D. Bansod, S. Fadnavis, and S. P. Ghanekar
Ann. Geophys., 33, 1051–1058, https://doi.org/10.5194/angeo-33-1051-2015, https://doi.org/10.5194/angeo-33-1051-2015, 2015
Short summary
Short summary
In this paper inter-annual variability of tropospheric air temperature over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region.
M. Tao, P. Konopka, F. Ploeger, J.-U. Grooß, R. Müller, C. M. Volk, K. A. Walker, and M. Riese
Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, https://doi.org/10.5194/acp-15-8695-2015, 2015
Short summary
Short summary
A remarkable major stratospheric sudden warming during the boreal winter 2008/09 is studied with the Chemical Lagrangian Model of the Stratosphere (CLaMS). We investigate how mixing triggered by this event correlates the wave forcing and how transport and mixing affect the composition of the whole stratosphere in the Northern Hemisphere, by using the tracer-tracer correlation technique.
S. D. D'Andrea, J. C. Acosta Navarro, S. C. Farina, C. E. Scott, A. Rap, D. K. Farmer, D. V. Spracklen, I. Riipinen, and J. R. Pierce
Atmos. Chem. Phys., 15, 2247–2268, https://doi.org/10.5194/acp-15-2247-2015, https://doi.org/10.5194/acp-15-2247-2015, 2015
Short summary
Short summary
We use modeled estimates of BVOCs from the years 1000 to 2000 to test the effect of anthropogenic BVOC emission changes on SOA formation, aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS model. Changes of >25% in the number of particles with diameters >80nm are predicted regionally due to extensive land-use changes, leading to increases in combined radiative effect of >0.5 Wm-2. This change in radiative forcing could be an overlooked anthropogenic effect on climate.
O. Kirner, R. Müller, R. Ruhnke, and H. Fischer
Atmos. Chem. Phys., 15, 2019–2030, https://doi.org/10.5194/acp-15-2019-2015, https://doi.org/10.5194/acp-15-2019-2015, 2015
Short summary
Short summary
We use multi-year simulations of the chemistry--climate model EMAC to investigate
the impact that the various types of PSCs have on Antarctic chlorine activation and ozone loss. Heterogeneous chemistry on liquid particles is responsible for more than 90% of the ozone depletion in Antarctic spring in the model simulations. In high southern latitudes, heterogeneous chemistry on ice particles causes only up to 5 DU of additional ozone depletion and chemistry on NAT particles less than 0.5 DU.
R. Spang, G. Günther, M. Riese, L. Hoffmann, R. Müller, and S. Griessbach
Atmos. Chem. Phys., 15, 927–950, https://doi.org/10.5194/acp-15-927-2015, https://doi.org/10.5194/acp-15-927-2015, 2015
Short summary
Short summary
Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS) region. The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extra-tropical lowermost stratosphere (LMS), resulting in the occurrence of high-altitude optically thin cirrus clouds in the LMS.
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
L. Hoffmann, C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones, C. I. Meyer, R. Spang, C. M. Volk, and K. A. Walker
Atmos. Chem. Phys., 14, 12479–12497, https://doi.org/10.5194/acp-14-12479-2014, https://doi.org/10.5194/acp-14-12479-2014, 2014
Short summary
Short summary
Stratospheric lifetimes determine the global warming and ozone depletion potentials of chlorofluorocarbons. We present new estimates of the CFC-11/CFC-12 lifetime ratio from satellite and model data (ACE-FTS, HIRDLS, MIPAS, and EMAC/CLaMS). Our estimates of 0.46+/-0.04 (satellites) and 0.48+/-0.07 (model) are in excellent agreement with the recent SPARC reassessment. Having smaller uncertainties than other studies, our results can help to better constrain future CFC lifetime recommendations.
