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Abstract. Probability distribution functions (PDFs) of model
inputs that affect the transport and dispersion of a trace gas
released from a coastal California nuclear power plant are
quantified using ensemble simulations, machine-learning al-
gorithms, and Bayesian inversion. The PDFs are constrained
by observations of tracer concentrations and account for un-
certainty in meteorology, transport, diffusion, and emissions.
Meteorological uncertainty is calculated using an ensem-
ble of simulations of the Weather Research and Forecast-
ing (WRF) model that samples five categories of model in-
puts (initialization time, boundary layer physics, land surface
model, nudging options, and reanalysis data). The WRF out-
put is used to drive tens of thousands of FLEXPART dis-
persion simulations that sample a uniform distribution of six
emissions inputs. Machine-learning algorithms are trained on
the ensemble data and used to quantify the sources of ensem-
ble variability and to infer, via inverse modeling, the values
of the 11 model inputs most consistent with tracer measure-
ments. We find a substantial ensemble spread in tracer con-
centrations (factors of 10 to 103), most of which is due to
changing emissions inputs (about 80 %), though the cumu-
lative effects of meteorological variations are not negligible.
The performance of the inverse method is verified using syn-
thetic observations generated from arbitrarily selected sim-
ulations. When applied to measurements from a controlled
tracer release experiment, the inverse method satisfactorily
determines the location, start time, duration and amount. In
a 2km× 2km area of possible locations, the actual location
is determined to within 200 m. The start time is determined
to within 5 min out of 2 h, and the duration to within 50 min
out of 4 h. Over a range of release amounts of 10 to 1000 kg,
the estimated amount exceeds the actual amount of 146 kg by
only 32 kg. The inversion also estimates probabilities of dif-

ferent WRF configurations. To best match the tracer obser-
vations, the highest-probability cases in WRF are associated
with using a late initialization time and specific reanalysis
data products.

1 Introduction

Although the probability of a nuclear power plant accident
is low, the risks associated with accidental releases of ra-
dioactive materials from nuclear power plants are expected
to remain elevated worldwide through the coming decades
(Christoudias et al., 2014). In the unlikely event of an acci-
dent, government agencies and plant owners must take ac-
tions to protect people and the environment from exposure
to radioactive contamination. Because the atmosphere can
spread the contaminants beyond the boundaries of a power
plant within minutes to hours, reliable and timely protective
action recommendations based on numerical modeling of ac-
tual releases are essential.

A variety of atmospheric models have been developed for
simulating the transport and dispersion of releases from nu-
clear power plants, starting from the accidents at Three Mile
Island in 1979 and Chernobyl in 1986 (e.g., Wahlen et al.,
1980; Albergel et al., 1988; Gudiksen et al., 1989). These
models range from simple straight-line Gaussian plumes that
are applicable at short ranges when the turbulence in the
atmosphere is stationary and homogeneous (Seinfeld and
Pandis, 2006) to more sophisticated models based on La-
grangian particles and/or Eulerian transport when the atmo-
spheric flow is unsteady and occurs in areas with complex
terrain (e.g., Pöllänen et al., 1997; Lauritzen and Mikkelsen,
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Figure 1. An overview of our ensemble weather and dispersion system for inverse modeling and uncertainty applications. The system uses
WRF to calculate wind fields and FLEXPART to transport materials in the atmosphere. Information about atmospheric releases is inferred
by minimizing differences between plume predictions and field observations through Monte Carlo sampling loops (red dashed arrows). The
loops sample different reanalysis datasets and model configurations in WRF and source term inputs in FLEXPART.

1999; Nasstrom et al., 2007; Suh et al., 2009; Brioude et al.,
2013a).

Atmospheric models used for nuclear power plant appli-
cations also use emissions modules to estimate the release
rates of radionuclides based on specific reactor conditions
(Athey et al., 1999). While these modules are useful for pro-
viding approximate ranges of emissions and their associated
consequences, the detailed reactor conditions during an ac-
cident may not be well known and can contribute signifi-
cant uncertainty to transport and dispersion predictions. The
amount of radionuclides released to the atmosphere during
the Fukushima Daiichi accident in 2011, for example, still
remains highly uncertain because electrical power was lost
and the reactors were monitored only indirectly (e.g., Chino
et al., 2011; Terada et al., 2012; Stohl et al., 2012; Katata
et al., 2015).

Inverse modeling can provide a safe way to infer informa-
tion about radioactive emissions from nuclear power plants
and can also help estimate uncertainty in the meteorological
fields used to transport the radioactive materials. Emissions
and winds are constrained in an inverse method by minimiz-
ing differences between dispersion model predictions and
observations of materials transported and deposited down-
wind from the source location (e.g., Davoine and Bocquet,
2007; Zheng and Chen, 2011). Building upon our previous
work using Bayesian inverse modeling to estimate regional-
scale greenhouse gas emissions (Lucas et al., 2015) and me-

teorological uncertainty in an urban-scale dispersion experi-
ment (Lucas et al., 2016), we developed an ensemble-based
inverse modeling system for analyzing nuclear power plant
dispersion events. A diagram of the system is presented in
Fig. 1 and summarized below.

Starting from the left-hand side of the diagram in Fig. 1,
an ensemble of plausible meteorological fields is generated
using the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008; Skamarock and Klemp, 2007). En-
semble members in WRF are created using different re-
analysis datasets, physics packages, and configuration op-
tions, which are represented as categorical random variables.
Section 2.1 provides further details of the WRF ensemble
setup and design. The output of the WRF ensemble is then
used to drive an ensemble of FLEXPART dispersion plumes
(Brioude et al., 2013b), which also considers variations in
the location, timing, and magnitude of emissions using con-
tinuous random variables. Further details of the FLEXPART
calculations are given in Sect. 2.2.

The WRF-FLEXPART ensemble provides a set of plume
predictions that are compared with field measurements
(right-hand side of Fig. 1). The differences between the sim-
ulations and field data are minimized through Monte Carlo
sampling loops that jointly vary the inputs to WRF and emis-
sions in FLEXPART (red dashed lines in the diagram). Be-
cause a single iteration through the sampling loops is com-
putationally expensive and millions of iterations may be
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Figure 2. Maps showing the geographical location of the Diablo Canyon nuclear power plant on the coast of central California, near San
Luis Obispo and Pismo Beach.

needed, we use machine learning to accelerate the optimiza-
tion. Moreover, by sampling the WRF and FLEXPART in-
puts with a probability distribution function, Bayesian anal-
ysis is used to estimate uncertainty in the model inputs and
outputs. Details of the machine-learning and inversion meth-
ods are provided in Sect. 3.1 and 3.2.

Measurements from a tracer release experiment conducted
in September 1986 at the Diablo Canyon nuclear power plant
(Thuillier, 1992) are used to test and verify the atmospheric
models and inversion system in Fig. 1. Diablo Canyon is lo-
cated along the rugged coast of California (see Fig. 2), so the
study provides a critical test of simulating transport and dis-
persion in complex terrain. The study also provides an im-
portant verification test of the inversion algorithm, because
the tracer emissions are assumed to be unknown and inferred
in the inversion. Information about the Diablo Canyon study
is given in Sect. 4.

To our knowledge, this work represents the first joint in-
version capability applied to FLEXPART dispersion simula-
tions that provides probability distribution functions of cate-
gorical inputs in WRF and continuous inputs in FLEXPART
and that has been verified with tracer release data. This ca-
pability can be useful for other applications beyond releases
from nuclear power plants, including compliance monitoring
of the nuclear test ban treaty (Issartel and Baverel, 2003) and
inverse modeling of emissions from large-scale industrial ac-
cidents and volcanic plumes (e.g., Heng et al., 2016).

2 Ensemble atmospheric modeling

2.1 Weather Research and Forecasting model

The non-hydrostatic, fully compressible Weather Research
and Forecasting (WRF) atmospheric model (Skamarock
et al., 2008; Skamarock and Klemp, 2007) is used to gen-

erate meteorological fields for the atmospheric transport and
diffusion simulations. Version 3.6.0 of the advanced research
WRF (ARW) core is used for the simulations presented in
this paper. WRF was developed through collaboration among
government, research, and academic organizations to facili-
tate the transfer of state-of-the-science atmospheric research
findings to an operational modeling capability. The National
Center for Atmospheric Research currently maintains the
open-source WRF model code, which is publicly available
for user download. WRF is widely used by numerous groups
for both atmospheric research and real-time operational com-
mercial applications, such as renewable generation and util-
ity grid demand forecasting.

