Articles | Volume 16, issue 14
https://doi.org/10.5194/acp-16-9489-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-9489-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimation of the advection effects induced by surface heterogeneities in the surface energy budget
Joan Cuxart
CORRESPONDING AUTHOR
University of the Balearic Islands, Palma, Mallorca, Spain
Burkhard Wrenger
Hochschule Ostwestfalen-Lippe, Höxter, North Rhine-Westphalia, Germany
Daniel Martínez-Villagrasa
University of the Balearic Islands, Palma, Mallorca, Spain
Joachim Reuder
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Marius O. Jonassen
Geophysical Institute, University of Bergen, Bergen, Norway
The University Centre in Svalbard, Longyearbyen, Norway
Maria A. Jiménez
University of the Balearic Islands, Palma, Mallorca, Spain
Marie Lothon
Centre Recherches Atmosphériques, Univ. Toulouse & CNRS, Lannemezan, France
Fabienne Lohou
Centre Recherches Atmosphériques, Univ. Toulouse & CNRS, Lannemezan, France
Oscar Hartogensis
Wageningen University of Research, Wageningen, the Netherlands
Jens Dünnermann
Hochschule Ostwestfalen-Lippe, Höxter, North Rhine-Westphalia, Germany
Laura Conangla
Universitat Politècnica de Catalunya, Manresa, Catalonia, Spain
Anirban Garai
University of California, San Diego, California, USA
Related authors
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Pedro Santos, Jakob Mann, Nikola Vasiljević, Elena Cantero, Javier Sanz Rodrigo, Fernando Borbón, Daniel Martínez-Villagrasa, Belén Martí, and Joan Cuxart
Wind Energ. Sci., 5, 1793–1810, https://doi.org/10.5194/wes-5-1793-2020, https://doi.org/10.5194/wes-5-1793-2020, 2020
Short summary
Short summary
This study presents results from the Alaiz experiment (ALEX17), featuring the characterization of two cases with flow features ranging from 0.1 to 10 km in complex terrain. We show that multiple scanning lidars can capture in detail a type of atmospheric wave that can happen up to 10 % of the time at this site. The results are in agreement with multiple ground observations and demonstrate the role of atmospheric stability in flow phenomena that need to be better captured by numerical models.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Astrid Lampert, Falk Pätzold, Maria Antonia Jiménez, Lennart Lobitz, Sabrina Martin, Gerald Lohmann, Guylaine Canut, Dominique Legain, Jens Bange, Dani Martínez-Villagrasa, and Joan Cuxart
Atmos. Chem. Phys., 16, 8009–8021, https://doi.org/10.5194/acp-16-8009-2016, https://doi.org/10.5194/acp-16-8009-2016, 2016
Short summary
Short summary
For a large field experiment in summer 2011 in southern France (BLLAST campaign), the development of turbulence in the atmosphere was analysed during the afternoon and evening. Besides ground-based remote sensing and in situ observations, turbulence parameters were measured with an unmanned aerial vehicle and analysed by numerical simulation. Turbulence decreased during the afternoon, but increased after sunset due to local wind systems. Turbulent eddies lost symmetry during the transition.
E. Blay-Carreras, E. R. Pardyjak, D. Pino, S. W. Hoch, J. Cuxart, D. Martínez, and J. Reuder
Atmos. Chem. Phys., 15, 6981–6991, https://doi.org/10.5194/acp-15-6981-2015, https://doi.org/10.5194/acp-15-6981-2015, 2015
Short summary
Short summary
The study shows that lifted temperature minimum can be detected under calm conditions during the day-night transition, several hours earlier than reported in previous work. These conditions are fulfilled under weak synoptic forcing during local flow shifts associated with a mountain-plain complex orography. Under these special conditions, turbulence and radiation becomes a crucial parameter in determining the ideal conditions for observing LTM measurements.
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain–mountain instrumented platform in southwestern France for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, and a meteorological characterization the site. The potential of the P2OA is illustrated through several examples of process studies.
Mary Rose Mangan, Jordi Vilà-Guerau de Arellano, Bart J. H. van Stratum, Marie Lothon, Guylaine Canut-Rocafort, and Oscar K. Hartogensis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3000, https://doi.org/10.5194/egusphere-2024-3000, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Using observations and high-resolution turbulence modeling, we examine the influence of irrigation-driven surface heterogeneity on the atmospheric boundary layer (ABL). We employ different spatial scales of heterogeneity to explore how the influence of surface heterogeneity on the ABL within a single grid cell would change in higher resolution global models. We find that the height of the ABL is highly variable, and that the surface heterogeneity is felt least strongly in the middle of the ABL.
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-119, https://doi.org/10.5194/wes-2024-119, 2024
Preprint under review for WES
Short summary
Short summary
This study aims to help future large offshore wind turbines and airborne wind energy systems by providing insights into wind speeds at much higher altitudes than previously examined. We assessed three wind models (ERA5, NORA3, and NEWA) to predict wind speeds up to 500 m. Using lidar data from Norway and the North Sea, we found that ERA5 excels offshore, while NORA3 performs best onshore. However, the performance of the models depends on the locations and the evaluation criteria.
Mauro Ghirardelli, Stephan T. Kral, Etienne Cheynet, and Joachim Reuder
EGUsphere, https://doi.org/10.5194/egusphere-2024-1548, https://doi.org/10.5194/egusphere-2024-1548, 2024
Short summary
Short summary
The SAMURAI-S system is an innovative measurement tool combining a high accuracy wind sensor with a multi-rotor drone to improve atmospheric turbulence observations. While traditional methods lack flexibility and accuracy in dynamic environments, SAMURAI-S provides high manoeuvrability and precise 3D wind measurements. The research demonstrated the system's ability to match the data quality of conventional methods, with a slight overestimation in vertical turbulence under higher wind conditions.
Jean-Marcel Rivonirina, Thierry Portafaix, Solofoarisoa Rakotoniaina, Béatrice Morel, Chao Tang, Kévin Lamy, Marie Lothon, Tom Toulouse, Olivier Liandrat, Solofo Rakotondraompiana, and Hassan Bencherif
EGUsphere, https://doi.org/10.5194/egusphere-2024-1827, https://doi.org/10.5194/egusphere-2024-1827, 2024
Short summary
Short summary
The lack of ground observation instruments and the vast ocean coverage make the Southwest Indian Ocean (SWIO) region difficult to access and poorly studied. For gathering ground-based camera information, satellite measurements have been used with the primary goal of characterizing both sites Saint-Denis of Reunion Island and Antananarivo Madagascar in terms of cloudiness. This study shows the particularity of each site and enhances our understanding of cloud properties, particularly in the SWIO.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1366, https://doi.org/10.5194/egusphere-2024-1366, 2024
Short summary
Short summary
According to a classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyze large amount of measurements obtained with three research aircraft during four field experiments in different locations and show the observed ratios are almost always significantly smaller. We discuss potential reasons of this disagreement but actual explanation remains to be determined.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024, https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Short summary
Three-dimensional wind fields can be accurately measured by sonic anemometers. However, the traditional mast-mounted sonic anemometers are not flexible in various applications, which can be potentially overcome by drones. Therefore, we conducted a proof-of-concept study by applying three continuous-wave Doppler lidars to characterize the complex flow around a drone to validate the results obtained by CFD simulations. Both methods show good agreement, with a velocity difference of 0.1 m s-1.
Maurin Zouzoua, Sophie Bastin, Marjolaine Chiriaco, Fabienne Lohou, Marie Lothon, Mathilde Jome, Cécile Mallet, Laurent Barthes, and Guylaine Canut
EGUsphere, https://doi.org/10.5194/egusphere-2024-568, https://doi.org/10.5194/egusphere-2024-568, 2024
Short summary
Short summary
This study proposes using a statistical model to freeze errors due to differences in environmental forcing when evaluating the surface turbulent heat fluxes from numerical simulations with observations. The statistical model is first built with observation and then applied to the simulated environment to generate possibly observed fluxes. This novel method provides insight into differently evaluating the numerical formulation of turbulent heat fluxes with a long period of observational data.
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Jérémy Gueffier, François Gheusi, Marie Lothon, Véronique Pont, Alban Philibert, Fabienne Lohou, Solène Derrien, Yannick Bezombes, Gilles Athier, Yves Meyerfeld, Antoine Vial, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 287–316, https://doi.org/10.5194/acp-24-287-2024, https://doi.org/10.5194/acp-24-287-2024, 2024
Short summary
Short summary
This study investigates the link between weather regime and atmospheric composition at a Pyrenean observatory. Five years of meteorological data were synchronized on a daily basis and then, using a clustering method, separated into six groups of observation days, with most showing marked characteristics of different weather regimes (fair and disturbed weather, winter windstorms, foehn). Statistical differences in gas and particle concentrations appeared between the groups and are discussed.
Robbert P. J. Moonen, Getachew A. Adnew, Oscar K. Hartogensis, Jordi Vilà-Guerau de Arellano, David J. Bonell Fontas, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5787–5810, https://doi.org/10.5194/amt-16-5787-2023, https://doi.org/10.5194/amt-16-5787-2023, 2023
Short summary
Short summary
Isotope fluxes allow for net ecosystem gas exchange fluxes to be partitioned into sub-components like plant assimilation, respiration and transpiration, which can help us better understand the environmental drivers of each partial flux. We share the results of a field campaign isotope fluxes were derived using a combination of laser spectroscopy and eddy covariance. We found lag times and high frequency signal loss in the isotope fluxes we derived and present methods to correct for both.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
Atmos. Chem. Phys., 23, 14643–14672, https://doi.org/10.5194/acp-23-14643-2023, https://doi.org/10.5194/acp-23-14643-2023, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable-water-vapour isotopes is shaped by the overturning circulation associated with these clouds.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Geosci. Model Dev., 16, 3553–3564, https://doi.org/10.5194/gmd-16-3553-2023, https://doi.org/10.5194/gmd-16-3553-2023, 2023
Short summary
Short summary
Local refinement of the grid is a powerful method allowing us to reduce the computational time while preserving the accuracy in the area of interest. Depending on the implementation, the local refinement may introduce unwanted numerical effects into the results. We study the wind speed common to the wind turbine operational speeds and confirm strong alteration of the result when the heat fluxes are present, except for the specific refinement scheme used.
