Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-16-3399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts
Thomas Schmidt
CORRESPONDING AUTHOR
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
John Kalisch
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Elke Lorenz
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Detlev Heinemann
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Related authors
No articles found.
Bruno U. Schyska, António Couto, Lueder von Bremen, Ana Estanqueiro, and Detlev Heinemann
Adv. Sci. Res., 14, 131–138, https://doi.org/10.5194/asr-14-131-2017, https://doi.org/10.5194/asr-14-131-2017, 2017
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Lukas Vollmer, Gerald Steinfeld, Detlev Heinemann, and Martin Kühn
Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, https://doi.org/10.5194/wes-1-129-2016, 2016
Short summary
Short summary
The wake flow downstream of yaw misaligned wind turbines is studied in numeric simulations of different atmospheric turbulence and shear conditions. We find that the average trajectory of the wake as well as the variation about this average is influenced by the thermal stability of the atmosphere. The results suggest that an intentional intervention in the yaw control of individual turbines to increase overall wind farm performance might be not successful during unstable thermal conditions.
Gerald M. Lohmann, Adam H. Monahan, and Detlev Heinemann
Atmos. Chem. Phys., 16, 6365–6379, https://doi.org/10.5194/acp-16-6365-2016, https://doi.org/10.5194/acp-16-6365-2016, 2016
Short summary
Short summary
Increasing numbers of photovoltaic (PV) power systems call for the characterization of irradiance variability with very high spatiotemporal resolution. We use 1 Hz irradiance data recorded by as many as 99 pyranometers and show mixed sky conditions to differ substantially from clear and overcast skies. For example, the probabilities of strong fluctuations and their respective spatial autocorrelation structures are appreciably distinct under mixed conditions.
Bomidi Lakshmi Madhavan, John Kalisch, and Andreas Macke
Atmos. Meas. Tech., 9, 1153–1166, https://doi.org/10.5194/amt-9-1153-2016, https://doi.org/10.5194/amt-9-1153-2016, 2016
Short summary
Short summary
As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of pyranometer stations (99 nos.) was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. This paper provides the details of this unique setup of the network, data, quality control, uncertainty estimation and discussion of some case days.
A. Kies, K. Nag, L. von Bremen, E. Lorenz, and D. Heinemann
Adv. Sci. Res., 12, 91–95, https://doi.org/10.5194/asr-12-91-2015, https://doi.org/10.5194/asr-12-91-2015, 2015
Related subject area
Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Responses of polar energy budget to regional sea surface temperature changes in extra-polar regions
The modulation of synoptic weather patterns and human activities on the diurnal cycle of the summertime canopy urban heat island in the Yangtze River Delta Urban Agglomeration, China
Mechanisms of surface solar irradiance variability under broken clouds
Fine and coarse dust radiative impact during an intense Saharan dust outbreak over the Iberian Peninsula – short-wave direct radiative effect
Modeling actinic flux and photolysis frequencies in dense biomass burning plumes
Regional modeling of surface solar radiation, aerosol, and cloud cover spatial variability and projections over northern France and Benelux
A numerical sensitivity study on the snow-darkening effect by black carbon deposition over the Arctic in spring
Improved calculation of single-scattering properties of frozen droplets and frozen-droplet aggregates observed in deep convective clouds
Influence of cloudy and clear-sky partitions, aerosols, and geometry on the recent variability in surface solar irradiance components in northern France
Saharan dust impact on radiative heating rate errors inherent in reanalysis data in the African easterly wave development region
Sensitivity of ice cloud radiative heating to optical, macro- and microphysical properties
Combining observations and simulations to investigate the small-scale variability of surface solar irradiance under continental cumulus clouds
The impact of coupled 3D shortwave radiative transfer on surface radiation and cumulus clouds over land
Atmospheric cloud-radiative heating in CMIP6 and observations and its response to surface warming
Trends in observed surface solar radiation and their causes in Brazil in the first 2 decades of the 21st century
A sensitivity study on radiative effects due to the parameterization of dust optical properties in models
Uncertainties in cloud-radiative heating within an idealized extratropical cyclone
Evaluation of downward and upward solar irradiances simulated by the Integrated Forecasting System of ECMWF using airborne observations above Arctic low-level clouds
A colorful look at climate sensitivity
Sensitivity of cirrus and contrail radiative effect on cloud microphysical and environmental parameters
Evaluation of liquid cloud albedo susceptibility in E3SM using coupled eastern North Atlantic surface and satellite retrievals
Constraints on simulated past Arctic amplification and lapse rate feedback from observations
Comparison of methods to estimate aerosol effective radiative forcings in climate models
Montreal Protocol's impact on the ozone layer and climate
Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) – past, present, and future
Impacts of reductions in non-methane short-lived climate forcers on future climate extremes and the resulting population exposure risks in eastern and southern Asia
Investigating the radiative effect of Arctic cirrus measured in situ during the winter 2015–2016
Dependence of strategic solar climate intervention on background scenario and model physics
Combining short-range dispersion simulations with fine-scale meteorological ensembles: probabilistic indicators and evaluation during a 85Kr field campaign
Climate consequences of hydrogen emissions
Investigating the impact of Saharan dust aerosols on analyses and forecasts of African easterly waves by constraining aerosol effects in radiance data assimilation
Distinct surface response to black carbon aerosols
Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
Impacts of multi-layer overlap on contrail radiative forcing
Bias in CMIP6 models as compared to observed regional dimming and brightening
A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared
The incorporation of the Tripleclouds concept into the δ-Eddington two-stream radiation scheme: solver characterization and its application to shallow cumulus clouds
Radiative heating rate profiles over the southeast Atlantic Ocean during the 2016 and 2017 biomass burning seasons
Effective radiative forcing and adjustments in CMIP6 models
Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
Accurate 3-D radiative transfer simulation of spectral solar irradiance during the total solar eclipse of 21 August 2017
Quantifying the bias of radiative heating rates in numerical weather prediction models for shallow cumulus clouds
The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering
Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction
Radiative impact of an extreme Arctic biomass-burning event
Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study
The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity
Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model
Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa
Qingmin Wang, Yincheng Liu, Lujun Zhang, and Chen Zhou
Atmos. Chem. Phys., 25, 6741–6755, https://doi.org/10.5194/acp-25-6741-2025, https://doi.org/10.5194/acp-25-6741-2025, 2025
Short summary
Short summary
Our research explores how SST (sea surface temperature) changes in non-polar regions impact the polar energy budget. Through idealized SST experiments, we found that warming in tropical and mid-latitude oceans raises polar temperatures through enhanced atmospheric energy transport, leading to surface warming and top-of-atmosphere cooling in polar areas. This study highlights the distinct impacts of tropical Pacific and Indian Ocean SST changes on Arctic and Antarctic climates.