2.1.1 WRF domain

High-resolution winds are needed to simulate the dispersion
for the Diablo Canyon tracer release test problem (see Fig. 2
and Sect. 4). Through efficient numerical model nesting and
the parallelization of source code for high-performance com-
puters, WRF can be used to simulate a large range in scales of
motion from thousands of kilometers down to tens of meters
(Lundquist et al., 2010).

Using this nesting capability, five WRF model domains are
used to downscale and generate high-resolution meteorolog-
ical fields over the Diablo Canyon region. The WRF domain
configuration and geographic coverage are shown in Fig. 3.
A large portion of the western United States is covered by the
outermost model domain (labeled D1) at 24.3 km horizontal
grid spacing. The large outer model domain was required for
downscaling purposes given the coarse resolution of some of
the reanalysis datasets used to initialize WRF for this study.

By downscaling, a horizontal grid spacing of 300 m is
achieved in the innermost WRF model domain (D5 in Fig. 3).
The fine-scale grid spacing of D5 is necessary to gener-
ate representative meteorological conditions since the Dia-
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Figure 3. Panel (a) shows the five nested domains used in WRF for
simulating meteorological conditions for the Diablo Canyon nuclear
power plant tracer release experiment (D1 to D5). Panel (b) high-
lights the inner WRF domain (D5), the FLEXPART domain (dashed
rectangle; longitudes of 120.954 to 120.343◦W, latitudes of 34.948
to 35.389◦ N), the tracer release location (Diablo Canyon, red dot),
and the measurement network (black dots) used for the tracer in-
version. Four representative measurement sites (325, 330, 338, and
413) are highlighted (red dots). The colors on the maps denote the
elevation a.s.l. Different color scales are used for (a) (0 to 3000 m)
and (b) (0 to 1000 m).

blo Canyon nuclear power plant is located on the coast near
narrow valleys and other topographic features that result in
complex terrain induced flow. Some of the sensors shown in
Fig. 3 are located in places requiring even finer resolution
(e.g., the line of sensors that stretch to the northwest of site
413), but the physics parameterizations in WRF are not de-
signed for such small scales. The 300 m grid spacing in D5 is
therefore a trade-off between resolution and model physics.
High-resolution terrain and land use fields were generated
for D5 by downloading 1 arcsec data (approx. 30 m) from

Table 1. Categorical random variables for WRF ensemble.

Categorical Description Category Label
variable

1. WRF_initim Initialization 1986-09-04-06 0∗

time 1986-09-04-00 1

2. WRF_reanalysis Reanalysis NARR 0∗

data ECMWF 1
CFSR 2

3. WRF_nudge Nudging Off 0
Low 1∗

High 2

4. WRF_pbl Boundary YSU 0
layer MYJ TKE 1∗

physics MYNN TKE 2

5. WRF_lsm Land Thermal diffusion 0
surface Noah 1∗

model RUC 2

∗ denotes a WRF setting used for the reference base simulation.

the National Elevation Dataset and National Land Cover
Database from the United States Geological Survey Multi-
Resolution Land Characteristics data server (Homer et al.,
2015).

2.1.2 WRF ensemble

Several features also make WRF ideal for creating an ensem-
ble of plausible atmospheric conditions for uncertainty as-
sessments. Ensemble modeling approaches have been shown
to be effective at quantifying physically plausible states of
the atmosphere in a probabilistic manner (e.g., Mullen and
Baumhefner, 1994; Stensrud et al., 2000; Berner et al., 2011).
The WRF modeling system contains numerous physics
schemes that parameterize subgrid-scale processes, such as
the surface energy exchange, cloud microphysics, and turbu-
lent mixing in the planetary boundary layer. By running WRF
with combinations of physics options, an ensemble is gener-
ated that captures meteorological uncertainty due to subgrid-
scale parameterization error. In addition, WRF can be ini-
tialized and run using a variety of publicly available reanal-
ysis datasets to quantify meteorological uncertainty result-
ing from errors in initial/lateral boundary conditions. Mete-
orological data from gridded analysis datasets and observa-
tions can also be integrated into WRF simulations to improve
model accuracy by using four-dimensional data assimilation
(FDDA) options for analysis (Stauffer and Seaman, 1994)
and observational (Liu et al., 2005, 2009) nudging. The goal
of the analysis FDDA option is to nudge large-scale motion
towards an observed state using relaxation terms, while the
observational nudging impacts the prediction of local-scale
atmospheric phenomenon.
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Table 1 summarizes the five major variables that were se-
lected for the WRF ensemble. Reference “base” values for
each variable are also listed in the table. The base values
were selected using expert judgment and represent a prior
WRF configuration expected to perform well. For the pur-
poses of the Monte Carlo sampling and analysis (Fig. 1), the
WRF variables are treated as categorical random variables.
By taking all of the combinations among the five variables
in the table, we constructed a WRF ensemble containing 162
members. The major categories in the table include model
initialization time, source of input reanalysis data, FDDA
nudging weighting factors, planetary boundary layer (PBL)
physics, and land surface model (LSM) physics. The en-
semble categories and their variations were selected based
on previous WRF user experience and a literature review of
sources of uncertainty that are likely to impact meteorologi-
cal fields important to the specific tracer release experiment
described in Sect. 4. Variations in PBL and LSM physics,
for example, have been shown to affect near-surface stability
and wind fields (Lee et al., 2012), which can have a large im-
pact on plume transport modeling. Other categories related to
changes in microphysics and cumulus physics are not consid-
ered in this report because precipitation and cloud cover were
not present during the specific tracer release experiment. Fu-
ture studies can easily incorporate these factors, and others,
by including additional categories for Monte Carlo sampling.

Several variations are included in the weather ensemble
to account for uncertainty related to model initialization
and meteorological reanalysis inputs. WRF simulations were
started at either 15 or 9 h before the beginning of the tracer
release (i.e., at 00:00 or 06:00 UTC on 4 September 1986) to
investigate the sensitivity of model solutions to initialization
start time and model spin-up duration. All of the WRF simu-
lations ended at 13 h after the end of the tracer release (i.e., at
12:00 UTC on 5 September 1986). The three reanalysis vari-
ations included are the North American Regional Reanalysis
(NARR) data (Mesinger et al., 2006), European Centre for
Medium-Range Weather Forecasts (ECMWF) data (Hers-
bach et al., 2015), and Climate Forecast System Reanalysis
(CFSR) fields (Saha et al., 2010). NARR reanalysis meteoro-
logical data are available every 3 h on 30 vertical levels with
a horizontal grid spacing of 32 km. Both ECMWF and CFSR
reanalysis fields are available every 6 h on 38 vertical lev-
els. However, CFSR reanalysis fields have a horizontal grid
spacing of roughly 60 km vs. roughly 125 km for ECMWF
data.

The FDDA weighting of meteorological data fields dur-
ing the WRF ensemble simulations was varied to account for
uncertainty associated with the assimilation of gridded re-
analysis fields and irregularly spaced weather observations.
Weather simulations were performed with WRF FDDA op-
tions for analysis and observational nudging options either
turned off, using default weighting factors as suggested by
WRF guidance, or with a high option with the weighting fac-
tors 1 order of magnitude higher than the default values. Ad-

ditionally, FDDA analysis nudging was used only on the two
outer course-resolution model domains, while FDDA obser-
vational nudging was used only on the two innermost model
domains (see WRF domains in Fig. 3). FDDA observation
nudging included surface METAR measurements and multi-
level data from the backup and primary meteorological tow-
ers at Diablo Canyon (see Sect. 4).

Three PBL models and three LSM schemes were used to
construct the WRF ensemble to account for uncertainty asso-
ciated with turbulent mixing and surface momentum, mois-
ture, and thermodynamic fluxes. The PBL models included
the Yonsei University (YSU) scheme (Hong et al., 2006), the
Mellor–Yamada–Janjić (MYJ) scheme (Janjić, 1994), and
the Mellor–Yamada–Nakanishi and Niino (MYNN) scheme
(Nakanishi and Niino, 2006). Among the PBL models, the
biggest difference is that the YSU scheme uses a countergra-
dient flux (non-local) method to develop parabolic mixing
profiles in the boundary layer, while the MYJ and MYNN
schemes use different numerical approaches to solve for local
turbulent kinetic energy (TKE)-based vertical mixing in the
PBL and free atmosphere. The LSM physics options include
the Thermal Diffusion (Duhdia, 1996), NOAH (Ek et al.,
2003), and RUC (Benjamin et al., 2004) models. Soil mois-
ture and explicit vegetation canopy physics are not included
in the Thermal Diffusion model, while the NOAH and RUC
models parameterize vegetation canopy effects to differing
degrees and both provide soil moisture gradients.