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014, https://doi.org/10.5194/gmd-7-2639-2014, 2014
A. Kunz, N. Spelten, P. Konopka, R. Müller, R. M. Forbes, and H. Wernli
Atmos. Chem. Phys., 14, 10803–10822, https://doi.org/10.5194/acp-14-10803-2014, https://doi.org/10.5194/acp-14-10803-2014, 2014
S. Molleker, S. Borrmann, H. Schlager, B. Luo, W. Frey, M. Klingebiel, R. Weigel, M. Ebert, V. Mitev, R. Matthey, W. Woiwode, H. Oelhaf, A. Dörnbrack, G. Stratmann, J.-U. Grooß, G. Günther, B. Vogel, R. Müller, M. Krämer, J. Meyer, and F. Cairo
Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, https://doi.org/10.5194/acp-14-10785-2014, 2014
S. Fadnavis, K. Semeniuk, M. G. Schultz, A. Mahajan, L. Pozzoli, S. Sonbawane, and M. Kiefer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20159-2014, https://doi.org/10.5194/acpd-14-20159-2014, 2014
Revised manuscript not accepted
C. E. Sioris, C. D. Boone, R. Nassar, K. J. Sutton, I. E. Gordon, K. A. Walker, and P. F. Bernath
Atmos. Meas. Tech., 7, 2243–2262, https://doi.org/10.5194/amt-7-2243-2014, https://doi.org/10.5194/amt-7-2243-2014, 2014
A. E. Bourassa, D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyrölä, C. A. McLinden, C. E. Sioris, and C. Z. Roth
Atmos. Chem. Phys., 14, 6983–6994, https://doi.org/10.5194/acp-14-6983-2014, https://doi.org/10.5194/acp-14-6983-2014, 2014
C. E. Sioris, C. A. McLinden, V. E. Fioletov, C. Adams, J. M. Zawodny, A. E. Bourassa, C. Z. Roth, and D. A. Degenstein
Atmos. Chem. Phys., 14, 3479–3496, https://doi.org/10.5194/acp-14-3479-2014, https://doi.org/10.5194/acp-14-3479-2014, 2014
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
C. E. Scott, A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen, and P. Tunved
Atmos. Chem. Phys., 14, 447–470, https://doi.org/10.5194/acp-14-447-2014, https://doi.org/10.5194/acp-14-447-2014, 2014
C. Adams, A. E. Bourassa, V. Sofieva, L. Froidevaux, C. A. McLinden, D. Hubert, J.-C. Lambert, C. E. Sioris, and D. A. Degenstein
Atmos. Meas. Tech., 7, 49–64, https://doi.org/10.5194/amt-7-49-2014, https://doi.org/10.5194/amt-7-49-2014, 2014
J. Liu, D. W. Tarasick, V. E. Fioletov, C. McLinden, T. Zhao, S. Gong, C. Sioris, J. J. Jin, G. Liu, and O. Moeini
Atmos. Chem. Phys., 13, 11441–11464, https://doi.org/10.5194/acp-13-11441-2013, https://doi.org/10.5194/acp-13-11441-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
S. Fadnavis, K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, S. Das, and R. Kakatkar
Atmos. Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, https://doi.org/10.5194/acp-13-8771-2013, 2013
K. Minschwaner, L. Hoffmann, A. Brown, M. Riese, R. Müller, and P. F. Bernath
Atmos. Chem. Phys., 13, 4253–4263, https://doi.org/10.5194/acp-13-4253-2013, https://doi.org/10.5194/acp-13-4253-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
N. A. D. Richards, S. R. Arnold, M. P. Chipperfield, G. Miles, A. Rap, R. Siddans, S. A. Monks, and M. J. Hollaway
Atmos. Chem. Phys., 13, 2331–2345, https://doi.org/10.5194/acp-13-2331-2013, https://doi.org/10.5194/acp-13-2331-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Analytical approximation of the definite Chapman integral for arbitrary zenith angles
Moist bias in the Pacific upper troposphere and lower stratosphere (UTLS) in climate models affects regional circulation patterns
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Quantifying stratospheric ozone trends over 1984–2020: a comparison of ordinary and regularized multivariate regression models
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends
The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption
Hemispheric asymmetries in recent changes in the stratospheric circulation
A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future
The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide
The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis
Simulations of anthropogenic bromoform indicate high emissions at the coast of East Asia
Sensitivity of stratospheric water vapour to variability in tropical tropopause temperatures and large-scale transport
Technical note: Lowermost-stratosphere moist bias in ECMWF IFS model diagnosed from airborne GLORIA observations during winter–spring 2016
The response of stratospheric water vapor to climate change driven by different forcing agents
Influence of convection on stratospheric water vapor in the North American monsoon region
Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons
Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability
Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings
Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change
Brominated VSLS and their influence on ozone under a changing climate
Contribution of different processes to changes in tropical lower-stratospheric water vapor in chemistry–climate models
Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere
A new time-independent formulation of fractional release
The millennium water vapour drop in chemistry–climate model simulations
Impact of major volcanic eruptions on stratospheric water vapour
Variability of water vapour in the Arctic stratosphere
On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century
Trends in peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional impacts
Spatial regression analysis on 32 years of total column ozone data
Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes
Modeling upper tropospheric and lower stratospheric water vapor anomalies
Evolution of Antarctic ozone in September–December predicted by CCMVal-2 model simulations for the 21st century
Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N2O and O3 in the tropical lower stratosphere
OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes
Relationships between Brewer-Dobson circulation, double tropopauses, ozone and stratospheric water vapour
Simulation of stratospheric water vapor and trends using three reanalyses
Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach
Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses
Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index
Forecasts and assimilation experiments of the Antarctic ozone hole 2008
Extreme events in total ozone over Arosa – Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes
Technical Note: Trend estimation from irregularly sampled, correlated data
Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere
Dongxiao Yue
Atmos. Chem. Phys., 24, 5093–5097, https://doi.org/10.5194/acp-24-5093-2024, https://doi.org/10.5194/acp-24-5093-2024, 2024
Short summary
Short summary
The stunning colors of the sky and clouds result from light scattering in the atmosphere, whose density changes with height. Previously, calculating these colors involves costly, sometimes inaccurate methods. This paper presents a silver bullet: a single elegant formula that simplifies these complex calculations. What is the result? We have faster, more precise predictions of atmospheric colors, from Earth's blue skies and red sunsets to Venus's golden hues.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023, https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Short summary
We use a state-of-the-art Earth system model and a set of stratospheric aerosol injection (SAI) strategies to achieve the same level of global mean surface cooling through different combinations of location and/or timing of the injection. We demonstrate that the choice of SAI strategy can lead to contrasting impacts on stratospheric and tropospheric temperatures, circulation, and chemistry (including stratospheric ozone), thereby leading to different impacts on regional surface climate.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023, https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary
Short summary
For the first time a regularized multivariate regression model is used to estimate stratospheric ozone trends. Regularized regression avoids the over-fitting issue due to correlation among explanatory variables. We demonstrate that there are considerable differences in satellite-based and chemical-model-based ozone trends, highlighting large uncertainties in our understanding about ozone variability. We argue that caution is needed when interpreting results with different methods and datasets.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023, https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
Short summary
Ozone in the lower part of the stratosphere has not increased and has perhaps even continued to decline in recent decades. This study demonstrates that the amount of ozone in this region is highly sensitive to the amount of air upwelling into the stratosphere in the tropics and that simulations from a climate model nudged to historical meteorological fields often fail to accurately capture the variations in tropical upwelling that control short-term trends in lower-stratospheric ozone.
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022, https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary
Short summary
Stratospheric water vapor is important for Earth's overall greenhouse effect and for ozone chemistry; however the factors governing its variability on interannual timescales are not fully known, and previous modeling studies have indicated that models struggle to capture this interannual variability. We demonstrate that nonlinear interactions are important for determining overall water vapor concentrations and also that models have improved in their ability to capture these connections.
Zhongyin Cai, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022, https://doi.org/10.5194/acp-22-6787-2022, 2022
Short summary
Short summary
Using AIRS and TROPOMI sulfur dioxide retrievals and the Lagrangian transport model MPTRAC, we present an improved reconstruction of injection parameters of the 2019 Raikoke eruption. Reconstructions agree well between using AIRS nighttime and TROPOMI daytime retrievals, showing the potential of our approach to create a long-term volcanic sulfur dioxide inventory from nearly 20 years of AIRS retrievals.
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022, https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
Short summary
We investigate hemispheric asymmetries in stratospheric circulation changes in the last 2 decades in model simulations and atmospheric observations. We find that observed trace gas changes can be explained by a structural circulation change related to a deepening circulation in the Northern Hemisphere relative to the Southern Hemisphere. As this asymmetric signal is small compared to internal variability observed circulation trends over the recent past are not in contradiction to climate models.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
Wolfgang Woiwode, Andreas Dörnbrack, Inna Polichtchouk, Sören Johansson, Ben Harvey, Michael Höpfner, Jörn Ungermann, and Felix Friedl-Vallon
Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, https://doi.org/10.5194/acp-20-15379-2020, 2020
Short summary
Short summary
The lowermost-stratosphere moist bias in ECMWF analyses and 12 h forecasts is diagnosed for the Arctic winter-spring 2016 period by using two-dimensional GLORIA water vapor observations. The bias is already present in the initial conditions (i.e., the analyses), and sensitivity forecasts on time scales of < 12 h show hardly any sensitivity to modified spatial resolution and output frequency.
Xun Wang and Andrew E. Dessler
Atmos. Chem. Phys., 20, 13267–13282, https://doi.org/10.5194/acp-20-13267-2020, https://doi.org/10.5194/acp-20-13267-2020, 2020
Short summary
Short summary
We investigate the response of stratospheric water vapor (SWV) to different forcing agents, including greenhouse gases and aerosols. For most forcing agents, the SWV response is dominated by a slow response, which is coupled to surface temperature changes and exhibits a similar sensitivity to the surface temperature across all forcing agents. The fast SWV adjustment due to forcing is important when the forcing agent directly heats the cold-point region, e.g., black carbon.