Tao Shi, Yuanjian Yang, Lian Zong, Min Guo, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 25, 4989–5007, https://doi.org/10.5194/acp-25-4989-2025, https://doi.org/10.5194/acp-25-4989-2025, 2025
Short summary
Short summary
Our study explored the daily temperature patterns in urban areas of the Yangtze River Delta, focusing on how weather and human activities impact these patterns. We found that temperatures were higher at night, and weather patterns had a bigger impact during the day, while human activities mattered more at night. This helps us understand and address urban overheating.
Wouter Mol and Chiel van Heerwaarden
Atmos. Chem. Phys., 25, 4419–4441, https://doi.org/10.5194/acp-25-4419-2025, https://doi.org/10.5194/acp-25-4419-2025, 2025
Short summary
Short summary
Sunlight varies often and quickly under broken cloud cover, and every cloud field creates a unique pattern of sunlight on the surface below. These variations affect many processes in the Earth system, from photosynthesis and chemistry to cloud formation itself. The exact way in which cloud particles interact with sunlight is complex and expensive to calculate. We demonstrate a simplified framework which explains how sunlight changes for potentially any cloud field.
María-Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Michaël Sicard, Jesús Abril-Gago, Vanda Salgueiro, Adolfo Comerón, María José Granados-Muñoz, Maria João Costa, Constantino Muñoz-Porcar, Juan Antonio Bravo-Aranda, Daniele Bortoli, Alejandro Rodríguez-Gómez, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 25, 3213–3231, https://doi.org/10.5194/acp-25-3213-2025, https://doi.org/10.5194/acp-25-3213-2025, 2025
Short summary
Short summary
Due to the significant radiative role of dust in climate change, vertical assessments of the short-wave dust direct radiative effect of both fine and coarse dust particles are performed separately. The study is focused on an intense Saharan dust outbreak crossing the Iberian Peninsula in springtime monitored by five Iberian lidar stations with southwest–northeast coverage. A comparative study to evaluate the differences found by considering the total dust (no separation) is also examined.
Jan-Lukas Tirpitz, Santo Fedele Colosimo, Nathaniel Brockway, Robert Spurr, Matt Christi, Samuel Hall, Kirk Ullmann, Johnathan Hair, Taylor Shingler, Rodney Weber, Jack Dibb, Richard Moore, Elizabeth Wiggins, Vijay Natraj, Nicolas Theys, and Jochen Stutz
Atmos. Chem. Phys., 25, 1989–2015, https://doi.org/10.5194/acp-25-1989-2025, https://doi.org/10.5194/acp-25-1989-2025, 2025
Short summary
Short summary
We combine plume composition data from the 2019 NASA FIREX-AQ campaign with state-of-the-art radiative transfer modeling techniques to calculate distributions of actinic flux and photolysis frequencies in a wildfire plume. Excellent agreement of the model and observations demonstrates the applicability of this approach to constrain photochemistry in such plumes. We identify limiting factors for the modeling accuracy and discuss spatial and spectral features of the distributions.
Gabriel Chesnoiu, Isabelle Chiapello, Nicolas Ferlay, Pierre Nabat, Marc Mallet, and Véronique Riffault
Atmos. Chem. Phys., 25, 1307–1331, https://doi.org/10.5194/acp-25-1307-2025, https://doi.org/10.5194/acp-25-1307-2025, 2025
Short summary
Short summary
The ALADIN regional climate model at 12.5 km resolution allows us to study the evolution of surface solar radiation (SSR) and key associated atmospheric parameters. Over northern France and Benelux, influenced by anthropogenic aerosols and cloudy conditions, regional evaluation of recent hindcast simulations shows satisfying results and high spatial variability. Future SSR evolution by the end of the century for two contrasting CMIP6 scenarios highlights large decreases in SSR for SSP3-7.0.
Zilu Zhang, Libo Zhou, and Meigen Zhang
Atmos. Chem. Phys., 25, 1–25, https://doi.org/10.5194/acp-25-1-2025, https://doi.org/10.5194/acp-25-1-2025, 2025
Short summary
Short summary
By integrating the SNICAR model with Polar-WRF, we find that 50 ng g−1 black carbon (BC) deposition decreases snow albedo, increasing radiative forcing (RF) by 1–4 W m−2, especially in Greenland, Baffin Island, and eastern Siberia. The impact is strongly linked to BC mass, with deep snowpacks showing greater sensitivity. Snowmelt and land–atmosphere interactions are crucial. High-resolution modelling is necessary to better understand these effects on Arctic climate change.
