Articles | Volume 16, issue 14
Atmos. Chem. Phys., 16, 8749–8766, 2016
https://doi.org/10.5194/acp-16-8749-2016

Special issue: CHemistry and AeRosols Mediterranean EXperiments (ChArMEx)...

Atmos. Chem. Phys., 16, 8749–8766, 2016
https://doi.org/10.5194/acp-16-8749-2016

Research article 18 Jul 2016

Research article | 18 Jul 2016

Variability of mineral dust deposition in the western Mediterranean basin and south-east of France

Julie Vincent et al.

Related authors

Estimating chemical composition of atmospheric deposition fluxes from mineral insoluble particles deposition collected in the western Mediterranean region
Yinghe Fu, Karine Desboeufs, Julie Vincent, Elisabeth Bon Nguyen, Benoit Laurent, Remi Losno, and François Dulac
Atmos. Meas. Tech., 10, 4389–4401, https://doi.org/10.5194/amt-10-4389-2017,https://doi.org/10.5194/amt-10-4389-2017, 2017
An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition
B. Laurent, R. Losno, S. Chevaillier, J. Vincent, P. Roullet, E. Bon Nguyen, N. Ouboulmane, S. Triquet, M. Fornier, P. Raimbault, and G. Bergametti
Atmos. Meas. Tech., 8, 2801–2811, https://doi.org/10.5194/amt-8-2801-2015,https://doi.org/10.5194/amt-8-2801-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Comparison of airborne, in situ measured, lidar-based, and modeled aerosol optical properties in the central European background – identifying sources of deviations
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021,https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology
Ju-Mee Ryoo, Leonhard Pfister, Rei Ueyama, Paquita Zuidema, Robert Wood, Ian Chang, and Jens Redemann
Atmos. Chem. Phys., 21, 16689–16707, https://doi.org/10.5194/acp-21-16689-2021,https://doi.org/10.5194/acp-21-16689-2021, 2021
Short summary
Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring
Sho Ohata, Makoto Koike, Atsushi Yoshida, Nobuhiro Moteki, Kouji Adachi, Naga Oshima, Hitoshi Matsui, Oliver Eppers, Heiko Bozem, Marco Zanatta, and Andreas B. Herber
Atmos. Chem. Phys., 21, 15861–15881, https://doi.org/10.5194/acp-21-15861-2021,https://doi.org/10.5194/acp-21-15861-2021, 2021
Short summary
Aerosol responses to precipitation along North American air trajectories arriving at Bermuda
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021,https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021,https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary

Cited articles

Alfaro, S. and Gomes, L.: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol distributions in source areas, J. Geophys. Res., 106, 18075–18084, 2001.
Avila, A., Queralt-Mitjans, I., and Alarcón, M.: Mineralogical composition of African dust delivered by red rains over northeastern Spain, J. Geophys. Res., 102, 21977–21996, https://doi.org/10.1029/97JD00485, 1997.
Avila, A., Alarcón, M., Castillo, S., Escudero, M., Orellana, J. G., Masqué, P., and Querol, X.: Variation of soluble and insoluble calcium in red rains related to dust sources and transport patterns from North Africa to northeastern Spain, J. Geophys. Res., 112, 1–14, https://doi.org/10.1029/2006JD007153, 2007.
Barnaba, F. and Gobbi, G. P.: Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001, Atmos. Chem. Phys., 4, 2367–2391, https://doi.org/10.5194/acp-4-2367-2004, 2004.
Bergametti, G. and Fôret, G.: Dust deposition, in: Mineral Dust: A Key Player in the Earth System, edited by: Knippertz, P. and Stuut, J.-B. W., 179–200, https://doi.org/10.1007/978-94-017-8978-3_8, Springer, Dordrecht, 2014.
Download
Short summary
To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA have been deployed in the western Mediterranean basin (Lampedusa, Majorca, Corsica, Frioul and Le Casset) during 1 to 3 years depending on the station. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period.
Altmetrics
Final-revised paper
Preprint