2.2 FLEXPART

The FLEXPART Lagrangian dispersion particle model
(Stohl et al., 1998, 2005; Stohl and Thomson, 1999) was
used to simulate the atmospheric transport and mixing of the
tracer gas released from the Diablo Canyon nuclear power
plant. Field experiments have been used to validate the per-
formance of FLEXPART (Stohl et al., 1998; Forster et al.,
2007). FLEXPART has also been used in a wide variety of
dispersion applications, including the transport of air pollu-
tants (An et al., 2014; Avey et al., 2007), of radiological re-
leases from nuclear power plants and radioisotope produc-
tion facilities (Andreev et al., 1998; Wotawa et al., 2010;
Stohl et al., 2012), of volcanic plumes (Stohl et al., 2011),
and of noble gases produced from nuclear weapons tests
(Becker et al., 2010).

We used FLEXPART-WRF version 3.1 (Brioude et al.,
2013b), which was developed to use meteorological data
generated by the WRF model to drive atmospheric trans-
port and diffusion processes. The FLEXPART-WRF code
is open source and available for download (https://www.
flexpart.eu/). Mean particle trajectories and tracer concen-
trations were calculated using the three-dimensional wind
components from WRF (u, v, and w) over the 50 km by
50 km domain shown in Fig. 3 (dashed rectangular area). The
FLEXPART-WRF grid used 401 cells in each of the horizon-
tal directions and 11 vertical levels from the surface to 3 km,
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with 6 levels contained in the lowest 500 m. Tracer con-
centrations were derived using 1 million particles released
from a randomly selected point source location at random
release times, as detailed in the next section. Wind fluctu-
ations (σv and σw) were calculated using parameterizations
(Hanna, 1982; Ryall and Maryon, 1998) and WRF microme-
teorological output variables (friction velocity, surface sensi-
ble heat flux, planetary boundary layer height, and Monin–
Obukhov length scale). Lagrangian particles were evolved
using a sampling rate and synchronization interval of 20 s,
and the simulations utilized a subgrid terrain parameteriza-
tion. FLEXPART-WRF can also simulate wet and dry depo-
sition removal processes (Wesely and Hicks, 1977; McMa-
hon and Denison, 1979; Slinn, 1982; Hertel et al., 1995),
though these processes were not needed for the passive gas
tracer release at Diablo Canyon.

2.2.1 FLEXPART ensemble

In addition to the wind field variations generated by the WRF
ensemble, the inverse modeling system in Fig. 1 also ap-
plies a Monte Carlo sampling loop to emissions variables in
FLEXPART. The goal of this part of the inversion is to deter-
mine the location, timing, and magnitude of the tracer release
emissions by minimizing the differences between FLEX-
PART predictions and field measurements.

The location, timing, and magnitude of the Diablo Canyon
release are inferred by sampling the six emissions inputs
shown in Table 2. Each input is represented by a continu-
ous random variable that can take any value in the inversion
range, including the minimum and maximum values. The
ranges bound the actual values used for the Diablo Canyon
tracer release experiment, which are also listed in the table.
The release latitude and longitude are sampled over a roughly
2km×2km bounding box centered on the actual location. To
represent a surface release, the height of the release is var-
ied between 1 and 10 m above ground, with the actual height
at 2 m above the surface. Potential release start times within
a 2 h period centered around the actual start time (08:00 lo-
cal time) are considered. Similarly, possible release durations
lasting between 6 and 10 h are tested, with the actual release
occurring for 8 h. Lastly, the inversion algorithm considered
any amount between 10 and 1000 kg for the trace gas re-
leased, with the true value at 146 kg.

The FLEXPART ensemble contains 40 000 dispersion
simulations that were run and analyzed for the Diablo
Canyon release. These ensemble simulations were gener-
ated by randomly sampling both the WRF ensemble and
the FLEXPART emissions variables. Random samples were
drawn using a Latin hypercube design (Helton and Davis,
2003) assuming an 11-dimensional uniform probability dis-
tribution. Latin hypercube is a space-filling variation of
Monte Carlo that partitions the sampling space into ND bins
of equal probability for D dimensions and N sample points.
The points are spread across this space by avoiding duplicate

bin indices within each dimension. Additional discussion of
Latin hypercube sampling for ensemble modeling is given in
Lucas et al. (2013). To run, schedule, and manage the large
FLEXPART ensemble, we utilized the Lawrence Livermore
National Laboratory’s UQ Pipeline software package (see
Lucas et al., 2013). Further details on the statistical aspects
of the ensemble modeling are given below in Sect. 3.

3 Statistical analysis of ensembles

3.1 Machine learning

Machine learning is used to train statistical regression func-
tions to approximate the input–output relationships in the
WRF-FLEXPART ensemble. Once trained, the machine-
learning functions can be evaluated very efficiently at new
input values and used for uncertainty propagation, parameter
estimation, Bayesian inference, and other types of statistical
analysis. These functions are used for two primary purposes
in our work. They are used to identify and rank the effects
of input features in WRF and FLEXPART on the tracer re-
sponses (i.e., a form of sensitivity analysis) and to determine
the values of the inputs that yield responses that are similar to
tracer observations (i.e., optimization and inverse modeling).
These applications are described in more detail below.

The WRF-FLEXPART ensemble is mathematically ex-
pressed as

y = F(xWRF,xFLX), (1)

where y is a vector containing information about the out-
put or response of the simulations in the ensemble, xWRF
and xFLX are vectors containing the corresponding categori-
cal and continuous inputs to WRF and FLEXPART, respec-
tively, and the function F represents the WRF and FLEX-
PART physical models. The response vector y is taken as ei-
ther the tracer concentration at a specified location and time
or a measure of the goodness of fit between the ensemble
simulations and measurements. Complex spatiotemporal dis-
persion patterns are not contained in y, although new statis-
tical methods are being developed to capture these effects
(Francom et al., 2016). Machine learning is used to approxi-
mate Eq. (1) by training on the ensemble data, which results
in

ŷ = F(xWRF,xFLX)+ εy, (2)

where ŷ is an approximation of y and εy is the approxima-
tion error. The value of εy is small for our analysis and is
neglected for the remaining discussion (i.e., differences be-
tween y and ŷ are less than 10% on average, not shown).
For notational convenience, the inputs xWRF and xFLX are
also combined into a single input vector x in subsequent dis-
cussion.

We use a method called gradient boosting (GB) that fits
statistical regressions to Eq. (1) using sums of decision trees
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Table 2. Continuous random variables for FLEXPART tracer ensemble.

Continuous variable Description Actual value Inversion range

1. FLX_loc_lat Release latitude 35.2111◦ N [35.1977, 35.2250]
2. FLX_loc_lon Release longitude 120.8543◦W [120.8708, 120.8384]
3. FLX_zlev_bot Release altitude 2 m [1, 10]
4. FLX_source_start Release start 08:00 local time [07:00, 09:00]
5. FLX_source_duration Release duration 8 h [6, 10]
6. FLX_source_amount Release magnitude 146.016 kg [10, 1000]

following the basic notion that an individual decision tree by
itself is a weak learner, but a combination of trees is a strong
learner capable of fitting complex systems. The GB algo-
rithm is briefly outlined below, and further details are avail-
able (e.g., Hastie et al., 2009). We use the GB version avail-
able in the Scikit-learn package (Pedregosa et al., 2011). GB
models have been applied to studies of air quality (Carslaw
and Taylor, 2009; Sayegh et al., 2016) and terrestrial ecosys-
tems (Moisen et al., 2006; Dube et al., 2015). GB is also
closely related to random forests, which we have previously
used to analyze ensembles of a global climate model (Boyle
et al., 2015).