Jeonggyu Kim, Sungmin Park, Greg M. McFarquhar, Anthony J. Baran, Joo Wan Cha, Kyoungmi Lee, Seoung Soo Lee, Chang Hoon Jung, Kyo-Sun Sunny Lim, and Junshik Um
Atmos. Chem. Phys., 24, 12707–12726, https://doi.org/10.5194/acp-24-12707-2024, https://doi.org/10.5194/acp-24-12707-2024, 2024
Short summary
Short summary
We developed idealized models to represent the shapes of ice particles found in deep convective clouds and calculated their single-scattering properties. By comparing these results with in situ measurements, we discovered that a mixture of shape models matches in situ measurements more closely than single-form models or aggregate models. This finding has important implications for enhancing the simulation of single-scattering properties of ice crystals in deep convective clouds.
Gabriel Chesnoiu, Nicolas Ferlay, Isabelle Chiapello, Frédérique Auriol, Diane Catalfamo, Mathieu Compiègne, Thierry Elias, and Isabelle Jankowiak
Atmos. Chem. Phys., 24, 12375–12407, https://doi.org/10.5194/acp-24-12375-2024, https://doi.org/10.5194/acp-24-12375-2024, 2024
Short summary
Short summary
The measured ground-based surface solar irradiance variability and its sensitivity to scene parameters are analysed with a filtering of sky conditions at a given site. Its multivariate analysis is applied to observed trends over 2010–2022. The recorded values show, in addition to the dominant effects of cloud occurrence, the variable effects of aerosol and geometry. Clear-sun-with-cloud situations are highlighted by SSI levels close to those of aerosol- and cloud-free situations.
Ruby W. Burgess and Mayra I. Oyola-Merced
Atmos. Chem. Phys., 24, 12183–12201, https://doi.org/10.5194/acp-24-12183-2024, https://doi.org/10.5194/acp-24-12183-2024, 2024
Short summary
Short summary
This study explores how aerosols affect atmospheric heating over African easterly waves (AEWs). Using data from NASA's aircraft and outputs of reanalysis models, the research focuses on days with both Saharan dust and AEWs. Using a radiative transfer model, the study reveals significant differences in heating rates, emphasizing challenges in accurately representing aerosol effects in the atmosphere and underscoring the need for improved aerosol representation in weather models.
Edgardo I. Sepulveda Araya, Sylvia C. Sullivan, and Aiko Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3212, https://doi.org/10.5194/egusphere-2024-3212, 2024
Short summary
Short summary
Clouds composed of ice crystals are key when evaluating atmospheric radiation. The morphology of the crystals found in clouds is not clear yet, and even less clear is the impact on cloud heating rate, which is essential to describe precipitation and wind patterns. This motivated us to study how the heating rate behaves under a variety of ice complexity and environmental conditions, finding that increasing complexity in high and dense clouds weakens the heating rate.
Zili He, Quentin Libois, Najda Villefranque, Hartwig Deneke, Jonas Witthuhn, and Fleur Couvreux
Atmos. Chem. Phys., 24, 11391–11408, https://doi.org/10.5194/acp-24-11391-2024, https://doi.org/10.5194/acp-24-11391-2024, 2024
Short summary
Short summary
This study uses observations and simulations to analyze how cumulus clouds affect spacial solar radiation variability on the ground. Results show that the simulations reproduce the observations well and improve understanding of cloud impacts on radiation. The research also indicates that a few strategically placed sensors, capitalizing on measurement timing, can effectively measure these variations, aiding in the development of detailed weather prediction models.
Mirjam Tijhuis, Bart J. H. van Stratum, and Chiel C. van Heerwaarden
Atmos. Chem. Phys., 24, 10567–10582, https://doi.org/10.5194/acp-24-10567-2024, https://doi.org/10.5194/acp-24-10567-2024, 2024
Short summary
Short summary
Radiative transfer in the atmosphere is a 3D processes, which is often modelled in 1D for computational efficiency. We studied the differences between using 1D and 3D radiative transfer. With 3D radiation, larger clouds that contain more liquid water develop. However, they cover roughly the same part of the sky, and the average total radiation at the surface is nearly unchanged. The increase in cloud size might be important for weather models, as it can impact the formation of rain, for example.
Aiko Voigt, Stefanie North, Blaž Gasparini, and Seung-Hee Ham
Atmos. Chem. Phys., 24, 9749–9775, https://doi.org/10.5194/acp-24-9749-2024, https://doi.org/10.5194/acp-24-9749-2024, 2024
Short summary
Short summary
Clouds shape weather and climate by interacting with photons, which changes temperatures within the atmosphere. We assess how well CMIP6 climate models capture this radiative heating by clouds within the atmosphere. While we find large differences among models, especially in cold regions of the atmosphere with abundant ice clouds, we also demonstrate that physical understanding allows us to predict the response of clouds and their radiative heating near the tropopause to climate change.