Wandi Yu, Andrew E. Dessler, Mijeong Park, and Eric J. Jensen
Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020, https://doi.org/10.5194/acp-20-12153-2020, 2020
Short summary
Short summary
The stratospheric water vapor mixing ratio over North America (NA) region is up to ~ 1 ppmv higher when deep convection occurs. We find substantial consistency in the interannual variations of NA water vapor anomaly and deep convection and explain both the summer seasonal cycle and interannual variability of the convective moistening efficiency. We show that the NA anticyclone and tropical upper tropospheric temperature determine how much deep convection moistens the lower stratosphere.
Pallav Purohit, Lena Höglund-Isaksson, John Dulac, Nihar Shah, Max Wei, Peter Rafaj, and Wolfgang Schöpp
Atmos. Chem. Phys., 20, 11305–11327, https://doi.org/10.5194/acp-20-11305-2020, https://doi.org/10.5194/acp-20-11305-2020, 2020
Short summary
Short summary
This study shows that if energy efficiency improvements in cooling technologies are addressed simultaneously with a phase-down of hydrofluorocarbons (HFCs), not only will global warming be mitigated through the elimination of HFCs but also by saving about a fifth of future global electricity consumption. This means preventing between 411 and 631 Pg CO2 equivalent of greenhouse gases between today and 2100, thereby offering a significant contribution towards staying well below 2 °C warming.
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Short summary
We use a trajectory model to diagnose mechanisms that produce the observed and modeled tropical lower stratospheric water vapor seasonal cycle. We confirm that the seasonal cycle of water vapor is primarily determined by the seasonal cycle of tropical tropopause layer (TTL) temperatures. However, between 10° N and 40° N, we find that evaporation of convective ice in the TTL plays a key role contributing to the water vapor seasonal cycle there. The Asian monsoon region is the most important region.
Ewa M. Bednarz, Amanda C. Maycock, Paul J. Telford, Peter Braesicke, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 5209–5233, https://doi.org/10.5194/acp-19-5209-2019, https://doi.org/10.5194/acp-19-5209-2019, 2019
Short summary
Short summary
Following model improvements, the atmospheric response to the 11-year solar cycle forcing simulated in the UM-UKCA chemistry–climate model is discussed for the first time. In contrast to most previous studies in the literature, we compare the results diagnosed using both a composite and a MLR methodology, and we show that apparently different signals can be diagnosed in the troposphere. In addition, we look at the role of internal atmospheric variability for the detection of the solar response.
Justin Bandoro, Susan Solomon, Benjamin D. Santer, Douglas E. Kinnison, and Michael J. Mills
Atmos. Chem. Phys., 18, 143–166, https://doi.org/10.5194/acp-18-143-2018, https://doi.org/10.5194/acp-18-143-2018, 2018
Short summary
Short summary
We studied the attribution of stratospheric ozone changes and identified similarities between observations and human fingerprints from both emissions of ozone-depleting substances (ODSs) and greenhouse gases (GHGs). We developed an improvement on the traditional pattern correlation method that accounts for nonlinearities in the climate forcing time evolution. Use of the latter resulted in increased S / N ratios for the ODS fingerprint. The GHG fingerprint was not identifiable.
Anne R. Douglass, Susan E. Strahan, Luke D. Oman, and Richard S. Stolarski
Atmos. Chem. Phys., 17, 12081–12096, https://doi.org/10.5194/acp-17-12081-2017, https://doi.org/10.5194/acp-17-12081-2017, 2017
Short summary
Short summary
Data records from instruments on satellites and on the ground are compared with a simulation for 1980–2016 that is made using winds and temperatures that are derived from measurements. The simulation tracks the observations faithfully after about 2000, but there are systematic errors for earlier years. Scientists must take this into account when trying to detect and quantify changes in the stratospheric circulation that are caused by climate change.
Stefanie Falk, Björn-Martin Sinnhuber, Gisèle Krysztofiak, Patrick Jöckel, Phoebe Graf, and Sinikka T. Lennartz
Atmos. Chem. Phys., 17, 11313–11329, https://doi.org/10.5194/acp-17-11313-2017, https://doi.org/10.5194/acp-17-11313-2017, 2017
Short summary
Short summary
Brominated very short-lived source gases (VSLS) contribute significantly to the tropospheric and stratospheric bromine loading. We find an increase of future ocean–atmosphere flux of brominated VSLS of 8–10 % compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Bromine impact on stratospheric ozone at the end of the 21st century is reduced compared to present day.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Jennifer Ostermöller, Harald Bönisch, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 17, 3785–3797, https://doi.org/10.5194/acp-17-3785-2017, https://doi.org/10.5194/acp-17-3785-2017, 2017
Short summary
Short summary
We analysed the temporal evolution of fractional release factors (FRFs) from EMAC model simulations for several halocarbons and nitrous oxide. The current formulation of FRFs yields values that depend on the tropospheric trend of the species. This is a problematic issue for the application of FRF in the calculation of steady-state quantities (e.g. ODP). Including a loss term in the calculation, we develop a new formulation of FRF and find that the time dependence can almost be compensated.