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022, https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Short summary
This research brings a multi-scale temporal analysis of evaporation in a saline lake of the Atacama Desert. Our findings reveal that evaporation is controlled differently depending on the timescale. Evaporation is controlled sub-diurnally by wind speed, regulated seasonally by radiation and modulated interannually by ENSO. Our research extends our understanding of evaporation, contributing to improving the climate change assessment and efficiency of water management in arid regions.
Sandrine Bony, Marie Lothon, Julien Delanoë, Pierre Coutris, Jean-Claude Etienne, Franziska Aemisegger, Anna Lea Albright, Thierry André, Hubert Bellec, Alexandre Baron, Jean-François Bourdinot, Pierre-Etienne Brilouet, Aurélien Bourdon, Jean-Christophe Canonici, Christophe Caudoux, Patrick Chazette, Michel Cluzeau, Céline Cornet, Jean-Philippe Desbios, Dominique Duchanoy, Cyrille Flamant, Benjamin Fildier, Christophe Gourbeyre, Laurent Guiraud, Tetyana Jiang, Claude Lainard, Christophe Le Gac, Christian Lendroit, Julien Lernould, Thierry Perrin, Frédéric Pouvesle, Pascal Richard, Nicolas Rochetin, Kevin Salaün, Alfons Schwarzenboeck, Guillaume Seurat, Bjorn Stevens, Julien Totems, Ludovic Touzé-Peiffer, Gilles Vergez, Jessica Vial, Leonie Villiger, and Raphaela Vogel
Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, https://doi.org/10.5194/essd-14-2021-2022, 2022
Short summary
Short summary
The French ATR42 research aircraft participated in the EUREC4A international field campaign that took place in 2020 over the tropical Atlantic, east of Barbados. We present the extensive instrumentation of the aircraft, the research flights and the different measurements. We show that the ATR measurements of humidity, wind, aerosols and cloudiness in the lower atmosphere are robust and consistent with each other. They will make it possible to advance understanding of cloud–climate interactions.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Wind Energ. Sci., 7, 849–873, https://doi.org/10.5194/wes-7-849-2022, https://doi.org/10.5194/wes-7-849-2022, 2022
Short summary
Short summary
We described a new automated method to separate the wind turbine wake from the undisturbed flow. The method relies on the wind speed distribution in the measured wind field to select one specific threshold value and split the measurements into wake and background points. The purpose of the method is to reduce the amount of data required – the proposed algorithm does not need precise information on the wind speed or direction and can run on the image instead of the measured data.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Pierre-Etienne Brilouet, Marie Lothon, Jean-Claude Etienne, Pascal Richard, Sandrine Bony, Julien Lernoult, Hubert Bellec, Gilles Vergez, Thierry Perrin, Julien Delanoë, Tetyana Jiang, Frédéric Pouvesle, Claude Lainard, Michel Cluzeau, Laurent Guiraud, Patrice Medina, and Theotime Charoy
Earth Syst. Sci. Data, 13, 3379–3398, https://doi.org/10.5194/essd-13-3379-2021, https://doi.org/10.5194/essd-13-3379-2021, 2021
Short summary
Short summary
During the EUREC4A field experiment that took place over the tropical Atlantic Ocean east of Barbados, the French ATR 42 environment research aircraft of SAFIRE aimed to characterize the shallow cloud properties near cloud base and the turbulent structure of the subcloud layer. The high-frequency measurements of wind, temperature and humidity as well as their translation in terms of turbulent fluctuations, turbulent moments and characteristic length scales of turbulence are presented.
Carlos Román-Cascón, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jordi Vila-Guerau de Arellano, David Pino, Carlos Yagüe, and Eric R. Pardyjak
Geosci. Model Dev., 14, 3939–3967, https://doi.org/10.5194/gmd-14-3939-2021, https://doi.org/10.5194/gmd-14-3939-2021, 2021
Short summary
Short summary
The type of vegetation (or land cover) and its status influence the heat and water transfers between the surface and the air, affecting the processes that develop in the atmosphere at different (but connected) spatiotemporal scales. In this work, we investigate how these transfers are affected by the way the surface is represented in a widely used weather model. The results encourage including realistic high-resolution and updated land cover databases in models to improve their predictions.
Robin Stoffer, Caspar M. van Leeuwen, Damian Podareanu, Valeriu Codreanu, Menno A. Veerman, Martin Janssens, Oscar K. Hartogensis, and Chiel C. van Heerwaarden
Geosci. Model Dev., 14, 3769–3788, https://doi.org/10.5194/gmd-14-3769-2021, https://doi.org/10.5194/gmd-14-3769-2021, 2021
Short summary
Short summary
Turbulent flows are often simulated with the large-eddy simulation (LES) technique, which requires subgrid models to account for the smallest scales. Current subgrid models often require strong simplifying assumptions. We therefore developed a subgrid model based on artificial neural networks, which requires fewer assumptions. Our data-driven SGS model showed high potential in accurately representing the smallest scales but still introduced instability when incorporated into an actual LES.
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021, https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
Short summary
We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano region of the Atacama Desert through a field experiment and regional modeling. Our results show that evaporation is controlled by two regimes: (1) in the morning by local conditions with low evaporation rates and low wind speed and (2) in the afternoon with high evaporation rates and high wind speed. Afternoon winds are connected to the regional Pacific Ocean–Andes flow.
Maurin Zouzoua, Fabienne Lohou, Paul Assamoi, Marie Lothon, Véronique Yoboue, Cheikh Dione, Norbert Kalthoff, Bianca Adler, Karmen Babić, Xabier Pedruzo-Bagazgoitia, and Solène Derrien
Atmos. Chem. Phys., 21, 2027–2051, https://doi.org/10.5194/acp-21-2027-2021, https://doi.org/10.5194/acp-21-2027-2021, 2021
Short summary
Short summary
Based on a field experiment conducted in June and July 2016, we analyzed the daytime breakup of continental low-level stratiform clouds over southern West Africa in order to provide complementary guidance for model evaluation during the monsoon season. Those clouds exhibit weaker temperature and moisture jumps at the top compared to marine stratiform clouds. Their lifetime and the transition towards shallow convective clouds during daytime hours depend on their coupling with the surface.
Pedro Santos, Jakob Mann, Nikola Vasiljević, Elena Cantero, Javier Sanz Rodrigo, Fernando Borbón, Daniel Martínez-Villagrasa, Belén Martí, and Joan Cuxart
Wind Energ. Sci., 5, 1793–1810, https://doi.org/10.5194/wes-5-1793-2020, https://doi.org/10.5194/wes-5-1793-2020, 2020
Short summary
Short summary
This study presents results from the Alaiz experiment (ALEX17), featuring the characterization of two cases with flow features ranging from 0.1 to 10 km in complex terrain. We show that multiple scanning lidars can capture in detail a type of atmospheric wave that can happen up to 10 % of the time at this site. The results are in agreement with multiple ground observations and demonstrate the role of atmospheric stability in flow phenomena that need to be better captured by numerical models.
Jordi Vilà-Guerau de Arellano, Patrizia Ney, Oscar Hartogensis, Hugo de Boer, Kevin van Diepen, Dzhaner Emin, Geiske de Groot, Anne Klosterhalfen, Matthias Langensiepen, Maria Matveeva, Gabriela Miranda-García, Arnold F. Moene, Uwe Rascher, Thomas Röckmann, Getachew Adnew, Nicolas Brüggemann, Youri Rothfuss, and Alexander Graf
Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020, https://doi.org/10.5194/bg-17-4375-2020, 2020
Short summary
Short summary
The CloudRoots field experiment has obtained an open comprehensive observational data set that includes soil, plant, and atmospheric variables to investigate the interactions between a heterogeneous land surface and its overlying atmospheric boundary layer, including the rapid perturbations of clouds in evapotranspiration. Our findings demonstrate that in order to understand and represent diurnal variability, we need to measure and model processes from the leaf to the landscape scales.
Barbara Altstädter, Konrad Deetz, Bernhard Vogel, Karmen Babić, Cheikh Dione, Federica Pacifico, Corinne Jambert, Friederike Ebus, Konrad Bärfuss, Falk Pätzold, Astrid Lampert, Bianca Adler, Norbert Kalthoff, and Fabienne Lohou
Atmos. Chem. Phys., 20, 7911–7928, https://doi.org/10.5194/acp-20-7911-2020, https://doi.org/10.5194/acp-20-7911-2020, 2020
Short summary
Short summary
We present the high vertical variability of the black carbon (BC) mass concentration measured with the unmanned aerial system ALADINA during the field experiment of DACCIWA. The COSMO-ART model output was applied for the campaign period and is compared with the observational BC data during a case study on 14–15 July 2016. Enhanced BC concentrations were related to transport processes to the measurement site by maritime inflow and not to local emissions as initially expected.
Xabier Pedruzo-Bagazgoitia, Stephan R. de Roode, Bianca Adler, Karmen Babić, Cheikh Dione, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 20, 2735–2754, https://doi.org/10.5194/acp-20-2735-2020, https://doi.org/10.5194/acp-20-2735-2020, 2020
Short summary
Short summary
Using a high-resolution model we simulate the transition from night to day clouds on southern West Africa using observations from the DACCIWA project. We find that the radiative effects of clouds help mantain a thick cloud layer in the night, while the mixing of cloud air with air above during the day, aided by moisture and heat fluxes at the surface, thins this layer and promotes its transition to other clouds. The effect of changing wind with height accelerates the transition.