Lucas Ferreira Correa, Doris Folini, Boriana Chtirkova, and Martin Wild
Atmos. Chem. Phys., 24, 8797–8819, https://doi.org/10.5194/acp-24-8797-2024, https://doi.org/10.5194/acp-24-8797-2024, 2024
Short summary
Short summary
We investigated the causes of the decadal trends of solar radiation measured at 34 stations in Brazil in the first 2 decades of the 21st century. We observed strong negative trends in north and northeast Brazil associated with changes in both atmospheric absorption (anthropogenic) and cloud cover (natural). In other parts of the country no strong trends were observed as a result of competing effects. This provides a better understanding of the energy balance in the region.
Ilias Fountoulakis, Alexandra Tsekeri, Stelios Kazadzis, Vassilis Amiridis, Angelos Nersesian, Maria Tsichla, Emmanouil Proestakis, Antonis Gkikas, Kyriakoula Papachristopoulou, Vasileios Barlakas, Claudia Emde, and Bernhard Mayer
Atmos. Chem. Phys., 24, 4915–4948, https://doi.org/10.5194/acp-24-4915-2024, https://doi.org/10.5194/acp-24-4915-2024, 2024
Short summary
Short summary
In our study we provide an assessment, through a sensitivity study, of the limitations of models to calculate the dust direct radiative effect (DRE) due to the underrepresentation of its size, refractive index (RI), and shape. Our results indicate the necessity of including more realistic sizes and RIs for dust particles in dust models, in order to derive better estimations of the dust direct radiative effects.
Behrooz Keshtgar, Aiko Voigt, Bernhard Mayer, and Corinna Hoose
Atmos. Chem. Phys., 24, 4751–4769, https://doi.org/10.5194/acp-24-4751-2024, https://doi.org/10.5194/acp-24-4751-2024, 2024
Short summary
Short summary
Cloud-radiative heating (CRH) affects extratropical cyclones but is uncertain in weather and climate models. We provide a framework to quantify uncertainties in CRH within an extratropical cyclone due to four factors and show that the parameterization of ice optical properties contributes significantly to uncertainty in CRH. We also argue that ice optical properties, by affecting CRH on spatial scales of 100 km, are relevant for the large-scale dynamics of extratropical cyclones.
Hanno Müller, André Ehrlich, Evelyn Jäkel, Johannes Röttenbacher, Benjamin Kirbus, Michael Schäfer, Robin J. Hogan, and Manfred Wendisch
Atmos. Chem. Phys., 24, 4157–4175, https://doi.org/10.5194/acp-24-4157-2024, https://doi.org/10.5194/acp-24-4157-2024, 2024
Short summary
Short summary
A weather model is used to compare solar radiation with measurements from an aircraft campaign in the Arctic. Model and observations agree on the downward radiation but show differences in the radiation reflected by the surface and the clouds, which in the model is too low above sea ice and too high above open ocean. The model–observation bias is reduced above open ocean by a realistic fraction of clouds and less cloud liquid water and above sea ice by less dark sea ice and more cloud droplets.
Bjorn Stevens and Lukas Kluft
Atmos. Chem. Phys., 23, 14673–14689, https://doi.org/10.5194/acp-23-14673-2023, https://doi.org/10.5194/acp-23-14673-2023, 2023
Short summary
Short summary
A simple model is introduced to account for the spectral diversity of radiant energy transfer. It provides an improved basis for assessing the different ways in which clouds influence Earth’s climate sensitivity, demonstrating how many cloud effects depend on the existing cloud climatology. Given existing assessments of changes in cloud albedo with warming, it is determined that clouds reduce Earth's climate sensitivity as compared to what it would be in a counterfactual world without clouds.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 14003–14037, https://doi.org/10.5194/acp-23-14003-2023, https://doi.org/10.5194/acp-23-14003-2023, 2023
Short summary
Short summary
Cirrus and contrails considerably impact Earth's energy budget. Such ice clouds can have a positive (warming) or negative (cooling) net radiative effect (RE), which depends on cloud and ambient properties. The effect of eight parameters on the cloud RE is estimated. In total, 283 500 radiative transfer simulations have been performed, spanning the typical parameter ranges associated with cirrus and contrails. Specific cases are selected and discussed. The data set is publicly available.
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
Atmos. Chem. Phys., 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023, https://doi.org/10.5194/acp-23-13523-2023, 2023
Short summary
Short summary
We evaluate how clouds change in response to changing atmospheric particle (aerosol) concentrations in a climate model and find that the model-predicted cloud brightness increases too much as aerosols increase because the cloud drop number increases too much. Excessive drizzle in the model mutes this difference. Many differences between observational and model estimates are explained by varying assumptions of how much liquid has been lost in clouds, which impacts the estimated cloud drop number.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Mark D. Zelinka, Christopher J. Smith, Yi Qin, and Karl E. Taylor
Atmos. Chem. Phys., 23, 8879–8898, https://doi.org/10.5194/acp-23-8879-2023, https://doi.org/10.5194/acp-23-8879-2023, 2023
Short summary
Short summary
The primary uncertainty in how strongly Earth's climate has been perturbed by human activities comes from the unknown radiative impact of aerosol changes. Accurately quantifying these forcings – and their sub-components – in climate models is crucial for understanding the past and future simulated climate. In this study we describe biases in previously published estimates of aerosol radiative forcing in climate models and provide corrected estimates along with code for users to compute them.