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO.
There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Michael Löffler, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016, https://doi.org/10.5194/acp-16-6547-2016, 2016
Short summary
Short summary
After the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991, stratospheric water vapour is significantly increased. This results from increased stratospheric heating rates due to volcanic aerosol and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere.
Laura Thölix, Leif Backman, Rigel Kivi, and Alexey Yu. Karpechko
Atmos. Chem. Phys., 16, 4307–4321, https://doi.org/10.5194/acp-16-4307-2016, https://doi.org/10.5194/acp-16-4307-2016, 2016
J. Aschmann, J. P. Burrows, C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, and A. M. Thompson
Atmos. Chem. Phys., 14, 12803–12814, https://doi.org/10.5194/acp-14-12803-2014, https://doi.org/10.5194/acp-14-12803-2014, 2014
Short summary
Short summary
This study compares observations and simulation results of ozone in the lower tropical stratosphere. It shows that ozone in this region decreased from 1985 up to about 2002, which is consistent with an increase in tropical upwelling predicted by climate models. However, the decrease effectively stops after 2002, indicating that significant changes in tropical upwelling have occurred. The most important factor appears to be that the vertical ascent in the tropics is no longer accelerating.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
J. S. Knibbe, R. J. van der A, and A. T. J. de Laat
Atmos. Chem. Phys., 14, 8461–8482, https://doi.org/10.5194/acp-14-8461-2014, https://doi.org/10.5194/acp-14-8461-2014, 2014
M. Abalos, F. Ploeger, P. Konopka, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, https://doi.org/10.5194/acp-13-10787-2013, 2013
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013, https://doi.org/10.5194/acp-13-7783-2013, 2013
J. M. Siddaway, S. V. Petelina, D. J. Karoly, A. R. Klekociuk, and R. J. Dargaville
Atmos. Chem. Phys., 13, 4413–4427, https://doi.org/10.5194/acp-13-4413-2013, https://doi.org/10.5194/acp-13-4413-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
J. A. Schmidt, M. S. Johnson, S. Hattori, N. Yoshida, S. Nanbu, and R. Schinke
Atmos. Chem. Phys., 13, 1511–1520, https://doi.org/10.5194/acp-13-1511-2013, https://doi.org/10.5194/acp-13-1511-2013, 2013
H. E. Rieder, L. Frossard, M. Ribatet, J. Staehelin, J. A. Maeder, S. Di Rocco, A. C. Davison, T. Peter, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 13, 165–179, https://doi.org/10.5194/acp-13-165-2013, https://doi.org/10.5194/acp-13-165-2013, 2013
J. M. Castanheira, T. R. Peevey, C. A. F. Marques, and M. A. Olsen
Atmos. Chem. Phys., 12, 10195–10208, https://doi.org/10.5194/acp-12-10195-2012, https://doi.org/10.5194/acp-12-10195-2012, 2012
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 12, 6475–6487, https://doi.org/10.5194/acp-12-6475-2012, https://doi.org/10.5194/acp-12-6475-2012, 2012
B. Chen, X. D. Xu, S. Yang, and T. L. Zhao
Atmos. Chem. Phys., 12, 5827–5839, https://doi.org/10.5194/acp-12-5827-2012, https://doi.org/10.5194/acp-12-5827-2012, 2012
S. Dhomse, M. P. Chipperfield, W. Feng, and J. D. Haigh
Atmos. Chem. Phys., 11, 12773–12786, https://doi.org/10.5194/acp-11-12773-2011, https://doi.org/10.5194/acp-11-12773-2011, 2011
A. J. G. Baumgaertner, A. Seppälä, P. Jöckel, and M. A. Clilverd
Atmos. Chem. Phys., 11, 4521–4531, https://doi.org/10.5194/acp-11-4521-2011, https://doi.org/10.5194/acp-11-4521-2011, 2011
J. Flemming, A. Inness, L. Jones, H. J. Eskes, V. Huijnen, M. G. Schultz, O. Stein, D. Cariolle, D. Kinnison, and G. Brasseur
Atmos. Chem. Phys., 11, 1961–1977, https://doi.org/10.5194/acp-11-1961-2011, https://doi.org/10.5194/acp-11-1961-2011, 2011
H. E. Rieder, J. Staehelin, J. A. Maeder, T. Peter, M. Ribatet, A. C. Davison, R. Stübi, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 10, 10033–10045, https://doi.org/10.5194/acp-10-10033-2010, https://doi.org/10.5194/acp-10-10033-2010, 2010
T. von Clarmann, G. Stiller, U. Grabowski, E. Eckert, and J. Orphal
Atmos. Chem. Phys., 10, 6737–6747, https://doi.org/10.5194/acp-10-6737-2010, https://doi.org/10.5194/acp-10-6737-2010, 2010
J. Aschmann, B.-M. Sinnhuber, E. L. Atlas, and S. M. Schauffler
Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, https://doi.org/10.5194/acp-9-9237-2009, 2009
Cited articles
Bourassa, A. E., Robock, A., Randel, W. J., Deshler, T., Rieger, L. A.,
Lloyd, N. D., Llewellyn, E. J., and Degenstein, D. A.: Large volcanic aerosol
load in the stratosphere linked to Asian monsoon transport, Science,
336, 78–81, https://doi.org/10.1126/science.1219371, 2012.