Fabienne Lohou, Norbert Kalthoff, Bianca Adler, Karmen Babić, Cheikh Dione, Marie Lothon, Xabier Pedruzo-Bagazgoitia, and Maurin Zouzoua
Atmos. Chem. Phys., 20, 2263–2275, https://doi.org/10.5194/acp-20-2263-2020, https://doi.org/10.5194/acp-20-2263-2020, 2020
Short summary
Short summary
A conceptual model of the low-level stratiform clouds (LLSCs), which develop almost every night in southern West Africa, is built with the dataset acquired during the DACCIWA (Dynamics Aerosol Chemistry Cloud Interactions in West Africa) ground-based field experiment. Several processes occur during the four phases composing this diurnal cycle: the cooling of the air until saturation (stable and jet phases), LLSC and low-level jet interactions (stratus phase), and LLSC breakup (convective phase).
Karmen Babić, Norbert Kalthoff, Bianca Adler, Julian F. Quinting, Fabienne Lohou, Cheikh Dione, and Marie Lothon
Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019, https://doi.org/10.5194/acp-19-13489-2019, 2019
Short summary
Short summary
This study investigates differences in atmospheric conditions between nights with and without low-level stratus clouds (LLCs) over southern West Africa. We use high-quality observations collected during 2016 summer monsoon season and the ERA5 reanalysis data set. Our results show that the formation of LLCs depends on the interplay between the onset time and strength of the nocturnal low-level jet, horizontal cold-air advection, and the overall moisture level in the whole region.
Marie Lothon, Paul Barnéoud, Omar Gabella, Fabienne Lohou, Solène Derrien, Sylvain Rondi, Marjolaine Chiriaco, Sophie Bastin, Jean-Charles Dupont, Martial Haeffelin, Jordi Badosa, Nicolas Pascal, and Nadège Montoux
Atmos. Meas. Tech., 12, 5519–5534, https://doi.org/10.5194/amt-12-5519-2019, https://doi.org/10.5194/amt-12-5519-2019, 2019
Short summary
Short summary
In the context of an atmospheric network of instrumented sites equipped with sky cameras for cloud monitoring, we present an algorithm named ELIFAN, which aims to estimate the cloud cover amount from full-sky visible daytime images. ELIFAN is based on red-to-blue ratio thresholding applied on the image pixels and on the use of a blue-sky library. We present its principle and its performance and highlight the interest of combining several complementary instruments.
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019, https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Short summary
This study helps improve the understanding of the turbulence description and the interactions occurring in the lower part of the boundary layer. It is carried out at an orographically influenced site close to the Pyrenees to explore the hockey-stick transition (HOST) theory. HOST is seen to be strongly dependent on both the meteorological conditions and the orographic features. Examples of intermittent turbulence events that lead to transitions between the turbulence regimes are also identified.
Cheikh Dione, Fabienne Lohou, Marie Lothon, Bianca Adler, Karmen Babić, Norbert Kalthoff, Xabier Pedruzo-Bagazgoitia, Yannick Bezombes, and Omar Gabella
Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019, https://doi.org/10.5194/acp-19-8979-2019, 2019
Short summary
Short summary
Low atmospheric dynamics and low-level cloud (LLC) macrophysical properties are analyzed using in situ and remote sensing data collected from 20 June to 30 July at Savè, Benin, during the DACCIWA field campaign in 2016. We find that the low-level jet (LLJ), LLCs, monsoon flow, and maritime inflow reveal a day-to-day variability. LLCs form at the same level as the jet core height. The cloud base height is stationary at night and remains below the jet. The cloud top height is found above the jet.
Sara Porchetta, Orkun Temel, Domingo Muñoz-Esparza, Joachim Reuder, Jaak Monbaliu, Jeroen van Beeck, and Nicole van Lipzig
Atmos. Chem. Phys., 19, 6681–6700, https://doi.org/10.5194/acp-19-6681-2019, https://doi.org/10.5194/acp-19-6681-2019, 2019
Short summary
Short summary
Two-way feedback occurs between offshore wind and waves. Using an extensive data set of offshore measurements, we show that the wave roughness affecting the wind is dependent on the alignment between the wind and wave directions. Moreover, we propose a new roughness parameterization that takes into account the dependence on alignment. Using this in numerical models will facilitate a better representation of offshore wind, which is relevant to wind energy and and climate modeling.
Jon Ander Arrillaga, Carlos Yagüe, Carlos Román-Cascón, Mariano Sastre, Maria Antonia Jiménez, Gregorio Maqueda, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 4615–4635, https://doi.org/10.5194/acp-19-4615-2019, https://doi.org/10.5194/acp-19-4615-2019, 2019
Short summary
Short summary
Thermally driven downslope winds develop in mountainous areas under a weak large-scale forcing and clear skies. In this work, we find that their onset time and intensity are closely connected with both the large-scale wind and soil moisture. We also show how the distinct downslope intensities shape the turbulent and thermal features of the nocturnal atmosphere. The analysis concludes that the downslope–turbulence interaction and the horizontal transport explain the important CO2 variability.
Federica Pacifico, Claire Delon, Corinne Jambert, Pierre Durand, Eleanor Morris, Mat J. Evans, Fabienne Lohou, Solène Derrien, Venance H. E. Donnou, Arnaud V. Houeto, Irene Reinares Martínez, and Pierre-Etienne Brilouet
Atmos. Chem. Phys., 19, 2299–2325, https://doi.org/10.5194/acp-19-2299-2019, https://doi.org/10.5194/acp-19-2299-2019, 2019
Short summary
Short summary
Biogenic fluxes from soil at a local and regional scale are crucial to study air pollution and climate. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field, and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in
June and July 2016.
Sophie L. Haslett, Jonathan W. Taylor, Konrad Deetz, Bernhard Vogel, Karmen Babić, Norbert Kalthoff, Andreas Wieser, Cheikh Dione, Fabienne Lohou, Joel Brito, Régis Dupuy, Alfons Schwarzenboeck, Paul Zieger, and Hugh Coe
Atmos. Chem. Phys., 19, 1505–1520, https://doi.org/10.5194/acp-19-1505-2019, https://doi.org/10.5194/acp-19-1505-2019, 2019
Short summary
Short summary
As the population in West Africa grows and air pollution increases, it is becoming ever more important to understand the effects of this pollution on the climate and on health. Aerosol particles can grow by absorbing water from the air around them. This paper shows that during the monsoon season, aerosol particles in the region are likely to grow significantly because of the high moisture in the air. This means that climate effects from increasing pollution will be enhanced.
Karmen Babić, Bianca Adler, Norbert Kalthoff, Hendrik Andersen, Cheikh Dione, Fabienne Lohou, Marie Lothon, and Xabier Pedruzo-Bagazgoitia
Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019, https://doi.org/10.5194/acp-19-1281-2019, 2019
Short summary
Short summary
The first detailed observational analysis of the complete diurnal cycle of low-level clouds (LLC) and associated atmospheric processes over southern West Africa is performed using the data gathered within the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud-Interactions in West Africa) ground-based campaign. We find cooling related to the horizontal advection, which occurs in connection with the inflow of cool maritime air mass and a prominent low-level jet, to have the dominant role in LLC formation.
Bianca Adler, Karmen Babić, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, Cheikh Dione, Xabier Pedruzo-Bagazgoitia, and Hendrik Andersen
Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019, https://doi.org/10.5194/acp-19-663-2019, 2019
Short summary
Short summary
This study deals with nocturnal stratiform low-level clouds that frequently form in the atmospheric boundary layer over southern West Africa. We use observational data from 11 nights to characterize the clouds and intranight variability of boundary layer conditions as well as to assess the physical processes relevant for cloud formation. We find that cooling is crucial to reach saturation and a large part of the cooling is related to horizontal advection of cool air from the Gulf of Guinea.
Hervé Petetin, Bastien Sauvage, Herman G. J. Smit, François Gheusi, Fabienne Lohou, Romain Blot, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Marc Cousin, Philippe Nedelec, Patrick Neis, Susanne Rohs, and Valérie Thouret
Atmos. Chem. Phys., 18, 9561–9581, https://doi.org/10.5194/acp-18-9561-2018, https://doi.org/10.5194/acp-18-9561-2018, 2018
Short summary
Short summary
Based on the numerous profiles available since 1994, this paper investigates the vertical stratification of ozone, carbon monoxide and relative humidity in the lower part of the troposphere (planetary boundary layer, lower free troposphere). Such a characterization of the vertical distribution of pollution is notably important for better understanding vertical exchanges and evaluating models on the vertical dimension.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Martin Kunz, Jost V. Lavric, Christoph Gerbig, Pieter Tans, Don Neff, Christine Hummelgård, Hans Martin, Henrik Rödjegård, Burkhard Wrenger, and Martin Heimann
Atmos. Meas. Tech., 11, 1833–1849, https://doi.org/10.5194/amt-11-1833-2018, https://doi.org/10.5194/amt-11-1833-2018, 2018
Short summary
Short summary
Unmanned aircraft could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). During validation of its CO2 measurements in simulated and real flights we found a measurement error of 1.2 μmol mol−1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for operation on board UASs.