Tatiana Egorova, Jan Sedlacek, Timofei Sukhodolov, Arseniy Karagodin-Doyennel, Franziska Zilker, and Eugene Rozanov
Atmos. Chem. Phys., 23, 5135–5147, https://doi.org/10.5194/acp-23-5135-2023, https://doi.org/10.5194/acp-23-5135-2023, 2023
Short summary
Short summary
This paper describes the climate and atmosphere benefits of the Montreal Protocol, simulated with the state-of-the-art Earth system model SOCOLv4.0. We have added to and confirmed the previous studies by showing that without the Montreal Protocol by the end of the 21st century there would be a dramatic reduction in the ozone layer as well as substantial perturbation of the essential climate variables in the troposphere caused by the warming from increasing ozone-depleting substances.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Yingfang Li, Zhili Wang, Yadong Lei, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 2499–2523, https://doi.org/10.5194/acp-23-2499-2023, https://doi.org/10.5194/acp-23-2499-2023, 2023
Short summary
Short summary
Since few studies have assessed the impacts of future combined reductions in aerosols, ozone, and their precursors on future climate change, we use models with an interactive representation of tropospheric aerosols and atmospheric chemistry schemes to quantify the impact of their reductions on the Asian climate. Our results suggest that their reductions will exacerbate the warming effect caused by greenhouse gases, increasing future climate extremes and associated population exposure risk.
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023, https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Short summary
We employ highly resolved aircraft measurements of profiles of the ice water content (IWC) in Arctic cirrus clouds in winter and spring, when solar irradiation is low. Using radiation transfer calculations, we assess the cloud radiative effect over different surfaces like snow or ocean. The variability in the IWC of the clouds affects their overall radiative effect and drives internal processes. This helps understand the role of cirrus in a rapidly changing Arctic environment.
John T. Fasullo and Jadwiga H. Richter
Atmos. Chem. Phys., 23, 163–182, https://doi.org/10.5194/acp-23-163-2023, https://doi.org/10.5194/acp-23-163-2023, 2023
Short summary
Short summary
The continued high levels of anthropogenic greenhouse gas emissions increase the likelihood that key climate warming thresholds will be exceeded in the coming decades. Here we examine a recently proposed geoengineering approach using two recently produced climate model experiments. We find the associated latitudinal distribution of aerosol mass to exhibit substantial uncertainty, suggesting the need for significant flexibility in the location and amount of aerosol delivery, if implemented.
Youness El-Ouartassy, Irène Korsakissok, Matthieu Plu, Olivier Connan, Laurent Descamps, and Laure Raynaud
Atmos. Chem. Phys., 22, 15793–15816, https://doi.org/10.5194/acp-22-15793-2022, https://doi.org/10.5194/acp-22-15793-2022, 2022
Short summary
Short summary
This work investigates the potential value of using fine-scale meteorological ensembles to represent the inherent meteorological uncertainties in atmospheric dispersion model outputs. Probabilistic scores were used to evaluate the probabilistic performance of dispersion ensembles, using an original dataset of new continuous 85Kr air concentration measurements and a well-known source term. The results show that the ensemble dispersion simulations perform better than deterministic ones.
Ilissa B. Ocko and Steven P. Hamburg
Atmos. Chem. Phys., 22, 9349–9368, https://doi.org/10.5194/acp-22-9349-2022, https://doi.org/10.5194/acp-22-9349-2022, 2022
Short summary
Short summary
Hydrogen is considered a key strategy to decarbonize the global economy. However, hydrogen is also a short-lived indirect greenhouse gas that can easily leak into the atmosphere. Given that the climate impacts from hydrogen emissions are not well understood, especially in the near term, we assess impacts over all timescales for plausible emissions rates. We find that hydrogen leakage can cause more warming than widely perceived; thus, attention is needed to minimize emissions.
Dustin Francis Phillip Grogan, Cheng-Hsuan Lu, Shih-Wei Wei, and Sheng-Po Chen
Atmos. Chem. Phys., 22, 2385–2398, https://doi.org/10.5194/acp-22-2385-2022, https://doi.org/10.5194/acp-22-2385-2022, 2022
Short summary
Short summary
This study shows that incorporating aerosols into satellite radiance calculations affects the representation of African easterly waves (AEWs), and their environment, over North Africa and the eastern Atlantic in a numerical weather model. These changes are driven by radiative effects of Saharan dust captured by the aerosol-affected radiances, which modify the initial fields and can improve the forecasting of AEWs.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Gregory Faluvegi, Bjørn H. Samset, Timothy Andrews, Dirk Olivié, Toshihiko Takemura, and Xuhui Lee
Atmos. Chem. Phys., 21, 13797–13809, https://doi.org/10.5194/acp-21-13797-2021, https://doi.org/10.5194/acp-21-13797-2021, 2021
Short summary
Short summary
Previous studies showed that black carbon (BC) could warm the surface with decreased incoming radiation. With climate models, we found that the surface energy redistribution plays a more crucial role in surface temperature compared with other forcing agents. Though BC could reduce the surface heating, the energy dissipates less efficiently, which is manifested by reduced convective and evaporative cooling, thereby warming the surface.
Jiaojiao Liu and Xiangjun Shi
Atmos. Chem. Phys., 21, 10609–10624, https://doi.org/10.5194/acp-21-10609-2021, https://doi.org/10.5194/acp-21-10609-2021, 2021
Short summary
Short summary
Cirrus thinning, which reduces the warming effect of cirrus clouds, has been investigated as a new geoengineering approach. In this study, a flexible seeding method is used to exploit the potential cooling effect of cirrus thinning. Simulation results show that the seeding method is essential for estimating the cooling effect. Cirrus thinning with the flexible seeding method could produce a considerable cooling effect, which is much stronger than the fixed seeding method.