As noted, a GB model is a sum of decision trees of the
form

F(x)=

M∑
m=1

Tm(x;θ), (3)

where Tm(x;θ) is the tree at stage m and θ is a set of tree
fitting parameters (e.g., depth of the trees). An individual tree
is described by

T (x;θ)=

J∑
j=1

γj I (x ∈ Rj ), (4)

which partitions the input space x into J disjoint regions and
assigns a value of γj to region Rj via the indicator function
I . Starting from an initial model that fits the mean of the re-
sponse, F0, the regression model is built up additively using
a boosting technique that fits trees to the residuals between
the current and previous stages,

Fm(x)= Fm−1(x)+ Tm(x), (5)

where the tree output values, γjm, are defined implicitly. This
expression is solved by numerically estimating gradients of
a loss function (e.g., least squares) and using steepest descent
optimization. A stochastic variation of GB is used that con-
siders a random subset of training data during each stage,
which has been shown to improve the accuracy of the fits.

Although other statistical regression methods could be
used, GB offers two clear advantages for fitting the WRF-
FLEXPART ensemble. First, as shown in Eq. (2), GB nat-
urally handles heterogeneous inputs (i.e., xWRF and xFLX).

This makes it convenient for analyzing the combined effects
of WRF inputs that vary as categories or discrete variables
and FLEXPART variations that vary continuously. In addi-
tion, GB has a built-in technique for determining the influ-
ence of the inputs on the outputs during training using an
established procedure called feature importance (e.g., see
Hastie et al., 2009). The algorithm estimates a score for each
input based on its position in each decision tree. A given de-
cision tree is built from top to bottom by splitting the training
data along input directions that explain most of the variance
in the output. Inputs that affect the output strongly appear
closer to the top of a decision tree and have higher feature
scores. Our ensemble is generated by varying inputs in WRF
and FLEXPART, so the feature scores quantify the fraction
of the ensemble variance explained by these inputs. In this
way, the feature scores are analogous to sensitivity coeffi-
cients used to learn about which inputs are most important in
the WRF-FLEXPART ensemble.

3.2 Bayesian inverse modeling

The goal of the inverse modeling is to determine the val-
ues of the inputs to WRF and FLEXPART that provide out-
put concentrations that best match the tracer measurements.
The inversion uses an extension of our approximate Bayesian
computation algorithm described in Lucas et al. (2016). The
algorithm has been updated to enable joint inversions of cate-
gorical inputs in WRF and continuous inputs in FLEXPART,
and to allow more flexibility in the calculation of the model-
observation likelihood distance weights. In particular, the
likelihood weights now utilize predictions from the GB re-
gressions and consider more than one distance metric. Fur-
ther information about the scheme is provided below and is
illustrated in Fig. 4.

The inverse method applies Bayes’ rule,

P(x|y)∝ P(y|x)P (x), (6)

to estimate P(x|y), which is the conditional probability den-
sity function (i.e., the posterior distribution) of the WRF and
FLEXPART inputs, x, given simulations and measurements
of tracer concentrations, y. The prior probability distribu-
tion of model inputs, P(x), is an 11-dimensional uniform
probability distribution over the WRF and FLEXPART ran-
dom variables listed in Tables 1 and 2. As illustrated on the
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Figure 4. Bayesian inversion method for constraining the WRF and FLEXPART inputs. Samples are drawn from the uniform prior dis-
tribution on the left and then evaluated in WRF-FLEXPART and compared to measurements. Gradient-boosting regression trees are fit to
model–measurement differences and used to infer the posterior distributions of the inputs.

left-hand side of Fig. 4, the prior distribution uses uniform
categorical random variables for the WRF inputs and uni-
form continuous random variables for the FLEXPART in-
puts. Samples are drawn from the prior distribution using
a Latin hypercube method (Helton and Davis, 2003).

The remaining term in Eq. (6) is the likelihood func-
tion, L= P(y|x), which quantifies the level of agreement
between the simulated and measured tracer concentrations
for a given draw from the prior distribution. Relatively high
and low likelihood values correspond, respectively, to simu-
lations that agree well and poorly with measurements. The
values of model inputs that maximize the likelihood function
yield peaks in the posterior distribution because of our uni-
form prior distribution. Moreover, variations in non-sensitive
model inputs will not dramatically change the likelihood val-
ues, resulting in posterior distributions that are nearly “flat”
and uniform, as in the prior distribution.

Following our previous work (Lucas et al., 2016), we com-
pute the mean squared error (mse) between simulations and
measurements as one metric for calculating high and low
likelihoods. Furthermore, we include the correlation (corr)
between observations and simulations as another metric to
determine high and low likelihood values. The corr metric is
included because it is sensitive to different aspects of model
and observation differences than the mse. The mse varies
with the magnitude of the differences between observations
and simulations, and is expected to be mainly sensitive to
changes in the source amount. The temporal correlation, on
the other hand, is expected to be sensitive to changes in the
arrival time and duration of the plume at the measurement
locations. By combining the two metrics, mse and corr, into
a single likelihood weight, we aim to constrain a larger num-
ber of input parameters than we could using either metric
alone.

To account for the two metrics in the likelihood function,
we use an expression of the form

logL=−0.5
[
ys(x)− yt

]T
6−1 [ys(x)− yt

]
, (7)

where ys is a column vector of the metrics for a simulation
at input x,

ys(x)=

(
mse
corr

)
, (8)

yt is the corresponding column vector of the metric “targets”,
and 6 is the 2× 2 covariance matrix of model and observa-
tion errors. The highest likelihood values occur at the inputs
that jointly minimize the mse and maximize the corr. Ide-
ally, with perfect model and data, the targets for mse and corr
would be 0 and 1, respectively. In practice, however, models
are imperfect and data are noisy, so it is usually not possible
to find simulations that match the data perfectly. To avoid ex-
trapolation, we define the targets in yt using a small number
of the best-fitting simulations within the ensemble and then
estimate the covariance matrix 6 using a bootstrap resam-
pling procedure (Wilks, 2011). Further details of the target
and covariance estimation are provided in Sect. 5.4.

Before computing the mse and corr in Eq. (8), the tracer
concentrations are transformed using a Box–Cox power
transformation with an exponent of−0.25 (see Wilks, 2011).
This transformation generalizes the logarithmic transform
and is used because the tracer concentrations vary over
many orders of magnitude. Without it, the likelihood metrics
would be skewed toward higher tracer concentrations near
the release location. The Box–Cox transformation also sym-
metrizes the distribution of differences in Eq. (7) by remov-
ing long tails.

The Bayesian inversion is performed using GB regres-
sions, instead of actual model simulations, to predict ys(x)
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for 2 million new Latin hypercube input values. Two mil-
lion points are needed to better cover the large sampling
volume of the 11-dimensional prior distribution because the
sampling volume varies exponentially with the number of di-
mensions. For instance, partitioning the ranges of only the 6
FLEXPART inputs into 10 bins each results in a volume with
106 bins. Running and analyzing the output of 106 FLEX-
PART simulations is computationally infeasible, so we use
the ensemble of 104 simulations (Sect. 2) as a training dataset
to build the GB regressions and then use the regressions as
surrogates for the actual models in the inversion because they
can be evaluated very efficiently.

To verify the Bayesian inversion scheme, we performed
a series of “synthetic data” tests using model-generated in-
puts and outputs. These tests are important because inverse
problems often have multiple solutions and may be poorly
constrained (i.e., ill-posed and ill-conditioned). Section 5.5
highlights the results of a synthetic data inversion test.

4 Diablo Canyon tracer release experiment

Field measurements from the Diablo Canyon nuclear power
plant tracer release experiment (Thuillier, 1992) are com-
pared to the ensemble simulations and used to test the
Bayesian inversion algorithm. The Pacific Gas and Electric
Company (PG&E) owns and operates Diablo Canyon and
conducted the tracer experiment in 1986 to evaluate and im-
prove PG&E’s dispersion modeling capabilities in case of an
accidental release. Figures 2 and 3 show the geographical set-
ting around Diablo Canyon, which is located on the Califor-
nia coast in complex terrain near San Luis Obispo. The plant
sits on a shelf about 26 ma.s.l. and is surrounded by hills with
peaks about 500 m a.s.l. and many canyons. The hills block
onshore, westerly flow, which creates challenges in simulat-
ing the effects of plumes released from Diablo Canyon on the
population centers of San Luis Obispo and Pismo Beach.