Norbert Kalthoff, Fabienne Lohou, Barbara Brooks, Gbenga Jegede, Bianca Adler, Karmen Babić, Cheikh Dione, Adewale Ajao, Leonard K. Amekudzi, Jeffrey N. A. Aryee, Muritala Ayoola, Geoffrey Bessardon, Sylvester K. Danuor, Jan Handwerker, Martin Kohler, Marie Lothon, Xabier Pedruzo-Bagazgoitia, Victoria Smith, Lukman Sunmonu, Andreas Wieser, Andreas H. Fink, and Peter Knippertz
Atmos. Chem. Phys., 18, 2913–2928, https://doi.org/10.5194/acp-18-2913-2018, https://doi.org/10.5194/acp-18-2913-2018, 2018
Short summary
Short summary
Extended low-level stratus clouds (LLC) form frequently in southern West Africa during the night-time and persist long into the next day. They affect the radiation budget, atmospheric boundary-layer (BL) evolution and regional climate. The relevant processes governing their formation and dissolution are not fully understood. Thus, a field campaign was conducted in summer 2016, which provided a comprehensive data set for process studies, specifically of interactions between LLC and BL conditions.
Tobias Wolf-Grosse, Igor Esau, and Joachim Reuder
Atmos. Chem. Phys., 17, 7261–7276, https://doi.org/10.5194/acp-17-7261-2017, https://doi.org/10.5194/acp-17-7261-2017, 2017
Short summary
Short summary
In this publication we used a number of very high (10 m) resolution simulations in order to assess the circulation in a coastal mountain city under high-air-pollution conditions. We found that forcings of the valley circulation through local surface inhomogeneities can have a distinct impact on the pollution distribution in the urban area. The work serves as a proof of concept for the applied high-resolution simulations to assess pollution conditions in the urban area under the given conditions.
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Line Båserud, Joachim Reuder, Marius O. Jonassen, Stephan T. Kral, Mostafa B. Paskyabi, and Marie Lothon
Atmos. Meas. Tech., 9, 4901–4913, https://doi.org/10.5194/amt-9-4901-2016, https://doi.org/10.5194/amt-9-4901-2016, 2016
Short summary
Short summary
The micro-RPAS SUMO (Small Unmanned Meteorological Observer) equipped with a five-hole-probe (5HP) system for turbulent flow measurements was operated in 49 flight missions during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign in 2011. Based on data sets from these flights, we investigate the potential and limitations of airborne velocity variance and TKE (turbulent kinetic energy) estimations by an RPAS with a take-off weight below 1 kg.
Guylaine Canut, Fleur Couvreux, Marie Lothon, Dominique Legain, Bruno Piguet, Astrid Lampert, William Maurel, and Eric Moulin
Atmos. Meas. Tech., 9, 4375–4386, https://doi.org/10.5194/amt-9-4375-2016, https://doi.org/10.5194/amt-9-4375-2016, 2016
Short summary
Short summary
Turbulent processes of the atmospheric boundary layer contribute the most to transfers between the surface and the atmosphere. Typically, turbulent boundary layer parameters are measured by sonic anemometers on masts and by research aircraft. This is to measure in situ turbulent parameters in the planetary boundary layer (PBL) at altitudes above 50 m. For this purpose, our team have developed a system under a tethered balloon which has been in use since 2010.
Fleur Couvreux, Eric Bazile, Guylaine Canut, Yann Seity, Marie Lothon, Fabienne Lohou, Françoise Guichard, and Erik Nilsson
Atmos. Chem. Phys., 16, 8983–9002, https://doi.org/10.5194/acp-16-8983-2016, https://doi.org/10.5194/acp-16-8983-2016, 2016
Short summary
Short summary
This study evaluates the ability of operational models to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence field campaign. The models succeed in reproducing the variability from one day to another in terms of cloud cover, temperature and boundary-layer depth. However, they exhibit some systematic biases. The high-resolution model reproduces the vertical structures better.
Erik Nilsson, Fabienne Lohou, Marie Lothon, Eric Pardyjak, Larry Mahrt, and Clara Darbieu
Atmos. Chem. Phys., 16, 8849–8872, https://doi.org/10.5194/acp-16-8849-2016, https://doi.org/10.5194/acp-16-8849-2016, 2016
Short summary
Short summary
The evolution of near-surface turbulence kinetic energy (TKE) and its budget in the afternoon transition has been studied based on field measurements. The study shows that TKE transport is an important budget term that needs to be taken into account in modeling of TKE. A non-local parametrization of dissipation using a TKE–length scale model which takes into account of boundary layer depth also gave improved results compared to a local parametrization.
Erik Nilsson, Marie Lothon, Fabienne Lohou, Eric Pardyjak, Oscar Hartogensis, and Clara Darbieu
Atmos. Chem. Phys., 16, 8873–8898, https://doi.org/10.5194/acp-16-8873-2016, https://doi.org/10.5194/acp-16-8873-2016, 2016
Short summary
Short summary
A new simple model for turbulence kinetic energy (TKE) and its budget is presented for the sheared convective atmospheric boundary layer. It is used to study effects of buoyancy and shear on TKE evolution during the afternoon transition, especially near the surface. We also find a region of weak turbulence during unstable afternoon conditions below the inversion top, which we refer to as a "pre-residual layer".
Astrid Lampert, Falk Pätzold, Maria Antonia Jiménez, Lennart Lobitz, Sabrina Martin, Gerald Lohmann, Guylaine Canut, Dominique Legain, Jens Bange, Dani Martínez-Villagrasa, and Joan Cuxart
Atmos. Chem. Phys., 16, 8009–8021, https://doi.org/10.5194/acp-16-8009-2016, https://doi.org/10.5194/acp-16-8009-2016, 2016
Short summary
Short summary
For a large field experiment in summer 2011 in southern France (BLLAST campaign), the development of turbulence in the atmosphere was analysed during the afternoon and evening. Besides ground-based remote sensing and in situ observations, turbulence parameters were measured with an unmanned aerial vehicle and analysed by numerical simulation. Turbulence decreased during the afternoon, but increased after sunset due to local wind systems. Turbulent eddies lost symmetry during the transition.
Joachim Reuder, Line Båserud, Marius O. Jonassen, Stephan T. Kral, and Martin Müller
Atmos. Meas. Tech., 9, 2675–2688, https://doi.org/10.5194/amt-9-2675-2016, https://doi.org/10.5194/amt-9-2675-2016, 2016
Short summary
Short summary
Extensive operations of the Small Unmanned Meteorological Observer, a small (80 cm) and lightweight (700 g) unmanned research aircraft, have been performed during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) campaign in southern France in summer 2011. With a total of 300 flights, the SUMO system has provided a unique data set consisting of temperature, humidity and wind profiles, surface-temperature surveys and profiles of turbulence parameters.
João A. Hackerott, Mostafa Bakhday Paskyabi, Stephan T. Kral, Joachim Reuder, Amauri P. de Oliveira, Edson P. Marques Filho, Michel d. S. Mesquita, and Ricardo de Camargo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-1061, https://doi.org/10.5194/acp-2015-1061, 2016
Preprint withdrawn
Short summary
Short summary
The turbulent variance equation components for wind, temperature, humidity, and CO2 were estimated applying the Inertial Dissipation and Eddy Covariance methods on BLLAST dataset. The tracers show similar behavior only for convective regime, linearly related to the buoyancy for dissipation. For stable and near-neutral, the transport term for tracers are not similar and for TKE shall not be neglected. On stable regimes, other mechanisms in addition to stability may be significantly important.
C. Darbieu, F. Lohou, M. Lothon, J. Vilà-Guerau de Arellano, F. Couvreux, P. Durand, D. Pino, E. G. Patton, E. Nilsson, E. Blay-Carreras, and B. Gioli
Atmos. Chem. Phys., 15, 10071–10086, https://doi.org/10.5194/acp-15-10071-2015, https://doi.org/10.5194/acp-15-10071-2015, 2015
Short summary
Short summary
A case study of the BLLAST experiment is considered to explore the decay of turbulence that occurs in the convective boundary layer over land during the afternoon. Based on observations and on a large-eddy simulation, the analysis reveals two phases in the afternoon: a first quasi-stationary phase when the turbulent kinetic energy slowly decays without significant change in the turbulence structure and a second phase of more rapid decay with a change in spectral turbulence characteristics.
C. Román-Cascón, C. Yagüe, L. Mahrt, M. Sastre, G.-J. Steeneveld, E. Pardyjak, A. van de Boer, and O. Hartogensis
Atmos. Chem. Phys., 15, 9031–9047, https://doi.org/10.5194/acp-15-9031-2015, https://doi.org/10.5194/acp-15-9031-2015, 2015
Short summary
Short summary
Stable-boundary-layer processes have been analysed using BLLAST data. Shallow drainage flows were formed at some locations after the near calm stage of the late afternoon. This stage ended with the arrival of a deeper wind associated with the mountain-plain circulation. At the same time, gravity waves were detected with an array of microbarometers. The interaction of these processes with turbulence was studied through multi-resolution flux decomposition at different sites and heights.
E. Blay-Carreras, E. R. Pardyjak, D. Pino, S. W. Hoch, J. Cuxart, D. Martínez, and J. Reuder
Atmos. Chem. Phys., 15, 6981–6991, https://doi.org/10.5194/acp-15-6981-2015, https://doi.org/10.5194/acp-15-6981-2015, 2015
Short summary
Short summary
The study shows that lifted temperature minimum can be detected under calm conditions during the day-night transition, several hours earlier than reported in previous work. These conditions are fulfilled under weak synoptic forcing during local flow shifts associated with a mountain-plain complex orography. Under these special conditions, turbulence and radiation becomes a crucial parameter in determining the ideal conditions for observing LTM measurements.