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code.
I: Choosing a configuration for a large-scale model, Q. J. Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1256/smsqj.53106, 1996.
European Centre for Medium-Range Weather Forecasts (ECMWF): ECMWF, ERA Interim,
Daily, available at:
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/,
last access: 9 August 2018.
Fadnavis, S. and Chattopadhyay, R.: Linkages of subtropical stratospheric
intraseasonal intrusions with Indian summer monsoon deficit rainfall, J. Climate, 30, 5083–5095, https://doi.org/10.1175/JCLI-D-16-0463.1, 2017.
Fadnavis, S., Semeniuk, K., Pozzoli, L., Schultz, M. G., Ghude, S. D., Das, S., and Kakatkar, R.: Transport of aerosols into the UTLS
and their impact on the Asian monsoon region as seen in a global model simulation, Atmos. Chem. Phys., 13, 8771–8786, https://doi.org/10.5194/acp-13-8771-2013, 2013.
Fadnavis, S., Schultz, M. G., Semeniuk, K., Mahajan, A. S., Pozzoli, L., Sonbawne, S., Ghude, S. D., Kiefer, M., and Eckert, E.: Trends in
peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional
impacts, Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, 2014.
Fadnavis, S., Semeniuk, K., Schultz, M. G., Kiefer, M., Mahajan, A., Pozzoli, L., and Sonbawane, S.: Transport pathways of peroxyacetyl nitrate in
the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season, Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, 2015.
Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M.,
Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G.,
Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, https://doi.org/10.5194/acp-8-2151-2008, 2008.
Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., and
Linden, A.: Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 µm
non-local thermal equilibrium emissions measured by MIPAS on Envisat, Atmos. Chem. Phys., 9, 2387–2411, https://doi.org/10.5194/acp-9-2387-2009, 2009.
Garny, H. and Randel, W. J.: Transport pathways from the Asian monsoon anticyclone to the stratosphere, Atmos. Chem. Phys.,
16, 2703–2718, https://doi.org/10.5194/acp-16-2703-2016, 2016.
Ghude, S. D., Kulkarni, S. H., Jena, C., Pfister, G. G., Beig, G., Fadnavis,
S., and van Der, R. J.: Application of satellite observations for identifying
regions of dominant sources of nitrogen oxides over the indian subcontinent,
J. Geophys. Res.-Atmos., 118, 1075–1089, https://doi.org/10.1029/2012JD017811,
2013.
Gilford, D. M. and Solomon, S.: Radiative effects of stratospheric seasonal
cycles in the tropical upper troposphere and lower stratosphere, J. Climate,
30, 2769–2783, https://doi.org/10.1175/JCLI-D-16-0633.1, 2017.
Glatthor, N., von Clarmann, T., Fischer, H., Funke, B., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Milz, M.,
Steck, T., and Stiller, G. P.: Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the
Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Atmos. Chem. Phys., 7, 2775-2787, https://doi.org/10.5194/acp-7-2775-2007, 2007.
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J.,
Granier, C., Tie, X., Lamarque, J.-F., Schultz, M. G., Tyndall, G. S.,
Orlando, J. J., and Brasseur, G. P.: A global simulation of tropospheric
ozone and related tracers: Description and evaluation of MOZART, version 2,
J. Geophys. Res.-Atmos., 108,
4784, https://doi.org/10.1029/2002JD002853, 2003.
Hsu, C. J. and Plumb, R. A.: Nonaxisymmetric thermally driven circulations
and upper-tropospheric monsoon dynamics, J. Atmos. Sci., 57,
1255–1276, https://doi.org/10.1175/1520-0469(2000)057<1255:NTDCAU>2.0.CO;2, 2000.
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X.,
and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms,
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014.
Liang, Q., Jaeglé, L., Jaffe, D. A., Weiss-Penzias, P., Heckman, A., and
Snow, J. A.: Long-range transport of Asian pollution to the northeast
Pacific: Seasonal variations and transport pathways of carbon monoxide, J.
Geophys. Res.-Atmos., 109, 1–16, https://doi.org/10.1029/2003JD004402, 2004.