PG&E conducted eight tracer release tests between 31 Au-
gust and 17 September 1986. Although the large-scale wind
patterns for the eight tests showed relatively similar onshore
flow from the northwest, the third tracer test on 4 Septem-
ber experienced a strong sea breeze that presents a challenge
for dispersion modeling. We therefore use the third tracer re-
lease for our inversion testing. Starting at 08:00 Pacific Day-
light Time (PDT) on 4 September (15:00 UTC), 146 kg of
the passive tracer sulfur hexafluoride (SF6) was released 2 m
above ground from Diablo Canyon steadily over an 8 h pe-
riod (08:00 to 16:00 PDT). The concentration of SF6 was
measured at the network of 150 tracer air sampling locations
shown in Fig. 3 (black dots).

The measurement network was designed to monitor the
expected tracer transport paths near terrain gaps, the en-
trances and exits to the inland valley, and the coastal bound-
ary. An arc of 24 sampling sites was positioned very close
to the nuclear power plant release point, at a radial distance

Figure 5. One-hour average SF6 concentrations measured at the Di-
ablo Canyon measurement sites during the tracer release test on the
4 September 1986. Pre-release concentrations (a) show the effects
of fugitive emissions at a subset of the site 300 locations (levels
above 100 ngm−3). A histogram of SF6 concentrations from 1148
measurements (b) is used by the inversion algorithm to compute
likelihood weights.

of 840 m (black dots surrounding Diablo Canyon in Fig. 3).
This arc was designed to detect the initial direction of trans-
port of released plumes and to provide details of dispersion
at the nominal plant boundary. A second, linear array of 8
samplers was placed about 7 km southeast of the plant to
detect transport and indicate dispersion characteristics along
the anticipated principal coastal transport path for plumes re-
leased at Diablo Canyon (i.e., see site 330 in Fig. 3). Tracer
sampling was done automatically by sequential pumps filling
polyvinyl fluoride bags. An integrated sample was taken over
each hour at each sampling site from 07:00 to 19:00 PDT.
This allowed for 1 h samples prior to the tracer release for
the purpose of estimating tracer background levels, and three
1 h samples after the cessation of release for the purpose of
following the tracer as it traveled through the domain.

Figure 5 shows the SF6 measurements used for the in-
version. Of the 150 locations in the Diablo Canyon tracer
release measurement network, 137 stations are contained in
the FLEXPART domain represented by dashed rectangle in
Fig. 3. The left-hand side of Fig. 5 shows the pre-release
SF6 concentrations measured at these 137 stations labeled by
their site identification numbers. The pre-release concentra-
tions are used to gauge background values of SF6. As shown,
there are a handful of site 3XX stations that have highly
elevated values of SF6 (above 100 ng m−3). These values
are well above background tropospheric SF6 levels (Rigby
et al., 2010) and are due to local pollution. These are sites
312–323 and are contained within the southern portion of
the 840 m arc of stations surrounding Diablo Canyon. The
source of the pollution is likely due to fugitive emissions
from a power switchyard located within the Diablo Canyon
premises. Rather than attempt to account for the extra source
from the fugitive emissions, we instead exclude sites 312–
323 from our analysis. After removing these sites, a dataset
with 1148 one-hour averages of the SF6 concentration mea-
sured at 125 stations is used for the inversion (352 points are
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Figure 6. Thirty-minute average plumes of SF6 simulated using FLEXPART with the actual release parameters (see Table 2). The plumes in
the upper and lower panels are 3 and 7 h after the release, respectively, while those on the left and right use NARR and ECMWF reanalysis
fields, respectively. The color scale shows the logarithm of the SF6 concentrations between 100 and 105 ngm−3.

missing in the raw data). The resulting distribution of SF6
concentrations is shown on the right-hand side of Fig. 5.

5 Results

5.1 WRF ensemble with actual tracer release

Before presenting results from the large Latin hypercube
ensemble, we first show dispersion results using the ac-
tual tracer release parameters with the 162 wind fields from
the WRF ensemble. Figure 6 shows examples of simulated
30 min average dispersion plumes for two of these cases.
These simulations use identical input settings and parame-
ters in WRF and FLEXPART, except for the reanalysis fields.
The plumes on the left use NARR and those on the right use
ECMWF. The remaining WRF settings follow the base case
values listed in Table 1, while the FLEXPART simulations
use the actual values of the source release parameters listed
in Table 2. These plumes therefore represent our best prior
knowledge in a forward modeling sense, and provide tracer
concentrations that we would expect to compare reasonably
well to measurements without inverse modeling.

The upper portion of the figure shows the plumes using
NARR and ECMWF 3 h after the release. At this stage of the
simulations, there is a large spatial difference between the
plumes. The dispersion using NARR is directed eastward,
is spatially more confined, and does not extend downwind of
Pismo Beach, as compared to the southeast directed ECMWF

plume. The ECMWF plume covers a much wider region,
though most of the extended area is over the ocean. Because
there are not many measurement sensors over the ocean, we
expect there to be smaller differences between NARR and
ECMWF in the inversion algorithm than the plumes in upper
part of Fig. 6 suggest.

Seven hours after the release, as shown in the lower part
of the figure, the plumes using NARR and ECMWF begin
to resemble each other. Both are directed to the southeast,
and both have about the same spatial extent. The higher con-
centration area of the plume using ECMWF is a little more
dispersed near the release location (see red contour), but oth-
erwise the differences between the two reanalysis cases are
minor.

To see the variability associated with the full WRF ensem-
ble with the actual tracer release, Fig. 7 shows the distribution
of time series of SF6 at the four representative locations (sites
325, 330, 338, and 413). The time series at each site displays
the reference WRF-FLEXPART base simulation (black line),
the tracer measurements (red squares), and different quan-
tiles of the SF6 distribution, including the median (solid blue
line) and 5–95 % range (light blue shading).

Starting with the distribution at Site 325, which is clos-
est to the release point, the simulated SF6 concentrations are
negligible until about 09:00, when the plume begins to pass
over the location. The concentrations stay elevated for about
8 h and then drop off as the trailing edge of the plume moves
over the site. The distributions at the other sites show sim-
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Figure 7. Time series of the distribution of SF6 simulated using the actual Diablo Canyon release values and the 162 wind fields from the
WRF ensemble. The time series are shown at four representative measurement locations (see Fig. 3). Different quantiles of the distribution
are displayed (blue lines and area), as are the reference WRF-FLEXPART base case (black line) and the Diablo Canyon measurements (red
squares). Local times correspond to the end of the 1 h average intervals. Note the different scales on the vertical axes.

Figure 8. Correlation and mean squared error between the simula-
tions and measurements of SF6 for the cases using the actual Diablo
Canyon release values and the 162 wind fields from the WRF en-
semble. Colors and symbols are used to denote different reanalysis
datasets and initialization times, respectively.

ilar behavior, except that the arrival times of the plume are
delayed and the peak concentrations are reduced relative to
their distance from the release point.

Figure 7 shows that the WRF-only variations lead to fairly
wide SF6 distributions that span 1 to 2 orders of magnitude
based on the 5–95 % quantile range. Other than the initial 2–
3 h when background SF6 was present, the figure also shows
that the Diablo Canyon measurements generally fall within
the distributions. Moreover, the median of the ensemble (blue

line) seems to match the observations better than the WRF
reference base case (black line).

To further examine the WRF variations, we compute the
observational metrics mse and corr described in Eq. (8) for
each of the 162 cases. The resulting values are displayed in
Fig. 8. The best-fitting WRF cases have relatively low mse
and high corr and are located in the upper left portion of the
figure. There appears to be a linear relationship between the
metrics. WRF cases with low mse values also have high corr,
and vice versa. Section 5.4 shows, however, that this rela-
tionship is not generally preserved when source parameter
variations are included in the ensemble.