D. van Dinther, C. R. Wood, O. K. Hartogensis, A. Nordbo, and E. J. O'Connor
Atmos. Meas. Tech., 8, 1901–1911, https://doi.org/10.5194/amt-8-1901-2015, https://doi.org/10.5194/amt-8-1901-2015, 2015
H. P. Pietersen, J. Vilà-Guerau de Arellano, P. Augustin, A. van de Boer, O. de Coster, H. Delbarre, P. Durand, M. Fourmentin, B. Gioli, O. Hartogensis, F. Lohou, M. Lothon, H. G. Ouwersloot, D. Pino, and J. Reuder
Atmos. Chem. Phys., 15, 4241–4257, https://doi.org/10.5194/acp-15-4241-2015, https://doi.org/10.5194/acp-15-4241-2015, 2015
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
E. Blay-Carreras, E. R. Pardyjak, D. Pino, D. C. Alexander, F. Lohou, and M. Lothon
Atmos. Chem. Phys., 14, 9077–9085, https://doi.org/10.5194/acp-14-9077-2014, https://doi.org/10.5194/acp-14-9077-2014, 2014
M. A. Gruber, G. J. Fochesatto, O. K. Hartogensis, and M. Lysy
Atmos. Meas. Tech., 7, 2361–2371, https://doi.org/10.5194/amt-7-2361-2014, https://doi.org/10.5194/amt-7-2361-2014, 2014
E. Blay-Carreras, D. Pino, J. Vilà-Guerau de Arellano, A. van de Boer, O. De Coster, C. Darbieu, O. Hartogensis, F. Lohou, M. Lothon, and H. Pietersen
Atmos. Chem. Phys., 14, 4515–4530, https://doi.org/10.5194/acp-14-4515-2014, https://doi.org/10.5194/acp-14-4515-2014, 2014
F. Lohou, L. Kergoat, F. Guichard, A. Boone, B. Cappelaere, J.-M. Cohard, J. Demarty, S. Galle, M. Grippa, C. Peugeot, D. Ramier, C. M. Taylor, and F. Timouk
Atmos. Chem. Phys., 14, 3883–3898, https://doi.org/10.5194/acp-14-3883-2014, https://doi.org/10.5194/acp-14-3883-2014, 2014
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Investigation of non-equilibrium turbulence decay in the atmospheric boundary layer using Doppler lidar measurements
Measurement report: The promotion of the low-level jet and thermal effects on the development of the deep convective boundary layer at the southern edge of the Taklimakan Desert
Estimating scalar turbulent fluxes with slow-response sensors in the stable atmospheric boundary layer
Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)3 aircraft campaign
Impact of boundary layer stability on urban park cooling effect intensity
Contrasting extremely warm and long-lasting cold air anomalies in the North Atlantic sector of the Arctic during the HALO-(𝒜 𝒞)3 campaign
Air–sea interactions in stable atmospheric conditions: lessons from the desert semi-enclosed Gulf of Eilat (Aqaba)
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions
The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic
Detection of dilution due to turbulent mixing vs. precipitation scavenging effects on biomass burning aerosol concentrations using stable water isotope ratios during ORACLES
Modulation of the intraseasonal variability in early summer precipitation in eastern China by the Quasi-Biennial Oscillation and the Madden–Julian Oscillation
Thermodynamic and kinematic drivers of atmospheric boundary layer stability in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
Occurrence frequency of subcritical Richardson numbers assessed by global high-resolution radiosonde and ERA5 reanalysis
The characteristics of atmospheric boundary layer height over the Arctic Ocean during MOSAiC
Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations
Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer
Triggering effects of large topography and boundary layer turbulence on convection over the Tibetan Plateau
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Evolution of turbulent kinetic energy during the entire sandstorm process
Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic
The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Momentum fluxes from airborne wind measurements in three cumulus cases over land
Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean
Opinion: Gigacity – a source of problems or the new way to sustainable development
The thermodynamic structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing
Turbulent and boundary layer characteristics during VOCALS-REx
A foehn-induced haze front in Beijing: observations and implications
Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia
Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5)
Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory
Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations
What controls the formation of nocturnal low-level stratus clouds over southern West Africa during the monsoon season?
Recent trends in climate variability at the local scale using 40 years of observations: the case of the Paris region of France
Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign
Low-level stratiform clouds and dynamical features observed within the southern West African monsoon
Residual layer ozone, mixing, and the nocturnal jet in California's San Joaquin Valley
From weak to intense downslope winds: origin, interaction with boundary-layer turbulence and impact on CO2 variability
On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica
Spatial and temporal variability of turbulence dissipation rate in complex terrain
Characterizing wind gusts in complex terrain
Long-term trends of instability and associated parameters over the Indian region obtained using a radiosonde network
Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity
The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study
Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: an observation-based analysis of conditions and processes
Characteristics and evolution of diurnal foehn events in the Dead Sea valley
High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions
Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city
Maciej Karasewicz, Marta Wacławczyk, Pablo Ortiz-Amezcua, Łucja Janicka, Patryk Poczta, Camilla Kassar Borges, and Iwona S. Stachlewska
Atmos. Chem. Phys., 24, 13231–13251, https://doi.org/10.5194/acp-24-13231-2024, https://doi.org/10.5194/acp-24-13231-2024, 2024
Short summary
Short summary
This work concerns analysis of turbulence in the atmospheric boundary layer shortly before sunset. Based on a large set of measurements at a rural and an urban site, we analyze how turbulence properties change in time during rapid decay of convection. We explain the observations using recent theories of non-equilibrium turbulence. The presence of non-equilibrium suggests that classical parametrization schemes fail to predict turbulence statistics shortly before sunset.
Lian Su, Chunsong Lu, Jinlong Yuan, Xiaofei Wang, Qing He, and Haiyun Xia
Atmos. Chem. Phys., 24, 10947–10963, https://doi.org/10.5194/acp-24-10947-2024, https://doi.org/10.5194/acp-24-10947-2024, 2024
Short summary
Short summary
The cold downhill airflow of the Tibetan Plateau leading to the low-level jet weakens the height and intensity of the inversion layer, which reduces the energy demand for the broken inversion layer. The low-level jet causes dust aerosols to accumulate near the ground. The material conditions for the development of the desert atmospheric boundary layer can be quickly transformed into thermal conditions.
Mohammad Allouche, Vladislav I. Sevostianov, Einara Zahn, Mark A. Zondlo, Nelson Luís Dias, Gabriel G. Katul, Jose D. Fuentes, and Elie Bou-Zeid
Atmos. Chem. Phys., 24, 9697–9711, https://doi.org/10.5194/acp-24-9697-2024, https://doi.org/10.5194/acp-24-9697-2024, 2024
Short summary
Short summary
The significance of surface–atmosphere exchanges of aerosol species to atmospheric composition is underscored by their rising concentrations that are modulating the Earth's climate and having detrimental consequences for human health and the environment. Estimating these exchanges, using field measurements, and offering alternative models are the aims here. Limitations in measuring some species misrepresent their actual exchanges, so our proposed models serve to better quantify them.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Martial Haeffelin, Jean-François Ribaud, Jonnathan Céspedes, Jean-Charles Dupont, Aude Lemonsu, Valéry Masson, Tim Nagel, and Simone Kotthaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-1777, https://doi.org/10.5194/egusphere-2024-1777, 2024
Short summary
Short summary
This study highlights how the state of the urban atmospheric boundary layer impacts urban park cooling effect intensity at night. Under summertime heat wave conditions, the urban atmosphere becomes stable at night, which inhibits turbulent motions. Under those specific conditions, urban parks and woods cool much more efficiently than surrounding built-up neighbourhoods in the evening and through the night, providing cooler air temperature by 4 to 6 degrees depending on park size.
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Kerstin Ebell, Irina Gorodetskaya, Bernd Heinold, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
Atmos. Chem. Phys., 24, 8007–8029, https://doi.org/10.5194/acp-24-8007-2024, https://doi.org/10.5194/acp-24-8007-2024, 2024
Short summary
Short summary
To support the interpretation of the data collected during the HALO-(AC)3 campaign, which took place in the North Atlantic sector of the Arctic from 7 March to 12 April 2022, we analyze how unusual the weather and sea ice conditions were with respect to the long-term climatology. From observations and ERA5 reanalysis, we found record-breaking warm air intrusions and a large variety of marine cold air outbreaks. Sea ice concentration was mostly within the climatological interquartile range.
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
Atmos. Chem. Phys., 24, 6177–6195, https://doi.org/10.5194/acp-24-6177-2024, https://doi.org/10.5194/acp-24-6177-2024, 2024
Short summary
Short summary
Understanding air–sea heat exchange is vital for studying ocean dynamics. Eddy covariance measurements over the Gulf of Eilat revealed a 3.22 m yr-1 evaporation rate, which is inconsistent with bulk formulae estimations in stable atmospheric conditions, requiring bulk formulae to be revisited in these environments. The surface fluxes have a net cooling effect on the gulf water on an annual mean (-79 W m-2), balanced by a strong exchange flux between the Red Sea and the Gulf of Eilat.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024, https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Short summary
Observations collected during MOSAiC were used to identify the range in vertical structure and stability of the central Arctic lower atmosphere through a self-organizing map analysis. Characteristics of wind features (such as low-level jets) and atmospheric moisture features (such as clouds) were analyzed in the context of the varying vertical structure and stability. Thus, the results of this paper give an overview of the thermodynamic and kinematic features of the central Arctic atmosphere.
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023, https://doi.org/10.5194/acp-23-15473-2023, 2023
Short summary
Short summary
The height of the mixing layer is an important measure of the surface-level distribution of energy or other substances. The experimental determination of this height is associated with large uncertainties, particularly under stable conditions that we often find during the polar night or in the presence of clouds. We present a reference method using turbulence measurements on a tethered balloon, which allows us to evaluate approaches based on radiosondes or surface observations.
Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen
Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023, https://doi.org/10.5194/acp-23-15365-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are strong winds near the surface and occur frequently in the Arctic in stable conditions. Using tethered-balloon profile measurements in Greenland, we analyze a multi-hour period with an LLJ that later weakens and finally collapses. Increased shear-induced turbulence at the LLJ bounds mostly does not reach the ground until the LLJ collapses. Our findings support the hypothesis that a passive tracer can be advected with an LLJ and mixed down when the LLJ collapses.
Dean Henze, David Noone, and Darin Toohey
Atmos. Chem. Phys., 23, 15269–15288, https://doi.org/10.5194/acp-23-15269-2023, https://doi.org/10.5194/acp-23-15269-2023, 2023
Short summary
Short summary
The interaction between biomass burning aerosols and clouds remains challenging to accurately determine from observations. This is in part because of difficulties distinguishing aerosol differences due to precipitation versus dilution processes from the observations. This study addresses the challenge by utilizing atmospheric heavy water isotope ratios to constrain mixing versus precipitation processes during a field campaign (ORACLES) and in turn explain observed aerosol concentrations.
Zefan Ju, Jian Rao, Yue Wang, Junfeng Yang, and Qian Lu
Atmos. Chem. Phys., 23, 14903–14918, https://doi.org/10.5194/acp-23-14903-2023, https://doi.org/10.5194/acp-23-14903-2023, 2023
Short summary
Short summary
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the Quasi-Biennial Oscillation (QBO) on East China summer rainfall variability. It is novel to find that the combined impact of MJO and QBO is not maximized when the QBO and MJO are in phase to enhance (or suppress) the tropical convection.
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 23, 13087–13106, https://doi.org/10.5194/acp-23-13087-2023, https://doi.org/10.5194/acp-23-13087-2023, 2023
Short summary
Short summary
Observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) were used to determine the frequency of occurrence of various central Arctic lower atmospheric stability regimes and how the stability regimes transition between each other. Wind and radiation observations were analyzed in the context of stability regime and season to reveal the relationships between Arctic atmospheric stability and mechanically and radiatively driven turbulent forcings.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Shijie Peng, Qinghua Yang, Matthew D. Shupe, Xingya Xi, Bo Han, Dake Chen, Sandro Dahlke, and Changwei Liu
Atmos. Chem. Phys., 23, 8683–8703, https://doi.org/10.5194/acp-23-8683-2023, https://doi.org/10.5194/acp-23-8683-2023, 2023
Short summary
Short summary
Due to a lack of observations, the structure of the Arctic atmospheric boundary layer (ABL) remains to be further explored. By analyzing a year-round radiosonde dataset collected over the Arctic sea-ice surface, we found the annual cycle of the ABL height (ABLH) is primarily controlled by the evolution of ABL thermal structure, and the surface conditions also show a high correlation with ABLH variation. In addition, the Arctic ABLH is found to be decreased in summer compared with 20 years ago.
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023, https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Short summary
Clouds represent a very important component of the Arctic climate system, as they strongly reduce the amount of heat lost to space from the sea ice surface. Properties of clouds, as well as their persistence, strongly depend on the complex interaction of such small-scale properties as phase transitions, radiative transfer and turbulence. In this study we use airborne observations to learn more about the effect of clouds and radiative cooling on turbulence in comparison with other factors.
Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli
Atmos. Chem. Phys., 23, 4045–4058, https://doi.org/10.5194/acp-23-4045-2023, https://doi.org/10.5194/acp-23-4045-2023, 2023
Short summary
Short summary
A high daily variability of the normalized vertical velocity variance profiles in the convective boundary layer is observed using Doppler lidar data during the FESSTVaL campaign 2020–2021. The dependency of the normalized vertical velocity variance on several meteorological parameters explains that the moisture processes in the boundary layer contribute to the remaining variability. The finding suggests that a new vertical velocity scale that takes moist processes into account has to be defined.
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023, https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
Short summary
The vertical motion over the Tibetan Plateau (TP) is associated with the anomalous convective activities. The diurnal variations and formation mechanisms of low clouds over the TP, Rocky Mountains and low-elevation regions are analyzed. We further discuss whether there exists a
high-efficiencytriggering mechanism for convection over the TP and whether there is an association among low air density and strong turbulence and ubiquitous popcorn-like cumulus clouds.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023, https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Short summary
Previous studies have noted a significant relationship between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices, but little is known about the stability of their relationship. We found a significant positive correlation between the two indices prior to the year 2000 but an insignificant correlation afterwards.
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022, https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary
Short summary
This paper helps to improve the recognition of severe thunderstorms in advance by giving a general understanding of how long the storm lasts, how fast the cluster moves and how much area the storm affects via information about the kinematic features of thunderstorms, which are the duration, valid area, the velocity, the direction and the farthest distance, and ideally to establish a foundation for future research that may contribute to the development of a new or improved prediction paradigm.
Hongyou Liu, Yanxiong Shi, and Xiaojing Zheng
Atmos. Chem. Phys., 22, 8787–8803, https://doi.org/10.5194/acp-22-8787-2022, https://doi.org/10.5194/acp-22-8787-2022, 2022
Short summary
Short summary
The sandstorm, which is a common natural disaster, is mechanically characterized by a particle-laden flow experiencing wall turbulence. This work investigates a real sandstorm that was measured at the Qingtu Lake Observation Array through a lens of wall-turbulent flow dynamics. A non-stationary signal processing method is proposed based on the time-varying mean and adaptive segmented stationary method, and the evolution of turbulent kinetic energy during the entire sandstorm process is revealed.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022, https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary
Short summary
We are interested in the prediction of condensation trails, in particular strong ones. For this we need a good forecast of temperature and humidity in the levels where aircraft cruise. Unfortunately, the humidity forecast is quite difficult for these levels, in particular the ice supersaturation, which is needed for long-lasting contrails. We are thus seeking proxy variables that help distinguish situations where strong contrails can form, for instance the lapse rate.
Ada Mariska Koning, Louise Nuijens, Christian Mallaun, Benjamin Witschas, and Christian Lemmerz
Atmos. Chem. Phys., 22, 7373–7388, https://doi.org/10.5194/acp-22-7373-2022, https://doi.org/10.5194/acp-22-7373-2022, 2022
Short summary
Short summary
Wind measurements from the mixed layer to cloud tops are scarce, causing a lack of knowledge on wind mixing between and within these layers. We use airborne observations of wind profiles and local wind at high frequency to study wind transport in cloud fields. A case with thick clouds had its maximum transport in the cloud layer, caused by eddies > 700 m, which was not expected from turbulence theory. In other cases large eddies undid transport of smaller eddies resulting in no net transport.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo E. Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys., 21, 9643–9668, https://doi.org/10.5194/acp-21-9643-2021, https://doi.org/10.5194/acp-21-9643-2021, 2021
Short summary
Short summary
Using aircraft-based measurements off the Atlantic coast of Africa, we found the springtime smoke plume was strongly correlated with the amount of water vapor in the atmosphere (more smoke indicated more humidity). We see the same general feature in satellite-assimilated and free-running models. Our analysis suggests this relationship is not caused by the burning but originates due to coincident continental meteorology plus fires. This air is transported over the ocean without further mixing.
Markku Kulmala, Tom V. Kokkonen, Juha Pekkanen, Sami Paatero, Tuukka Petäjä, Veli-Matti Kerminen, and Aijun Ding
Atmos. Chem. Phys., 21, 8313–8322, https://doi.org/10.5194/acp-21-8313-2021, https://doi.org/10.5194/acp-21-8313-2021, 2021
Short summary
Short summary
The eastern part of China as a whole is practically a gigacity with 650 million inhabitants. The gigacity, with its emissions, processes in the pollution cocktail and numerous feedbacks and interactions, has a crucial and big impact on regional air quality and on global climate. A large-scale research and innovation program is needed to meet the interlinked grand challenges in this gigacity and to serve as a platform for finding pathways for sustainable development of the globe.
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys., 21, 6111–6128, https://doi.org/10.5194/acp-21-6111-2021, https://doi.org/10.5194/acp-21-6111-2021, 2021
Short summary
Short summary
Multiscale-circulation coupling affects pollution by changing the planetary boundary layer (PBL) structure. The multilayer PBL under cyclonic circulation has no diurnal variation; the temperature inversion and zero-speed zone can reach 600–900 m with strong mountain winds. The monolayer PBL under southwestern circulation can reach 2000 m; the inversion is lower than nocturnal PBL (400 m) with strong ambient winds. The zonal winds' vertical shear produces the inversion under western circulation.
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 21, 1937–1961, https://doi.org/10.5194/acp-21-1937-2021, https://doi.org/10.5194/acp-21-1937-2021, 2021
Short summary
Short summary
The results here reinforce findings from previous in situ studies of the marine boundary layer. It is found that turbulence is maximized in the middle of the stratocumulus layer from latent heating effects. Precipitation acts to increase turbulence in the sub-cloud layer, while acting to stabilize the entire boundary layer after the evaporation of precipitation in the sub-cloud has stopped. A negative correlation is present between the boundary layer height and turbulence.
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Short summary
We analyzed a haze front event involving warm–dry downslope flow in December 2015 in Beijing, China. The haze front was formed by the collision between a clean warm–dry air mass flowing from a nearby mountainous region and a polluted cold–wet air mass over an urban area. We found that the polluted air advanced toward the clean air, resulting in a severe air pollution event. Our study highlights the need to further investigate the warm–dry downslope and its impacts on air pollution.
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020, https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Short summary
Gravity waves are an important coupling mechanism in the atmosphere. Measurements by two research aircraft during a mountain wave event over Scandinavia in 2016 revealed changes of the horizontal scales in the vertical velocity field and of momentum fluxes in the vicinity of the tropopause inversion. Idealized simulations revealed the presence of interfacial waves. They are found downstream of the mountain peaks, meaning that they horizontally transport momentum/energy away from their source.
