Articles | Volume 17, issue 22
https://doi.org/10.5194/acp-17-13521-2017
https://doi.org/10.5194/acp-17-13521-2017
Research article
 | 
15 Nov 2017
Research article |  | 15 Nov 2017

Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant

Donald D. Lucas, Matthew Simpson, Philip Cameron-Smith, and Ronald L. Baskett

Related authors

Designing optimal greenhouse gas observing networks that consider performance and cost
D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling
Geosci. Instrum. Method. Data Syst., 4, 121–137, https://doi.org/10.5194/gi-4-121-2015,https://doi.org/10.5194/gi-4-121-2015, 2015
Short summary
Failure analysis of parameter-induced simulation crashes in climate models
D. D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, and Y. Zhang
Geosci. Model Dev., 6, 1157–1171, https://doi.org/10.5194/gmd-6-1157-2013,https://doi.org/10.5194/gmd-6-1157-2013, 2013
Evaluating transport in the WRF model along the California coast
C. E. Yver, H. D. Graven, D. D. Lucas, P. J. Cameron-Smith, R. F. Keeling, and R. F. Weiss
Atmos. Chem. Phys., 13, 1837–1852, https://doi.org/10.5194/acp-13-1837-2013,https://doi.org/10.5194/acp-13-1837-2013, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Distinct structures of interannual variations in stratosphere-to-troposphere ozone transport induced by the Tibetan Plateau thermal forcing
Qingjian Yang, Tianliang Zhao, Yongqing Bai, Kai Meng, Yuehan Luo, Zhijie Tian, Xiaoyun Sun, Weikang Fu, Kai Yang, and Jun Hu
Atmos. Chem. Phys., 25, 8029–8042, https://doi.org/10.5194/acp-25-8029-2025,https://doi.org/10.5194/acp-25-8029-2025, 2025
Short summary
Global CH4 fluxes derived from JAXA/GOSAT lower-tropospheric partial column data and the CarbonTracker Europe-CH4 atmospheric inverse model
Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto
Atmos. Chem. Phys., 25, 7829–7862, https://doi.org/10.5194/acp-25-7829-2025,https://doi.org/10.5194/acp-25-7829-2025, 2025
Short summary
Improved understanding of anthropogenic and biogenic carbonyl sulfide (COS) fluxes in western Europe from long-term continuous mixing ratio measurements
Antoine Berchet, Isabelle Pison, Camille Huselstein, Clément Narbaud, Marine Remaud, Sauveur Belviso, Camille Abadie, and Fabienne Maignan
Atmos. Chem. Phys., 25, 7499–7525, https://doi.org/10.5194/acp-25-7499-2025,https://doi.org/10.5194/acp-25-7499-2025, 2025
Short summary
The skill at modeling an extremely high ozone episode varies substantially amongst ensemble simulation
Jinhui Gao and Hui Xiao
Atmos. Chem. Phys., 25, 7387–7401, https://doi.org/10.5194/acp-25-7387-2025,https://doi.org/10.5194/acp-25-7387-2025, 2025
Short summary
Quantifying transboundary transport flux of CO over the Tibetan Plateau: variabilities and drivers
Zhenda Sun, Hao Yin, Zhongfeng Pan, Chongyang Li, Xiao Lu, Ke Liu, Youwen Sun, and Cheng Liu
Atmos. Chem. Phys., 25, 6823–6842, https://doi.org/10.5194/acp-25-6823-2025,https://doi.org/10.5194/acp-25-6823-2025, 2025
Short summary

Cited articles

Albergel, A., Martin, D., Strauss, B., and Gros, J. M.: The Chernobyl accident: Modelling of dispersion over europe of the radioactive plume and comparison with air activity measurements, Atmos. Environ., 22, 2431–2444, https://doi.org/10.1016/0004-6981(88)90475-1, 1988.
An, X., Yao, B., Li, Y., Li, N., and Zhou, L.: Tracking source area of Shangdianzi station using Lagrangian particle dispersion model of FLEXPART, Meteorol. Appl., 21, 466–473, https://doi.org/10.1002/met.1358, 2014.
Andreev, I., Hittenberger, M., Hofer, P., Kromp-Kolb, H., Kromp, W., Seibert, P., and Wotawa, G.: Risks due to beyond design base accidents of nuclear power plants in Europe the methodology of riskmap, J. Hazard. Mater., 61, 257–262, https://doi.org/10.1016/S0304-3894(98)00130-7, 1998.
Athey, G. F., Fosmire, C., Mohseni, A., Ramsdell, J., and Sjoreen, A.: Radiological Assessment System for Consequence Analysis (RASCAL) Version 3.0, American Nuclear Society, 1999.
Avey, L., Garrett, T. J., and Stohl, A.: Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation, J. Geophys. Res.-Atmos., 112, D10S33, https://doi.org/10.1029/2006JD007581, 2007.
Download
Short summary
Monte Carlo ensemble simulations, Bayesian inversion, and machine learning are used to quantify uncertainty in the atmospheric transport and emissions of a controlled tracer released from a nuclear power plant. Uncertainty of different settings in a weather model and source terms in a dispersion model are jointly estimated. The algorithm is validated using model-generated output and field observations and can benefit atmospheric researchers who need to estimate tracer transport uncertainty.
Share
Altmetrics
Final-revised paper
Preprint