Articles | Volume 16, issue 2
Atmos. Chem. Phys., 16, 933–952, 2016
Atmos. Chem. Phys., 16, 933–952, 2016

Research article 26 Jan 2016

Research article | 26 Jan 2016

Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations

D. Merk et al.

Related authors

Detection of convective initiation using Meteosat SEVIRI: implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM
D. Merk and T. Zinner
Atmos. Meas. Tech., 6, 1903–1918,,, 2013

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A climatology of trade-wind cumulus cold pools and their link to mesoscale cloud organization
Raphaela Vogel, Heike Konow, Hauke Schulz, and Paquita Zuidema
Atmos. Chem. Phys., 21, 16609–16630,,, 2021
Short summary
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114,,, 2021
Short summary
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184,,, 2021
Short summary
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686,,, 2021
Short summary
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590,,, 2021
Short summary

Cited articles

Ackerman, A. S., Toon, O. B., Taylor, J. P., Johnson, D. W., Hobbs, P. V., and Ferek, R. J.: Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks, J. Atmos. Sci., 57, 2684–2695,<2684:EOAOCA>2.0.CO;2, 2000.
Ahmad, I., Mielonen, T., Grosvenor, D., Portin, H., Arola, A., Mikkonen, S., Kühn, T., Leskinen, A., Juotsensaari, J., Komppula, M., Lehtinen, K., Laaksonen, A., and Romakkaniemi, S.: Long-term measurements of cloud droplet concentrations and aerosol-cloud interactions in continental boundary layer clouds, Tellus B, 65, 20138,, 2013.
Albrecht, B. A., Fairall, C. W., Thomson, D. W., White, A. B., Snider, J. B., and Schubert, W. H.: Surface-based remote sensing of the observed and the Adiabatic liquid water content of stratocumulus clouds, Geophys. Res. Lett., 17, 89–92,, 1990.
Baker, M. B., Blyth, A. M., Carruthers, D. J., Choularton, T. W., Fullarton, G., Gay, M. J., Latham, J., Mill, C. S., Smith, M. H., Stromberg, I. M., Caughey, S. J., and Conway, B. J.: Field studies of the effect of entrainment upon the structure of clouds at Great Dun Fell, Q. J. Roy. Meteor. Soc., 108, 899–916,, 1982.
Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, 1973.
Short summary
A 2-year data set is analyzed to evaluate the consistency and limitations of current ground-based and satellite-retrieved cloud property data sets. We demonstrate that neither the assumption of a completely adiabatic cloud nor the assumption of a constant sub-adiabatic factor is fulfilled. As cloud adiabaticity is required to estimate the cloud droplet number concentration, but is not available from passive satellite observations, we need an independent method to estimate the adiabatic factor.
Final-revised paper