To determine the primary causes of variation in Fig. 8,
the values are color-coded by reanalysis data and use dif-
ferent symbols for early and late time initializations (circles
and squares for 9 and 15 h before the release, respectively).
Stratifying the metrics in this way shows that most of the
variability is due to differences in reanalysis data. The sim-
ulations using NARR and ECMWF reanalysis tend to fit the
Diablo Canyon measurements better than CFSR. Moreover,
the runs using NARR have a wider range and exhibit more
variability than those using ECMWF. The initialization time
also has a noticeable impact. Runs initialized 9 h before the
release (circles) have better scores than those initialized ear-
lier (squares). Labeling the points in the figure by other WRF
inputs (e.g., nudging options or PBL height) does not clearly
separate the data, which suggests that additional factors are
less important in optimizing the fit to the observations. Ad-
ditional analyses of the effects of the WRF variations are de-
scribed in the following sections (Sect. 5.3 and 5.6).
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Figure 9. Time series of the prior probability distribution of SF6 from the Latin hypercube ensemble of FLEXPART simulations at four
representative measurement locations (see Fig. 3). Different quantiles of the probability distribution are displayed (blue lines and area), as
are the base WRF-FLEXPART case using default and actual input values (black line) and the Diablo Canyon measurements (red squares).
Local times correspond to the end of the 1 h average intervals. Note the different scales on the vertical axes.

5.2 Prior probability distribution of SF6

The results presented in this section and in the rest of the pa-
per are based only on the 40 000-member Latin hypercube
ensemble. We exclude the 162 cases using the known release
parameters that were analyzed previously in Sect. 5.1. By re-
moving these cases from our training data, we rigorously test
our Bayesian inverse method by assuming no prior knowl-
edge about the release.

Distributions of the time series of SF6 concentrations for
the Latin hypercube ensemble are displayed in Fig. 9. These
time series are at the same four representative locations as
shown in Fig. 7. The distributions provide an estimate of
the prior probability because they sample the uniform ran-
dom variables in WRF and FLEXPART without consider-
ing observational constraints. The prior distributions have the
same general features as the WRF-only variations in Fig. 7,
but they are significantly wider. Referring to the interquar-
tile range (blue dashed lines) at Site 325, for instance, the
prior distribution is about 2 orders of magnitude larger than
the corresponding distribution in Fig. 7. Similar differences
between the distributions also occur at the other locations.

Comparing Figs. 7 and 9 shows that the FLEXPART
source term variations account for most of the variability
in the prior distribution, though it is not possible to deter-
mine which specific inputs are most influential from these
figures. We therefore use gradient-boosting regression in the
next section to quantify the individual sources of variability
in the prior distribution.

5.3 Feature scores of SF6

The SF6 concentrations in the prior probability distribution
in Fig. 9 vary by 3 orders of magnitude due to variations
in the inputs to WRF and FLEXPART. Gradient-boosting
tree regressions are used to estimate the input feature scores,
where the score for a given input is analogous to the sensitiv-
ity index quantifying the fraction of the variance caused by
changes in that input. The feature scores are extracted from
fitting individual GB regressions to the Latin hypercube en-
semble at each site and for 30 min concentration average pe-
riods. We only fit GB regressions during the periods when
there is significant plume ensemble variability present at all
of the locations simultaneously, which occurs between 12:00
and 20:00 local time.

Figure 10 displays the resulting time series of the GB-
based feature scores at the four representative sites. The
stacked color-coded bands show the fraction of ensemble
variance in the prior distribution explained by the 11 inputs,
with the scores for the FLEXPART inputs at the bottom and
the WRF inputs at the top of each stack. The patterns are
generally similar at different locations and times, which indi-
cates that there is not a strong spatial or temporal component
to the feature scores or model sensitivities. The patterns also
show that the FLEXPART and WRF inputs cumulatively ac-
count for about 80 and 20 %, respectively, of the ensemble
variance in Fig. 9. On the FLEXPART input side, the latitude
and longitude of the release and the source amount are the
most important features explaining the variance of the prior
probability distribution. Among the WRF inputs, the feature
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Figure 10. Time series of the SF6 feature scores at the four representative measurement sites. Each colored band represents the fraction of
the variance in the Latin hypercube ensemble (i.e., the prior distribution) caused by the parameters labeled on the right-hand side. The WRF
parameters are the upper five bands, while the FLEXPART parameters are the lower six bands.

scores associated with different reanalysis fields are slightly
higher than the scores of the other WRF features.

Overall, the feature scores suggest that the prior uncer-
tainty in the source term inputs are more critical than the
prior uncertainty in the meteorological inputs for this partic-
ular tracer release experiment. Although the WRF inputs are
not the dominant source of variability, the combined effects
of the sources of meteorological uncertainty still cannot be
neglected. It is also important to note that, for tracer release
simulations conducted under different meteorological condi-
tions, at different scales, or that consider additional sources
of uncertainty or observational constraints (i.e., posterior un-
certainty), the input sensitivities will likely differ from those
estimated here. Moreover, the contribution of meteorological
uncertainty is expected to be larger for forecast problems that
are not constrained by reanalysis data.

In addition to being useful for understanding the drivers
of variance in the prior probability distribution, the fea-
ture scores are also useful for interpreting the results of the
Bayesian inversion in the following sections. Inputs with rel-
atively high feature scores are often easier to constrain with
observations. On this basis, therefore, we expect the poste-
rior probability distributions for the FLEXPART longitude,
latitude, and source amount inputs to be relatively narrower
than the other FLEXPART terms because they have the high-
est feature scores.

5.4 Likelihood distance metrics

Figure 11 compares the 1148 hourly-average SF6 concen-
tration measurements to two simulations in the 40 000-
member ensemble. These simulations represent high- and
low-likelihood cases (ensemble runs 32 955 and 7894, re-
spectively). The indices of the data points in the figure are
arranged first by measurement site number, and then by mea-
surement time within a given site. Low measured concentra-
tions occur at low indices (less than about 500) and corre-
spond to sites located upwind of the release that measured
only background SF6. The highest measured concentrations
occur at intermediate indices (between 500 and 700), which
are sites located just downwind of the release. As shown in
the figure, the high-likelihood simulation agrees well with
the measurements. It captures the location, timing, and mag-
nitude of the actual release, resulting in a relatively low mse
and high corr. Not surprisingly, the FLEXPART inputs for
the high-likelihood case are similar to the known release val-
ues (see Table 2 and Fig. 11). The low-likelihood simulation,
in contrast, differs significantly from the measurements. It
misses the plume at important downwind locations and pre-
dicts relatively high SF6 concentrations at places where low
concentrations were measured. The poor fit results in a rela-
tively high mse and low corr. The low-likelihood case used
much less SF6 than the actual amount and emitted it out over
the ocean about 1.6 km to the southwest of the actual release
location.
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Figure 11. Diablo Canyon SF6 measurements (a) are compared to representative high- and low-likelihood simulations from the Latin
hypercube ensemble (b, c, respectively). Data points are arranged by observation site number and time of measurement. The simulation
release parameters and their mse and corr values are listed on the left.

Figure 12 displays the mse and corr for all of the FLEX-
PART ensemble simulations. The blue and red dots show the
values for the 40 000 simulations, while the yellow dots show
the values for the 162 reference simulations using the known
source inputs previously described and shown in Sect. 5.1
and Fig. 8. The simulations that provide a reasonable fit to
the measurements have low values of mse and high values of
corr and are located in the upper left quadrant of the figure,
while those that disagree with the measurements are located
in the lower right portion of the figure. The 50 best-matching
simulations are displayed using red dots in the upper left. As
noted earlier, the best values of corr and mse in the figure
are far from the perfect values of 1 and 0, respectively, be-
cause the WRF and FLEXPART models are imperfect and
the measurements are noisy.

The points in the figure are used to estimate the terms in
the likelihood function in Eq. (7) by the following procedure.
First, the data points are used to form a training dataset to fit
GB regressions to predict the mse and corr at new simula-
tion input values that are not part of the ensemble. The re-
sulting GB models fit the data very well (not shown), having
coefficients of determination between actual and predicted
values of R2

= 93 and 98 % for mse and corr, respectively.
New Latin hypercube samples are then drawn and evaluated
in the GB models to form the simulation vectors ys(x) in
Eq. (7). The remaining terms, the target vector yt and co-
variance matrix 6, are estimated from the best-fitting simu-
lations in the figure (i.e., the red dots) by applying a boot-
strap technique that resamples the tracer measurements with
replacement (Wilks, 2011). We loop through the set of best-
fitting simulations 500 times, and each time use a random

Figure 12. Correlation and mean squared error between the sim-
ulations and measurements of SF6 for the 40 000 members of the
WRF-FLEXPART ensemble (small blue dots). The upper left por-
tion of the figure shows the 50 best-fitting simulations (red dots),
and the estimated target and covariance (1-to-3 standard deviation
contours) in the likelihood function. The yellow dots show the mse
and corr for the 162 reference simulations using actual release val-
ues (see Sect. 5.1 and Fig. 8).

subset of the measurements (50 %) to recompute mse and
corr. The target vector and covariance matrix are then esti-
mated by fitting a multivariate Gaussian distribution to the
bootstrapped points, yielding the mean and standard devia-
tion ellipses shown in the figure. The distribution is used in
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Table 3. Inversion estimates versus actual source parameters.