Naik, V., Mauzerall, D., Horowitz, L., Schwarzkopf, M. D., Ramaswamy, V., and Oppenheimer, M.: Net radiative forcing due to changes in regional
emissions of tropospheric ozone precursors, J. Geophys. Res., 110, D24306, https://doi.org/10.1029/2005JD00590, 2005.
Nützel, M., Dameris, M., and Garny, H.: Movement, drivers and bimodality of the South Asian High, Atmos. Chem. Phys., 16,
14755–14774, https://doi.org/10.5194/acp-16-14755-2016, 2016.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of
anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Park, M., Randel, W. J., Emmons, L. K., Bernath, P. F., Walker, K. A., and Boone, C. D.: Chemical isolation in the Asian monsoon anticyclone
observed in Atmospheric Chemistry Experiment (ACE-FTS) data, Atmos. Chem. Phys., 8, 757–764, https://doi.org/10.5194/acp-8-757-2008, 2008.
Payne, V. H., Fischer, E. V., Worden, J. R., Jiang, Z., Zhu, L., Kurosu, T. P., and Kulawik, S. S.: Spatial variability in tropospheric
peroxyacetyl nitrate in the tropics from infrared satellite observations in 2005 and 2006, Atmos. Chem. Phys.,
17, 6341–6351, https://doi.org/10.5194/acp-17-6341-2017, 2017.
Ploeger, F., Gottschling, C., Griessbach, S., Grooß, J.-U., Guenther, G., Konopka, P., Müller, R., Riese, M., Stroh, F., Tao, M., Ungermann, J.,
Vogel, B., and von Hobe, M.: A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone,
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, 2015.
Ploeger, F., Konopka, P., Walker, K., and Riese, M.: Quantifying pollution transport from the Asian monsoon anticyclone into the lower
stratosphere, Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, 2017.
Popovic, J. M. and Plumb, R. A.: Eddy Shedding from the Upper-Tropospheric
Asian Monsoon Anticyclone, J. Atmos. Sci., 58, 93–104,
https://doi.org/10.1175/1520-0469(2001)058<0093:ESFTUT>2.0.CO;2, 2001.
Pozzoli, L., Janssens-Maenhout, G., Diehl, T., Bey, I., Schultz, M. G., Feichter, J., Vignati, E., and Dentener, F.: Re-analysis of tropospheric
sulfate aerosol and ozone for the period 1980–2005 using the aerosol-chemistry-climate model ECHAM5-HAMMOZ, Atmos. Chem. Phys., 11, 9563–9594,
https://doi.org/10.5194/acp-11-9563-2011, 2011.
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K.
A., Boone, C., and Pumphrey, H.: Asian monsoon transport of trace gases to
the stratosphere, Science, 328, 611–613, 10.1126/science.1182274, 2010.
Rap, A., Richards, N. A. D., Forster, P. M., Monks, S., Arnold, S. R.,
and Chipperfield, M.: Satellite constraint on the tropospheric ozone radiative
effect, Geophys. Res. Lett., 42, 5074–5081, https://doi.org/10.1002/2015GL064037, 2015.
Riese, M., Ploeger, F., Rap, A., Vogel, B., Konopka, P., Dameris, M., and
Forster, P.: Impact of uncertainties in atmospheric mixing on simulated UTLS
composition and related radiative effects, J. Geophys. Res., 117,
D16305, https://doi.org/10.1029/2012JD017751, 2012.
Roeckner, E., Bauml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta,
M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A.,
Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general
circulation model ECHAM5: Part 1, Tech. Rep. 349, Max Planck Institute for
Meteorology, Hamburg, 2003.
Roy, C., Fadnavis, S., Müller, R., Ayantika, D. C., Ploeger, F., and Rap, A.: Influence of enhanced Asian NOx emissions on ozone in the upper
troposphere and lower stratosphere in chemistry-climate model simulations, Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, 2017.
Santee, M. L., Manney, G. L., Livesey, N. J., Schwartz, M. J., Neu, J. L., and
Read, W. G.: A comprehensive overview of the climatological composition of
the Asian summer monsoon anticyclone based on 10 years of Aura Microwave
Limb Sounder measurements, J. Geophys. Res.-Atmos., 122, 5491–5514,
https://doi.org/10.1002/2016JD026408, 2017.
Schneider, P. and van Der A, R. J.: A global single-sensor analysis of
2002–2011 tropospheric nitrogen dioxide trends observed from space, J. Geophys. Res.-Atmos., 117, 1–17, https://doi.org/10.1029/2012JD017571, 2012.
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M.,
Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005.
Streets, D. G., Yarber, K. F., Woo, J.-H., and Carmichael, G. R.: Biomass
burning in Asia: Annual and seasonal estimates and atmospheric emissions,
Global Biogeochem. Cy., 17,
1099, https://doi.org/10.1029/2003GB002040, 2003.