Inés Sanz-Morère, Sebastian D. Eastham, Florian Allroggen, Raymond L. Speth, and Steven R. H. Barrett
Atmos. Chem. Phys., 21, 1649–1681, https://doi.org/10.5194/acp-21-1649-2021, https://doi.org/10.5194/acp-21-1649-2021, 2021
Short summary
Short summary
Contrails cause ~50 % of aviation climate impacts, but this is highly uncertain. This is partly due to the effect of overlap between contrails and other cloud layers. We developed a model to quantify this effect, finding that overlap with natural clouds increased contrails' radiative forcing in 2015. This suggests that cloud avoidance may help in reducing aviation's climate impacts. We also find that contrail–contrail overlap reduces impacts by ~3 %, increasing non-linearly with optical depth.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020, https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Short summary
Understanding how ice clouds influence the Earth's energy balance remains a key challenge for predicting the future climate. These clouds are ubiquitous and are composed of ice crystals that have complex shapes that are incredibly difficult to model. This work exploits new measurements of the Earth's emitted thermal energy made from instruments flown on board an aircraft to test how well the latest ice cloud models can represent these clouds. Results indicate further developments are required.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 20, 10733–10755, https://doi.org/10.5194/acp-20-10733-2020, https://doi.org/10.5194/acp-20-10733-2020, 2020
Short summary
Short summary
Unresolved interaction between clouds and atmospheric radiation is a source of uncertainty in weather and climate models. The present study highlights the potential of the state-of-the-art Tripleclouds radiative solver for shallow cumulus clouds, exposing the significance of properly representing subgrid cloud horizontal heterogeneity. The Tripleclouds concept was thereby incorporated in the widely employed δ-Eddington two-stream radiation scheme within the comprehensive libRadtran library.
Allison B. Marquardt Collow, Mark A. Miller, Lynne C. Trabachino, Michael P. Jensen, and Meng Wang
Atmos. Chem. Phys., 20, 10073–10090, https://doi.org/10.5194/acp-20-10073-2020, https://doi.org/10.5194/acp-20-10073-2020, 2020
Short summary
Short summary
Uncertainties in marine boundary layer clouds arise in the presence of biomass burning aerosol, as is the case over the southeast Atlantic Ocean. Heating due to this aerosol has the potential to alter the thermodynamic profile as the aerosol is transported across the Atlantic Ocean. Radiation transfer experiments indicate local shortwave aerosol heating is ~2–8 K d−1; however uncertainties in this quantity exist due to the single-scattering albedo and back trajectories of the aerosol plume.
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Camilla W. Stjern, Gregory Faluvegi, and Bjørn H. Samset
Atmos. Chem. Phys., 20, 8251–8266, https://doi.org/10.5194/acp-20-8251-2020, https://doi.org/10.5194/acp-20-8251-2020, 2020
Short summary
Short summary
By using climate simulations, we found that both CO2 and black carbon aerosols could reduce low-level cloud cover, which is mainly due to changes in relative humidity, cloud water, dynamics, and stability. Because the impact of cloud on solar radiation is in effect only during daytime, such cloud reduction could enhance solar heating, thereby raising the daily maximum temperature by 10–50 %, varying by region, which has great implications for extreme climate events and socioeconomic activity.
Tobias Donth, Evelyn Jäkel, André Ehrlich, Bernd Heinold, Jacob Schacht, Andreas Herber, Marco Zanatta, and Manfred Wendisch
Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020, https://doi.org/10.5194/acp-20-8139-2020, 2020
Short summary
Short summary
Solar radiative effects of Arctic black carbon (BC) particles (suspended in the atmosphere and in the surface snowpack) were quantified under cloudless and cloudy conditions. An atmospheric and a snow radiative transfer model were coupled to account for radiative interactions between both compartments. It was found that (i) the warming effect of BC in the snowpack overcompensates for the atmospheric BC cooling effect, and (ii) clouds tend to reduce the atmospheric BC cooling and snow BC warming.
Paul Ockenfuß, Claudia Emde, Bernhard Mayer, and Germar Bernhard
Atmos. Chem. Phys., 20, 1961–1976, https://doi.org/10.5194/acp-20-1961-2020, https://doi.org/10.5194/acp-20-1961-2020, 2020
Short summary
Short summary
We model solar radiation as it would be measured on the Earth's surface in the core shadow of a total solar eclipse. Subsequently, we compare our results to observations during the total eclipse 2017 for ultraviolet, visible and near-infrared wavelengths. Moreover, we analyze the effect of the surface reflectance, the ozone profile, aerosol and the topography and give a visualization of the prevailing photons paths in the atmosphere during the eclipse.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 19, 8083–8100, https://doi.org/10.5194/acp-19-8083-2019, https://doi.org/10.5194/acp-19-8083-2019, 2019
Short summary
Short summary
The interaction between radiation and clouds represents a source of uncertainty in numerical weather prediction (NWP), due to both intrinsic problems of one-dimensional radiation schemes and poor representation of clouds. The underlying question addressed in this study is how large the bias is of radiative heating rates in NWP models for shallow cumulus clouds and how it scales with various parameters, such as solar zenith angle, surface albedo, cloud cover and liquid water path.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Rick D. Russotto and Thomas P. Ackerman
Atmos. Chem. Phys., 18, 11905–11925, https://doi.org/10.5194/acp-18-11905-2018, https://doi.org/10.5194/acp-18-11905-2018, 2018
Short summary
Short summary
In simulations with different climate models in which the strength of the Sun is reduced to cancel the surface warming from a quadrupling of atmospheric carbon dioxide, low cloud cover decreases, high cloud cover increases, the upper troposphere and stratosphere cool, and water vapor concentration decreases. The stratospheric cooling and low cloud reduction result in more sunlight reduction being needed than originally thought.