Source term Synthetic Diablo Canyon

Estimated Actual Estimated Actual

Latitude 35.2170◦ N 35.2165◦ N 35.2125◦ N 35.2111◦ N
Longitude 120.8478◦W 120.8475◦W 120.8560◦W 120.8543◦W
Start time 08:35 08:43 08:05 08:00
Duration 9.17 h 8.75 h 8.83 h 8 h
Amount 121.153 kg 95.54 kg 177.830 kg 146.016 kg

the inversion to calculate the posterior probability distribu-
tions of the model input values (Sect. 5.6) and tracer concen-
trations (Sect. 5.6).

5.5 Inversion with synthetic data

Before performing an inversion with the Diablo Canyon
tracer data, we first apply the algorithm to “synthetic” data
with known inputs and outputs as a verification test. Syn-
thetic data are generated by adding noise to the output con-
centrations from a randomly selected ensemble member. The
posterior probability distribution of parameter values is com-
puted using the previously described methods (i.e., fitting GB
regressions to the mse and corr and estimating the covari-
ance matrix as in Sect. 5.4). We draw 2 million new Latin
hypercube points from the prior distribution to better cover
the 11-dimensional input space, evaluate these points in the
likelihood function, and compare the maximum likelihood
locations to the known input values.

Figure 13 shows an example of a synthetic data inver-
sion test using an arbitrarily selected Latin hypercube run.
Other simulations have also been tested, but the results are
not displayed here. The figure shows the posterior distribu-
tion of model parameter values. The FLEXPART parameters
are displayed in the left hand portion of the figure using con-
tinuous distributions, while the WRF parameters are shown
on the right using categorical distributions. The plots along
the diagonal show univariate marginal distributions for the
labeled parameters with the vertical axis indicating the nor-
malized probability density. The off-diagonal plots show bi-
variate marginal distributions for the pair of parameters in the
corresponding row and column with the red colors showing
regions of high probability density. The known input values
are denoted by the black vertical lines and circles.

For this particular test, the synthetic source was located
about 850 m to the northeast of the Diablo Canyon release
that is analyzed in the next section. The WRF simulation
for the synthetic test used the 06:00 UTC initialization time,
the NARR reanalysis data, the MYNN TKE PBL scheme,
the RUC land surface model, and no data assimilation nudg-
ing. The Bayesian inversion algorithm successfully deter-
mines these inputs, because the areas of highest posterior
probability density coincide with the known values (i.e., the

tallest bars and red areas overlap with the black lines and cir-
cles). All of the WRF inputs, except the land surface model
type, exhibit large differences across the posterior categories,
which indicates that the inputs are well constrained by the
data and metrics. In particular, there is little to no posterior
weight associated with the other initialization time and re-
analysis fields. The relatively small differences across the
LSM categories are thought to occur because the plume is
predominantly transported over the ocean and sampled near
the coast (see Figs. 3 and 6), and therefore the mse and corr
metrics are not sensitive to changes in the land surface model.

Table 3 compares the positions of the peak values in the
posterior distribution for the FLEXPART dispersion inputs
to the actual input values. The maximum likelihood values
agree exceedingly well with the actual input values. Except
for the release altitude, the algorithm infers the location,
amount, and timing of the source. As determined from the
widths of the posteriors, the release latitude and longitude
are the best constrained FLEXPART inputs, followed by the
source amount and duration. The inferred location lies only
about 50 m away from the actual value. The posterior distri-
bution for the release altitude is relatively unchanged from
the flat prior distribution, which is not surprising because
FLEXPART is insensitive to the relatively small variations
of the release altitude (0 to 10 m). As previously noted, there
is a reasonable correspondence between the widths of the
FLEXPART posterior widths in Fig. 13 and the size of the
feature scores in Fig. 10.

These results, along with other synthetic data tests that are
not shown, provide confidence that the inversion algorithm
appears to be functioning adequately. The algorithm returns
values for the WRF and FLEXPART inputs that are close to
the actual values for most of the parameters. For the release
height, we are also satisfied with the non-informative values
provided by the algorithm because we expected a relatively
flat posterior distribution. In future work, we will broaden the
range of release heights to test the algorithm for elevated and
surface releases.

5.6 Inversion with Diablo Canyon tracer data

For the inversion using the SF6 measurements, we draw an-
other 2 million Latin hypercube points from the prior dis-
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Figure 13. The marginal posterior distribution of WRF and FLEXPART parameters for the synthetic data inversion. Diagonal components
show univariate continuous distributions for FLEXPART (top left) and univariate categorical distributions for WRF (bottom right). Off-
diagonal components show bivariate distributions for the pair of parameters in the corresponding row and column. Probability density is
normalized, with red colors denoting regions of high probability in the bivariate distributions. Known input values are shown by the black
lines and circles in the diagonal and off-diagonal components, respectively. The FLEXPART parameter values have been scaled to [0,1] using
the inversion ranges in Table 2 (log scaling is used for the amount).

tribution for WRF and FLEXPART, evaluate the points in
the GB fits for mse and corr, and then compute the likeli-
hood weights relative to the target and covariance displayed
in Fig. 12. The resulting posterior distribution of WRF and
FLEXPART parameters is shown in Fig. 14.

As is the case with the synthetic inversion tests, the ac-
tual values for the location, start, duration, and amount of the
SF6 release are known for this tracer experiment. The inver-
sion, however, assumes that the release parameters are un-

known and uses the measurements to infer their values. The
inversion results are compared to the actual values in Table 3
and Fig. 14. As shown, the data and algorithm are sufficient
to determine most of the FLEXPART source term parame-
ters, because the maximum likelihood values of the parame-
ters closely match the known experimental values. The close
agreement between the two implies that the WRF and FLEX-
PART models do not have any severe deficiencies that pre-
vent them from accurately simulating tracer transport for this
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Figure 14. The marginal posterior distribution of WRF and FLEXPART parameters for the Diablo Canyon tracer data inversion. Actual
source term input values used in the tracer release experiment are denoted by the black lines and circles. Refer to the caption in Fig. 13 for
further information.

experiment. The synthetic data inversion tests from the pre-
vious section would not expose model deficiencies because
the same deficiency would be present in both the simulations
and target, and hence would be subtracted out of the analysis.

Referring to Fig. 14, we see that the marginal distributions
for the latitude, longitude, and amount of the release have the
sharpest peaks and are therefore the most constrained by the
measurements. The source start and duration are also moder-
ately constrained, though the distribution for release height is
unconstrained and remains essentially flat. The posterior dis-
tribution also suggests that the release duration lasts longer
than the 8 h period used in the experiment. To some extent,

the 1 h average observations used in the inversion limit the
constraints on the start time and duration. Moreover, it is
difficult to simulate rapid changes associated with the lead-
ing and trailing edges of the plume, and so the model and
methods may be smoothing out these features and causing
the overestimation of the duration. Other likelihood metrics
besides mse and corr may help alleviate this issue.

The posterior distribution also shows a strong covariance
relationship between the release latitude and longitude (see
bivariate distribution in the upper left of Fig. 14). An area
of relatively high probability stretches from northwest of the
actual release location to the southeast. The shape of this co-
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Figure 15. Time series of the posterior probability distribution of SF6 at four representative measurement locations. Different quantiles of
the probability distribution are displayed (blue lines and area), as are the tracer measurements (red squares).

variance stems from the large-scale flow pattern and nearby
measurement locations. The general direction of the flow for
the release period is from the northwest to the southeast, and
the release point is situated within a fairly close arc of sensors
(see Fig. 3). As long as the release stays within this arc, mov-
ing the release location slightly upwind or downwind will not
greatly affect the simulated concentrations at the sensor loca-
tions. If the release location is moved orthogonal to the flow
or outside of the arc, however, FLEXPART will simulate SF6
at sensors where none was measured, and vice versa.