Strode, S. A. and Pawson, S.: Detection of carbon monoxide trends in the
presence of interannual variability, J. Geophys. Res.-Atmos., 118,
12257–12273, https://doi.org/10.1002/2013JD020258, 2013.
Strong, C. and Magnusdottir, G.: Tropospheric Rossby wave breaking and the
NAO/NAM, J. Atmos. Sci., 65, 2861–2876, https://doi.org/10.1175/2008JAS2632.1, 2008.
Tereszchuk, K. A., Moore, D. P., Harrison, J. J., Boone, C. D., Park, M., Remedios, J. J., Randel, W. J., and Bernath, P. F.:
Observations of peroxyacetyl nitrate (PAN) in the upper troposphere by the Atmospheric Chemistry Experiment-Fourier Transform
Spectrometer (ACE-FTS), Atmos. Chem. Phys., 13, 5601–5613, https://doi.org/10.5194/acp-13-5601-2013, 2013.
Tie, X., Zhang, R., Brasseur, G., and Lei, W.: Global NOx Production by
Lightning, J. Atmos. Chem., 43, 61–74, https://doi.org/10.1023/A:1016145719608,
2002.
Ungermann, J., Ern, M., Kaufmann, M., Müller, R., Spang, R., Ploeger, F., Vogel, B., and Riese, M.: Observations of PAN and its confinement
in the Asian summer monsoon anticyclone in high spatial resolution, Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, 2016.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., da Costa
Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly,
G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson,
E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van de Berg, L., Bidlot,
J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M.,
Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J.,
Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J.
F., Morcrette, J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A.,
Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.:
The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012,
https://doi.org/10.1256/qj.04.176, 2005.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in
global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
Verstraeten, W. W., Neu, J. L., Williams, J. E., Bowman, K. W., Worden, J.
R., and Boersma, K. F.: Rapid increases in tropospheric ozone production and
export from China, Nat. Geosci., 8, 690–695, https://doi.org/10.1038/ngeo2493, 2015.
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., Hoor, P., Krämer, M., Müller, S., Zahn, A., and Riese, M.: Fast transport from
Southeast Asia boundary layer sources to northern Europe: rapid uplift in typhoons and eastward eddy shedding of the Asian
monsoon anticyclone, Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, 2014.
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., Afchine, A., Bozem, H., Hoor, P., Krämer, M., Müller, S., Riese, M., Rolf, C.,
Spelten, N., Stiller, G. P., Ungermann, J., and Zahn, A.: Long-range transport pathways of tropospheric source gases originating in Asia into
the northern lower stratosphere during the Asian monsoon season 2012, Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, 2016.
Vogel, B., Müller, R., Günther, G., Spang, R., Hanumanthu, S., Li, D., Riese, M., and Stiller, G. P.: Lagrangian simulations of the
transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2018-724, in review, 2018.
von Clarmann, T., De Clercq, C., Ridolfi, M., Höpfner, M., and Lambert, J.-C.: The horizontal resolution of MIPAS,
Atmos. Meas. Tech., 2, 47–54, https://doi.org/10.5194/amt-2-47-2009, 2009.
Wang, W.-G., Yuan, M., Wang, H.-Y., Sun, J.-H., Xie, Y.-Q., Fan, W.-X., and
Chen, X.-M.: A Study of Ozone Amount in the Transition Layer Between
Troposphere and Stratosphere and Its Heating Rate, Chinese J. Geophys.-Ch., 51,
916–930, https://doi.org/10.1002/cjg2.1287, 2008.
Wayne, R. P.: Chemistry of atmospheres, 3rd Edn., Oxford science
publications, Clarendon Press, Oxford, 337 pp., ISBN: 0 19 850375X, 2000.
Zhang, Q., Wu, G., and Qian, Y.: The Bimodality of the 100 hPa South Asia
High and its Relationship to the Climate Anomaly over East Asia in summer,
J. Meteorol. Soc. Jpn., 80, 733–744, https://doi.org/10.2151/jmsj.80.733, 2002.
Zhao, C., Wang, Y., Choi, Y., and Zeng, T.: Summertime impact of convective transport and lightning NOx production over North
America: modeling dependence on meteorological simulations, Atmos. Chem. Phys., 9, 4315–4327, https://doi.org/10.5194/acp-9-4315-2009, 2009.
Short summary
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in the tropospheric trace gases over Asia. There is global concern about rising levels of these trace gases. The monsoon convection transports these gases to the upper-level-anticyclone. In this study, we show transport of these gases to the extratropics via eddy-shedding from the anticyclone. We also deliberate on changes in ozone heating rates due to the transport of Asian trace gases.
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in...
Altmetrics
Final-revised paper
Preprint