Rayonil G. Carneiro and Gilberto Fisch
Atmos. Chem. Phys., 20, 5547–5558, https://doi.org/10.5194/acp-20-5547-2020, https://doi.org/10.5194/acp-20-5547-2020, 2020
Short summary
Short summary
The objective of this study was to conduct observational evaluations of the daily cycle of the height of the planetary boundary layer from data that were measured and/or estimated using instruments such as a radiosonde, sodar, ceilometer, wind profiler, lidar and microwave radiometer installed in the central Amazon during 2014 (considered a typical year) and 2015 during which an intense El Niño–Southern Oscillation (ENSO) event predominated during the GoAmazon experiment.
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020, https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary
Short summary
In this study, data collected during four deep convection events at the 80 m tower from the Amazon Tall Tower Observatory are analyzed. It provides a unique view on how such events affect the local boundary layer and how it recovers after their passage. Quantities analyzed include mean wind speed, virtual potential temperature, turbulent kinetic energy, sensible, and latent heat fluxes. A conceptual model for boundary layer structure along the passage of deep convection events is proposed.
Zhicong Yin, Bufan Cao, and Huijun Wang
Atmos. Chem. Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019, https://doi.org/10.5194/acp-19-13933-2019, 2019
Short summary
Short summary
Ozone occurs both in the stratosphere and at ground level. Surface ozone is a man-made air pollutant and has harmful effects on people and the environment. Two dominant patterns of summer ozone pollution were determined. The most dominant pattern in 2017 and 2018 was different from that in previous years. The findings of this study help us to understand the features of surface ozone pollution in eastern China and their relationships with large-scale atmospheric circulations.
Karmen Babić, Norbert Kalthoff, Bianca Adler, Julian F. Quinting, Fabienne Lohou, Cheikh Dione, and Marie Lothon
Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019, https://doi.org/10.5194/acp-19-13489-2019, 2019
Short summary
Short summary
This study investigates differences in atmospheric conditions between nights with and without low-level stratus clouds (LLCs) over southern West Africa. We use high-quality observations collected during 2016 summer monsoon season and the ERA5 reanalysis data set. Our results show that the formation of LLCs depends on the interplay between the onset time and strength of the nocturnal low-level jet, horizontal cold-air advection, and the overall moisture level in the whole region.
Justine Ringard, Marjolaine Chiriaco, Sophie Bastin, and Florence Habets
Atmos. Chem. Phys., 19, 13129–13155, https://doi.org/10.5194/acp-19-13129-2019, https://doi.org/10.5194/acp-19-13129-2019, 2019
Short summary
Short summary
This study characterizes the changes observed at Paris urban scale and attempts to identify the surface–atmosphere feedbacks likely to explain the trends observed as a function of the different configurations of large-scale dynamics. This article is interested in several atmospheric parameters and their possible retroactions. Finally, to study urban environments, the analysis at the local scale is essential because it is very poorly represented in the model.
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019, https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Short summary
This study helps improve the understanding of the turbulence description and the interactions occurring in the lower part of the boundary layer. It is carried out at an orographically influenced site close to the Pyrenees to explore the hockey-stick transition (HOST) theory. HOST is seen to be strongly dependent on both the meteorological conditions and the orographic features. Examples of intermittent turbulence events that lead to transitions between the turbulence regimes are also identified.
Cheikh Dione, Fabienne Lohou, Marie Lothon, Bianca Adler, Karmen Babić, Norbert Kalthoff, Xabier Pedruzo-Bagazgoitia, Yannick Bezombes, and Omar Gabella
Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019, https://doi.org/10.5194/acp-19-8979-2019, 2019
Short summary
Short summary
Low atmospheric dynamics and low-level cloud (LLC) macrophysical properties are analyzed using in situ and remote sensing data collected from 20 June to 30 July at Savè, Benin, during the DACCIWA field campaign in 2016. We find that the low-level jet (LLJ), LLCs, monsoon flow, and maritime inflow reveal a day-to-day variability. LLCs form at the same level as the jet core height. The cloud base height is stationary at night and remains below the jet. The cloud top height is found above the jet.
Dani J. Caputi, Ian Faloona, Justin Trousdell, Jeanelle Smoot, Nicholas Falk, and Stephen Conley
Atmos. Chem. Phys., 19, 4721–4740, https://doi.org/10.5194/acp-19-4721-2019, https://doi.org/10.5194/acp-19-4721-2019, 2019
Short summary
Short summary
This paper covers the importance of understanding ozone pollution in California’s southern San Joaquin Valley from the perspective of meteorological conditions that occur overnight. Our main finding is that stronger winds aloft allow ozone to be depleted overnight, leading to less ozone the following day. This finding has the potential to greatly improve ozone forecasts in the San Joaquin Valley. This study is primarily conducted with aircraft observations.
Jon Ander Arrillaga, Carlos Yagüe, Carlos Román-Cascón, Mariano Sastre, Maria Antonia Jiménez, Gregorio Maqueda, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 4615–4635, https://doi.org/10.5194/acp-19-4615-2019, https://doi.org/10.5194/acp-19-4615-2019, 2019
Short summary
Short summary
Thermally driven downslope winds develop in mountainous areas under a weak large-scale forcing and clear skies. In this work, we find that their onset time and intensity are closely connected with both the large-scale wind and soil moisture. We also show how the distinct downslope intensities shape the turbulent and thermal features of the nocturnal atmosphere. The analysis concludes that the downslope–turbulence interaction and the horizontal transport explain the important CO2 variability.
Étienne Vignon, Olivier Traullé, and Alexis Berne
Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, https://doi.org/10.5194/acp-19-4659-2019, 2019
Short summary
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, Larry K. Berg, and Aditya Choukulkar
Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019, https://doi.org/10.5194/acp-19-4367-2019, 2019
Short summary
Short summary
To improve the parameterization of the turbulence dissipation rate (ε) in numerical weather prediction models, we have assessed its temporal and spatial variability at various scales in the Columbia River Gorge during the WFIP2 field experiment. The turbulence dissipation rate shows large spatial variability, even at the microscale, with larger values in sites located downwind of complex orographic structures or in wind farm wakes. Distinct diurnal and seasonal cycles in ε have also been found.
Frederick Letson, Rebecca J. Barthelmie, Weifei Hu, and Sara C. Pryor
Atmos. Chem. Phys., 19, 3797–3819, https://doi.org/10.5194/acp-19-3797-2019, https://doi.org/10.5194/acp-19-3797-2019, 2019
Short summary
Short summary
Wind gusts are a key driver of aerodynamic loading, and common approximations used to describe wind gust behavior may not be appropriate in complex terrain at heights relevant to wind turbines and other structures. High-resolution observations from sonic anemometers and vertically pointing Doppler lidars collected in the Perdigão experiment are analyzed to provide a foundation for improved wind gust characterization in complex terrain.
Rohit Chakraborty, Madineni Venkat Ratnam, and Shaik Ghouse Basha
Atmos. Chem. Phys., 19, 3687–3705, https://doi.org/10.5194/acp-19-3687-2019, https://doi.org/10.5194/acp-19-3687-2019, 2019
Short summary
Short summary
Intense convective phenomena are a common climatic feature in the Indian tropical region which occur during the pre-monsoon to post-monsoon seasons (April–October) and are generally accompanied by intense thunderstorms, lightning, and wind gusts with heavy rainfall. Here we show long-term trends of the parameters related to convection and instability obtained from 27 radiosonde stations across six subdivisions over the Indian region during the period 1980–2016.
Kunihiko Kodera, Nawo Eguchi, Rei Ueyama, Yuhji Kuroda, Chiaki Kobayashi, Beatriz M. Funatsu, and Chantal Claud
Atmos. Chem. Phys., 19, 2655–2669, https://doi.org/10.5194/acp-19-2655-2019, https://doi.org/10.5194/acp-19-2655-2019, 2019
Short summary
Short summary
The recent cooling of the equatorial eastern Pacific Ocean occurred in conjunction with enhanced cross-equatorial southerlies associated with a strengthening of the boreal summer Hadley circulation. A combination of land surface warming and reduced static stability in the tropical tropopause layer due to stratospheric cooling is suggested to have caused the increase in the deep ascending branch of the Hadley circulation and related recent decadal change in the tropical troposphere and ocean.
Karmen Babić, Bianca Adler, Norbert Kalthoff, Hendrik Andersen, Cheikh Dione, Fabienne Lohou, Marie Lothon, and Xabier Pedruzo-Bagazgoitia
Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019, https://doi.org/10.5194/acp-19-1281-2019, 2019
Short summary
Short summary
The first detailed observational analysis of the complete diurnal cycle of low-level clouds (LLC) and associated atmospheric processes over southern West Africa is performed using the data gathered within the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud-Interactions in West Africa) ground-based campaign. We find cooling related to the horizontal advection, which occurs in connection with the inflow of cool maritime air mass and a prominent low-level jet, to have the dominant role in LLC formation.
Bianca Adler, Karmen Babić, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, Cheikh Dione, Xabier Pedruzo-Bagazgoitia, and Hendrik Andersen
Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019, https://doi.org/10.5194/acp-19-663-2019, 2019
Short summary
Short summary
This study deals with nocturnal stratiform low-level clouds that frequently form in the atmospheric boundary layer over southern West Africa. We use observational data from 11 nights to characterize the clouds and intranight variability of boundary layer conditions as well as to assess the physical processes relevant for cloud formation. We find that cooling is crucial to reach saturation and a large part of the cooling is related to horizontal advection of cool air from the Gulf of Guinea.