The WRF configurations in the posterior distribution are
displayed on the right-hand side of Fig. 14. Unlike the known
FLEXPART inputs described above or the known inputs in
the synthetic data experiments, the actual values of the mete-
orology are not known here (i.e., there are no black lines or
circles for WRF). The configurations that minimize the mse
and maximize the corr with the SF6 measurements are repre-
sented by the tallest bars in the univariate distributions along
the diagonal and by the red-colored squares or bands in the
off-diagonal bivariate distributions.

As shown in the figure, the maximum likelihood con-
figuration consists of the 06:00 UTC initialization time, the
ECMWF reanalysis fields, the YSU PBL scheme, the RUC
land surface model, and no data assimilation nudging. Some
of these configuration settings may, at first, seem surprising.
For example, the NARR reanalysis fields have a higher spa-
tial resolution than the ECMWF fields and therefore may
be expected to perform better. Likewise, the option to run
without data assimilation seems to outperform the options
with assimilation. Referring to the figure for these cases, the
posterior distribution still has significant probability density
for both the NARR and low nudging options. Compared to
the posterior distribution in the synthetic data inversion, the

WRF inputs are not as strongly constrained using the tracer
data, especially the inputs for the land surface model and
nudging. Only two of the WRF inputs have settings with neg-
ligible probability: the earlier initialization time and CFSR
reanalysis data. The alternate PBL schemes also have rela-
tively low probability. We therefore conclude that the winds
generated using the 06:00 UTC initialization time, the NARR
or ECMWF reanalysis fields, and the YSU PBL scheme will
optimize our likelihood metrics, and that there is not a pre-
ferred land surface model or nudging option.

5.7 Posterior probability distribution of SF6

The ensemble time series in Fig. 9 are based on sampling the
prior distribution of input parameters, which results in a sub-
stantial spread of SF6 concentrations over 2 to 3 orders of
magnitude. Most of these ensemble members do not agree
well with the tracer measurements, so we estimate the poste-
rior distribution of SF6 concentrations by applying the likeli-
hood weights of Sect. 5.4 and 5.6 to the ensemble time series
in Fig. 9.

Figure 15 displays the posterior distribution of the time
series of SF6 concentrations. As before, the time series show
the tracer measurements (red squares) and quantiles of the
posterior distribution, including the median (solid blue line),
first and third quartiles (dashed blue lines), and 5–95 % range
(light blue area). The general features of the posterior distri-
bution are similar to the prior distribution, except that the
ensemble spread has been greatly reduced and the quantiles
have shifted to higher values.

Other than at site 325, where a large spread remains, the 5–
95 % range covers about 1 order of magnitude, or a reduction
of 2 orders of magnitude. Even with the reduced range, most
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of the measurements still fall within the light blue area. We
do not expect all of the measurements to lie in the 5–95 %
range because the likelihood metrics consider the aggrega-
tion of all of the sites and times. In order to achieve an overall
higher likelihood, individual measurement points may be far-
ther away from the median in the posterior distribution than
they were in the prior.

In addition to the reduction in the variance, Fig. 15 also
shows that the median and other quantiles of the posterior
distribution shift to higher concentrations. This shift occurs
because the source term parameter variations in the prior dis-
tribution lead to many simulations having SF6 concentrations
that are too low relative to the measurements. The likelihood
weights discount these simulations.

6 Conclusions

We have developed an ensemble-based Bayesian inverse
modeling system that can determine information about an at-
mospheric release from a nuclear power plant using measure-
ments collected a relatively safe distance downwind from the
plant. The system uses an ensemble of WRF simulations to
capture uncertainty in meteorological fields and an ensemble
of FLEXPART dispersion simulations to vary factors related
to emissions. Machine-learning algorithms are trained on the
input–output relationships in the meteorological and disper-
sion ensemble, resulting in statistical surrogate models that
mimic the behavior of the actual WRF and FLEXPART mod-
els, but that can be evaluated very rapidly at millions of new
input value combinations.

Using our system, we can determine the input factors that
are most important for understanding and reducing uncer-
tainty in the ensemble (i.e., sensitivity analysis) and can es-
timate the values of the model inputs that provide likely
matches between model output and field measurements (i.e.,
inverse modeling). Bayes’ rule is used for the inversion,
which provides probability distribution functions of model
inputs and outputs constrained by observations and that serve
as a quantitative assessment of model performance. The in-
version is designed to estimate the location, timing, and
amount of material released to the atmosphere, and to deter-
mine the best categories of settings for running a meteorolog-
ical model. The inversion system should be able to handle,
without difficulty, additional factors related to the transport
and dispersion of potential materials released during a nu-
clear power plant accident (e.g., wet and dry deposition of
soluble radioactive products).

Our ensemble system is tested against a tracer release ex-
periment conducted near the Diablo Canyon nuclear power
plant located in the rugged terrain of coastal California
(Thuillier, 1992). An ensemble of 40 000 dispersion simula-
tions is created using a Monte Carlo method to sample uncer-
tainty in 6 source term parameters in FLEXPART and 5 me-
teorological categories distributed among 162 unique config-

urations in WRF. The variance of the resulting unconstrained
tracer concentration ensemble is substantial (i.e., the prior
distribution), covering a 5 to 95 % concentration probabil-
ity range of about 4 orders of magnitude. About 80 % of the
unconstrained prior variance is due to source term parame-
ter variations, with about half the overall variance coming
from just three input parameters (release amount, latitude,
and longitude). Although the meteorological inputs are not
dominant sources of ensemble variability, they cumulatively
account for 20 % of the variance in the prior distribution and
are important because their uncertainty is not easily reduced.

By calculating the mean squared error and correlation be-
tween the tracer measurements and the surrogate model pre-
dictions, the Bayesian inversion algorithm produces a pos-
terior distribution of model inputs and outputs for the tracer
release experiment. Even though the source term parameters
are initially unknown in the inversion (i.e., we used a non-
informative prior), the most likely posterior values of the
FLEXPART inputs closely estimate the actual values used in
the tracer release experiment, which demonstrates a success-
ful inversion. Table 3 summarizes the results of the tracer
release source inversion. As shown, the most likely values
of inversion algorithm are within about 200 m of the release
location, within 5 and 50 min of the starting time and du-
ration, respectively, and within 22 % of the actual release
amount. Furthermore, the posterior values of the WRF inputs
show a preference for particular configurations involving the
later initialization time, YSU PBL scheme, and NARR and
ECMWF reanalysis fields. Compared to the large concentra-
tion spread in the prior distribution, the posterior variance of
tracer concentrations is greatly reduced and better tracks the
measurements, thus indicating a good correspondence be-
tween the posterior inputs and outputs.

It is important to keep in mind that the ensemble and inver-
sion methods can be applied to problems other than nuclear
power plant releases. While the location of a nuclear power
plant release is generally restricted to reactor buildings or
other nearby facilities, the inversion algorithm can also de-
termine an arbitrary release location from within a large area
(e.g., hundreds of square kilometers) if suitable observations
are available.

The number of measurements can also affect the quality
of the inversion. The Diablo Canyon field experiment had
a large number of sensors to measure SF6, and we used 1148
data points to constrain 11 model parameters. Fewer mea-
surements would be available for most real-world events, and
so in future work we plan to quantify the impacts of measure-
ment density on the inversion. In preliminary analysis for Di-
ablo Canyon, we found that using only about 200 randomly
selected measurement points still resulted in GB regressions
accurate enough for estimating influential source parameters.
Because some measurements are more important than others,
we can also utilize network optimization techniques (e.g.,
Lucas et al., 2015) to further reduce the number of measure-
ments, as needed to apply our method to compliance mon-
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itoring of the nuclear test ban treaty (Issartel and Baverel,
2003), emissions from large-scale industrial accidents (e.g.,
Heng et al., 2016), and other real-world applications.

Data availability. The Diablo Canyon ensemble dataset used for
machine learning and Bayesian inversion is available for public
download through anonymous FTP at the Lawrence Livermore Na-
tional Laboratory Green Data Oasis, ftp://gdo148.ucllnl.org/diablo_
canyon_ensemble.tgz. The dataset contains the FLEXPART and
WRF input values and likelihood distance metrics (mean squared
error and correlation) for the 40 000 Latin hypercube and 162
known source simulations.
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