Justyna Lisok, Anna Rozwadowska, Jesper G. Pedersen, Krzysztof M. Markowicz, Christoph Ritter, Jacek W. Kaminski, Joanna Struzewska, Mauro Mazzola, Roberto Udisti, Silvia Becagli, and Izabela Gorecka
Atmos. Chem. Phys., 18, 8829–8848, https://doi.org/10.5194/acp-18-8829-2018, https://doi.org/10.5194/acp-18-8829-2018, 2018
Short summary
Short summary
The aim of the presented study was to investigate the impact on the radiation budget and atmospheric dynamics of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. We found that the smoke plume may significantly alter radiative properties of the atmosphere. Furthermore, the simulations of atmospheric dynamics indicated a vertical positive displacement and broadening of the plume with time.
Simon Gruber, Simon Unterstrasser, Jan Bechtold, Heike Vogel, Martin Jung, Henry Pak, and Bernhard Vogel
Atmos. Chem. Phys., 18, 6393–6411, https://doi.org/10.5194/acp-18-6393-2018, https://doi.org/10.5194/acp-18-6393-2018, 2018
Short summary
Short summary
A numerical model also used for operational weather forecast was applied to investigate the impact of contrails and contrail cirrus on the radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enables the model to simulate high clouds that are otherwise missing. In a case study, we find that the effect of these extra clouds is to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.
Andrew E. Dessler, Thorsten Mauritsen, and Bjorn Stevens
Atmos. Chem. Phys., 18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018, https://doi.org/10.5194/acp-18-5147-2018, 2018
Short summary
Short summary
One of the most important parameters in climate science is the equilibrium climate sensitivity (ECS). Estimates of this quantity based on 20th-century observations suggest low values of ECS (below 2 °C). We show that these calculations may be significantly in error. Together with other recent work on this problem, it seems probable that the ECS is larger than suggested by the 20th-century observations.
Jake J. Gristey, J. Christine Chiu, Robert J. Gurney, Cyril J. Morcrette, Peter G. Hill, Jacqueline E. Russell, and Helen E. Brindley
Atmos. Chem. Phys., 18, 5129–5145, https://doi.org/10.5194/acp-18-5129-2018, https://doi.org/10.5194/acp-18-5129-2018, 2018
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Cited articles
Bernecker, D., Riess, C., Angelopoulou, E., and Hornegger, J.:
Continuous short-term irradiance forecasts using sky images,
Sol. Energy,
110, 303–315,
https://doi.org/10.1016/j.solener.2014.09.005, 2014.
Blanc, P. and Wald, L.: A Library for Computing the Relative Position of the
Sun and the Earth, Tech. rep., GMES, Paris, France, 2011.
Bouguet, J.-Y.: Pyramidal implementation of the affine lucas kanade feature
tracker description of the algorithm, Intel Corporation, 5, 1–10, 2001.
Bourges, B. D.: Yearly variations of the Linke turbidity factor, in:
Climatic Data Handbook of Europe, Kluwer Academic Publishing, Dordrecht,
the Netherlands, 61–64, 1992.
Cazorla, A.: Development of a Sky Imager for Cloud Classification and
Aerosol Characterization, PhD thesis, Universidad de Granada, Granada, Spain,
2010.
Cazorla, A., Olmo, F. J., and Alados-Arboledas, L.: Development of a sky
imager for cloud cover assessment, J. Opt. Soc. Am. A, 25, 29–39,
https://doi.org/10.1364/JOSAA.25.000029, 2008.
Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J.,
and Washom, B.: Intra-hour forecasting with a total sky imager at the UC San
Diego solar energy testbed, Sol. Energy, 85, 2881–2893,
https://doi.org/10.1016/j.solener.2011.08.025,
2011.
Chu, Y., Pedro, H. T. C., and Coimbra, C. F. M.: Hybrid intra-hour DNI
forecasts with sky image processing enhanced by stochastic learning, Sol.
Energy, 98, 592–603,
https://doi.org/10.1016/j.solener.2013.10.020,
2013.
Chu, Y., Li, M., Pedro, H. T. C., and Coimbra, C. F. M.: Real-time prediction
intervals for intra-hour DNI forecasts, Renew. Energ., 83, 234–244,
https://doi.org/10.1016/j.renene.2015.04.022,
2015.
Dumortier, D.: The Satellite Model of Turbidity Variations in Europe,
Technical report, École Nationale des Travaux Publics de l'État,
Vaulx-en-Velin, France, 1998.
Fontoynont, M., Dumortier, D., Heinnemann, D., Hammer, A., Olseth, J.,
Skarveit, A., Ineichen, P., Reise, C., Page, J., Roche, L., Beyer, H. G., and
Wald, L.: Satellight: a WWW server which provides high quality daylight and
solar radiation data for Western and Central Europe, in: 9th
Conference on Satellite Meteorology and Oceanography, 25–29 May
1998, American Meteorological Society, Boston, Massachusetts, USA, 434–437,
1998.
Fu, C.-L. and Cheng, H.-Y.: Predicting solar irradiance with all-sky image
features via regression, Sol. Energy, 97, 537–550,
https://doi.org/10.1016/j.solener.2013.09.016,
2013.
Gebejes, A. and Huertas, R.: Texture Characterization based on
Grey-Level Co-occurrence Matrix, Proceedings ICTIC (Proceedings in
Conference of Informatics and Management Sciences), Faculty of Management
Science and Informatics, University of Zilina, Slovakia, ISBN: 978-80-554-0648-0,
vol. 2, 375–378, 2013.