Jutta Vüllers, Georg J. Mayr, Ulrich Corsmeier, and Christoph Kottmeier
Atmos. Chem. Phys., 18, 18169–18186, https://doi.org/10.5194/acp-18-18169-2018, https://doi.org/10.5194/acp-18-18169-2018, 2018
Short summary
Short summary
This paper investigates frequently occurring foehn at the Dead Sea, which strongly impacts the local climatic conditions, in particular temperature and humidity, as well as evaporation from the Dead Sea, the aerosol load, and visibility. A statistical classification exposes two types of foehn and first-time, high-resolution measurements reveal trigger mechanisms and relevant characteristics, such as wind velocities, affected air layers, and resulting phenomena such as hydraulic jumps and rotors.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Short summary
Balloon-borne measurements performed over Lhasa in August 2013 are investigated using CLaMS trajectory calculations. Here, we focus on high ozone mixing ratios in the free troposphere. Our findings demonstrate that both stratospheric intrusions and convective transport of air pollution play a major role in enhancing middle and upper tropospheric ozone.
Mikhail Varentsov, Pavel Konstantinov, Alexander Baklanov, Igor Esau, Victoria Miles, and Richard Davy
Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/10.5194/acp-18-17573-2018, https://doi.org/10.5194/acp-18-17573-2018, 2018
Short summary
Short summary
This study reports on the urban heat island (UHI) in a typical Arctic city in winter. Using in situ observations, remote sensing data and modeling, we show that the urban temperature anomaly reaches up to 11 K with a mean value of 1.9 K. At least 50 % of this anomaly is caused by the UHI effect, driven mostly by heating. The rest is created by natural microclimatic variability over the hilly terrain. This is a strong argument in support of energy efficiency measures in the Arctic cities.
Cited articles
Coll, C., Caselles, V., Galve, J. M., Valor, E., Niclos, R., Sanchez, J. M., and Rivas, R.: Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data, Remote Sens. Environ., 97, 288–300, 2005.
Cuxart, J., Bougeault, P., and Redelsperger, J. L.: A turbulence scheme allowing for mesoscale and large-eddy simulations, Q. J. Roy. Meteor. Soc., 126, 1–30, 2000.
Cuxart, J., Conangla, L., Jiménez, M. A.: Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley, J. Geophys. Res.-Atmos., 120, 1008–1022, 2015.
De Coster, O. and Pietersen, H. P.: BLLAST-uniform processing of Eddy-Covariance data, Master Thesis report, Université de Toulouse, France, 2011.
Evett, S. R., Tolk, J. A., and Howell, T. A.: Soil profile water content determination, Vadose Zone J., 5, 894–907, 2006.
Foken, T.: Micrometeorology, Springer Science and Business Media, Berlin Heidelberg, 2008a.
Foken, T.: The energy balance closure problem: an overview, Ecol. Appl., 18, 1351–1367, 2008b.
Foken, T. and Leclerc, M. Y.: Methods and limitations in validation of footprint models, Agr. Forest Meteorol., 127, 223–234, 2004.
Garai, A. and Kleissl, J.: Interaction between coherent structures and surface temperature and its effect on ground heat flux in an unstably stratified boundary layer, J. Turbulence, 14, 1–23, 2013.
Hartogensis, O.: BLLAST Flux Maps, 6th BLLAST workshop, Barcelona, 2–3 February 2015.
Heusinkveld, B. G., Jacobs, A. F. G., Holtslag, A. A. M., and Berkowicz, S. M.: Surface energy balance closure in an arid region: role of soil heat flux. Agr. Forest Meteorol., 122, 21–37, 2004.
Hillel, D.: Environmental soil physics: Fundamentals, applications, and environmental considerations, Academic Press, San Diego & London, 1998.
Jiménez, M. A. and Cuxart, J.: A study of the nocturnal flows generated in the north side of the Pyrénées, Atmos. Res., 145, 244–254, 2014.
Jiménez, M. A., Simó, G., Wrenger, B., Telisman-Prtenjak, M., Guijarro, J. A., and Cuxart, J.: Morning transition case between the land and the sea breeze regimes. Atmos. Res., 172, 95–108, 2016.
Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109, https://doi.org/10.1007/s00585-997-0090-6, 1998.
Leuning, R., Van Gorsel, E., Massman, W. J., and Isaac, P. R.: Reflections on the surface energy imbalance problem, Agr. Forest Meteorol., 156, 65–74, 2012.
Lothon, M., Lohou, F., Pino, D., Couvreux, F., Pardyjak, E. R., Reuder, J., Vilà-Guerau de Arellano, J., Durand, P., Hartogensis, O., Legain, D., Augustin, P., Gioli, B., Lenschow, D. H., Faloona, I., Yagüe, C., Alexander, D. C., Angevine, W. M., Bargain, E., Barrié, J., Bazile, E., Bezombes, Y., Blay-Carreras, E., van de Boer, A., Boichard, J. L., Bourdon, A., Butet, A., Campistron, B., de Coster, O., Cuxart, J., Dabas, A., Darbieu, C., Deboudt, K., Delbarre, H., Derrien, S., Flament, P., Fourmentin, M., Garai, A., Gibert, F., Graf, A., Groebner, J., Guichard, F., Jiménez, M. A., Jonassen, M., van den Kroonenberg, A., Magliulo, V., Martin, S., Martinez, D., Mastrorillo, L., Moene, A. F., Molinos, F., Moulin, E., Pietersen, H. P., Piguet, B., Pique, E., Román-Cascón, C., Rufin-Soler, C., Saïd, F., Sastre-Marugán, M., Seity, Y., Steeneveld, G. J., Toscano, P., Traullé, O., Tzanos, D., Wacker, S., Wildmann, N., and Zaldei, A.: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence, Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, 2014.
Mahrt, L.: Surface heterogeneity and vertical structure of the boundary layer, Bound.-Lay. Meteorol., 96, 33–62, 2000.
Martínez, D., Jiménez, M. A., Cuxart, J., and Mahrt, L.: Heterogeneous nocturnal cooling in a large basin under very stable conditions, Bound.-Lay. Meteorol., 137, 97–113, 2010.
Moene, A. F. and van Dam, J. C.: Transport in the atmosphere-vegetation- soil continuum, Cambridge University Press, 2014.
Morcrette, J. J.: Impact of changes to the radiation transfer parameterizations plus cloud optical. Properties in the ECMWF model, Mon. Weather Rev., 118, 847–873, 1990.
Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989.
Oke, T. R.: Boundary layer climates, Routledge, London & New York, 1987.
Oncley, S. P., Foken, T., Vogt, R., Kohsiek, W., DeBruin, H. A. R., Bernhofer, C., Christen, A.,van Gorsel, E., Grantz, D., Feigenwinter, C., Lehner, I., Liebethal, C., Liu, H., Mauder, M., Pitacco, A., and Weidinger, T.: The energy balance experiment EBEX-2000. Part I: overview and energy balance, Bound.-Lay. Meteorol., 123, 1–28, 2007.
Reuder, J. and Jonassen, M. O.: First Results of Turbulence Measurements in a Wind Park with the Small Unmanned Meteorological Observer SUMO, Energy Procedia, 24, 176–185, 2012.
Reuder, J., Brisset, P., Jonassen, M., Muller, M., and Mayer, S.: The Small Unmanned Meteorological Observer SUMO: A new tool for atmospheric boundary layer research, Meteorol. Z., 18, 141–147, 2009.
Reuder, J., Båserud, L., Jonassen, M. O., Kral, S. T., and Müller, M.: Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign, Atmos. Meas. Tech., 9, 2675–2688, https://doi.org/10.5194/amt-9-2675-2016, 2016.
Salomonson, V. V., Bames, W. L., Maymon, W. P., and Montgomery, H.: MODIS: advanced facility instrument for studies of the Earth as a system, IEEE T. Geosci. Remote Sens., 27, 145–153, 1989.
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., Ratier, A.: An introduction to Meteosat Second Generation (MSG), B Am. Meteorol. Soc., 83, 977–992, 2002.
Sugathan, N., Biju, V., and Renuka, G.: Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station, J. Earth Syst. Sci., 123, 1115–1128, https://doi.org/10.1007/s12040-014-0452-x, 2014.
Van de Boer, A., Moene, A. F., Graf, A., Schuttemeyer, D., and Simmer, C.: Detection of Entrainment Influences on Surface-Layer Measurements and Extension of Monin-Obukhov Similarity Theory, Bound.-Lay. Meteorol., 152, 19–44, 2014.
Van Dijk, A., Moene, A. F., and De Bruin, H. A. R.: The principles of surface flux physics: theory, practice and description of the ECPACK library, Internal Report 2004/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 99 pp., 2004.
Van Heerwaarden, C. C., Mellado, J. P., and De Lozar, A.: Scaling laws for the heterogeneously heated free convective boundary layer, J. Atmos. Sci., 71, 3975–4000, 2014.
Viterbo, P., Beljaars, A., Mahfouf, J. F., and Teixeira, J.: The representation of soil moisture freezing and its impact on the stable boundary layer, Q. J. Roy. Meteor. Soc., 125, 2401–2426, 1999.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteorol. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms, Bound.-Lay. Meteorol., 99, 127–150, 2001.
Wrenger, B., Dunnermann, J., Cuxart, J., and Palau, J. L.: Sampling the establishment of the nocturnal inversion with a multicopter, 1st ISARRA workshop, Palma de Mallorca, Spain, 18–20 February 2013.
Short summary
Estimations of the effect of thermal advection in the surface energy budget are provided. Data from the experimental campaign BLLAST, held in Southern France in summer 2011, are used, including airborne data by drones and surface-based instrumentation. Model data outputs and satellite information are also inspected. Surface heterogeneities of the order of the kilometer or larger seem to have little effect on the budget, whereas hectometer-scale structures may contribute significantly to it.
Estimations of the effect of thermal advection in the surface energy budget are provided. Data...
Altmetrics
Final-revised paper
Preprint