Articles | Volume 17, issue 17
https://doi.org/10.5194/acp-17-10269-2017
https://doi.org/10.5194/acp-17-10269-2017
Research article
 | 
01 Sep 2017
Research article |  | 01 Sep 2017

Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere

Jesse W. Greenslade, Simon P. Alexander, Robyn Schofield, Jenny A. Fisher, and Andrew K. Klekociuk

Related authors

Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024,https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023,https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023,https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
A machine learning approach for evaluating Southern Oceancloud-radiative biases in a global atmosphere model
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
EGUsphere, https://doi.org/10.5194/egusphere-2023-531,https://doi.org/10.5194/egusphere-2023-531, 2023
Short summary
Long-term variability in immersion-mode marine ice-nucleating particles from climate model simulations and observations
Aishwarya Raman, Thomas Hill, Paul J. DeMott, Balwinder Singh, Kai Zhang, Po-Lun Ma, Mingxuan Wu, Hailong Wang, Simon P. Alexander, and Susannah M. Burrows
Atmos. Chem. Phys., 23, 5735–5762, https://doi.org/10.5194/acp-23-5735-2023,https://doi.org/10.5194/acp-23-5735-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024,https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024,https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024,https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024,https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Iodine oxoacids and their roles in sub-3 nm particle growth in polluted urban environments
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024,https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary

Cited articles

Akritidis, D., Pozzer, A., Zanis, P., Tyrlis, E., Škerlak, B., Sprenger, M., and Lelieveld, J.: On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East, Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, 2016.
Alexander, S. P., Murphy, D. J., and Klekociuk, A. R.: High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69S, 78E), Atmos. Chem. Phys., 13, 3121–3132, https://doi.org/10.5194/acp-13-3121-2013, 2013.
Baray, J. L., Daniel, V., Ancellet, G., and Legras, B.: Planetary-scale tropopause folds in the southern subtropics, Geophys. Res. Lett., 27, 353–356, https://doi.org/10.1029/1999GL010788, 2000.
Beekmann, M., Ancellet, G., Blonsky, S., De Muer, D., Ebel, A., Elbern, H., Hendricks, J., Kowol, J., Mancier, C., Sladkovic, R., Smit, H. G. J., Speth, P., Trickl, T., and Van Haver, P.: Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmospheric Chemistry, 28, 29–44, https://doi.org/10.1023/A:1005897314623, 1997.
Bethan, S., Vaughan, G., and Reid, S. J.: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere, Q. J. Roy. Meteor. Soc., 122, 929–944, https://doi.org/10.1002/qj.49712253207, 1996.
Download
Short summary
An analysis of data from ozonesondes released at three southern oceanic sites shows the impact of stratospheric ozone in this region. Using a novel method of transport classification, this work estimates the seasonality and quantity of stratospherically sourced ozone. We find that ozone is transported most frequently in summer due to regional-scale low-pressure weather systems. We also estimate a stratospheric ozone source of 2.0–3.3 Tg/year over three Southern Ocean regions.
Altmetrics
Final-revised paper
Preprint