Ghonima, M. S., Urquhart, B., Chow, C. W., Shields, J. E., Cazorla, A., and
Kleissl, J.: A method for cloud detection and opacity classification based on
ground based sky imagery, Atmos. Meas. Tech., 5, 2881–2892,
https://doi.org/10.5194/amt-5-2881-2012, 2012.
Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.:
Intercomparison of spatial forecast verification methods, Weather
Forecast., 24, 1416–1430,
https://doi.org/10.1175/2009WAF2222269.1,
2009.
Hammer, A., Heinemann, D., Lorenz, E., and Lückehe, B.: Short-term
forecasting of solar radiation: a statistical approach using satellite data,
Sol. Energy, 67, 139–150,
https://doi.org/10.1016/S0038-092X(00)00038-4,
1999.
Haralick, R., Shanmugam, K., and Dinstein, I.: Textural features for
image classification, IEEE T. Syst. Man Cyb., SMC-3, 610–621,
https://doi.org/10.1109/TSMC.1973.4309314,
1973.
Heinle, A., Macke, A., and Srivastav, A.: Automatic cloud classification of
whole sky images, Atmos. Meas. Tech., 3, 557–567,
https://doi.org/10.5194/amt-3-557-2010, 2010.
Ineichen, P.: Long Term Satellite Hourly, Daily and Monthly Global, Beam and
Diffuse Irradiance Validation. Interannual Variability Analysis, IEA Report,
University of Geneva, Geneva, Switzerland, 2013.
Inman, R. H., Pedro, H. T. C., and Coimbra, C. F. M.: Solar forecasting
methods for renewable energy integration, Prog. Energ. Combust., 39,
535–576,
https://doi.org/10.1016/j.pecs.2013.06.002,
2013.
Johnson, R., Hering, W., and Shields, J.: Automated Visibility and Cloud
Cover Measurements with a Solid State Imaging System, SIO Ref.
89-7, GL- TR-89-0061, NTIS No. ADA216906, final rept. 26 September
1984–25 September 1988, Marine Physical Laboratory, Scripps Institution of
Oceanography, University of California, San Diego, USA, 1989.
Johnson, R. W., Koehler, T. L., and Shields, J.: Analysis and
Interpretation of Simultaneous Multi-Station Whole Sky Imagery,
SIO 91-33, PL- TR-91-2214, NTIS No. ADA253685, final rept. 26 September
1984–25 September 1988, Marine Physical Laboratory, Scripps Institution of
Oceanography, University of California, San Diego, USA, 1991.
Kalisch, J. and Macke, A.: Estimation of the total cloud cover with high
temporal resolution and parametrization of short-term fluctuations of sea
surface insolation, Meteorol. Z., 17, 603–611, 2008.
Kühnert, J., Lorenz, E., and Heinemann, D.: Satellite-based
irradiance and power forecasting for the German energy market,
in: Solar Energy Forecasting and Resource Assessment, Elsevier Ltd.,
Boston, MA, p. 504, 2013.
Long, C. N., Sabburg, J. M., Calbó, J., and Pagès, D.: Retrieving
cloud characteristics from ground-based daytime color all-sky
images, J. Atmos. Ocean. Tech., 23, 633–652,
https://doi.org/10.1175/JTECH1875.1, 2006.
Lorenz, E. and Heinemann, D.: Prediction of solar irradiance and
photovoltaic power, in: Comprehensive Renewable Energy, vol. 1,
Elsevier Ltd., Oxford, UK, 239–292, 2012.
Lorenz, E., Heinemann, D., and Hammer, A.: Short-term forecasting of solar
radiation based on satellite data, in: Proceedings of EuroSun 2004,
20–23 June 2004, Freiburg, Germany, 841–848, 2004.
Lucas, B. D. and Kanade, T.: An iterative image registration
technique with an application to stereo vision, in: Proceedings of
the 7th International Joint Conference on Artificial Intelligence
– Volume 2, IJCAI'81, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 674–679, available at:
http://dl.acm.org/citation.cfm?id=1623264.1623280 (last access:
1 August 2015), 1981.
Madhavan, B. L., Kalisch, J., and Macke, A.: Shortwave surface radiation
budget network for observing small-scale cloud inhomogeneity fields, Atmos.
Meas. Tech. Discuss., 8, 2555–2589, https://doi.org/10.5194/amtd-8-2555-2015, 2015.
Marquez, R. and Coimbra, C. F. M.: Proposed metric for evaluation of
solar forecasting models, J. Sol. Energ.-T. ASME, 135, 011016,
https://doi.org/10.1115/1.4007496, 2012.
Marquez, R. and Coimbra, C. F. M.: Intra-hour DNI forecasting based on
cloud tracking image analysis, Sol. Energy, 91, 327–336,
https://doi.org/10.1016/j.solener.2012.09.018,
2013.
Metz, C. E.: Basic Principles of ROC Analysis, Semin. Nucl. Med., 8,
283–298,
https://doi.org/10.1016/S0001-2998(78)80014-2,1978.
Olmo, F. J., Cazorla, A., Alados-Arboledas, L., Lopez-Alvarez, M. A.,
Hernandez-Andres, J., and Romero, J.: Retrieval of the optical depth using an
all-sky CCD camera, Appl. Optics, 47, 182–189, 2008.
Perez, R., Lorenz, E., Pelland, S., Beauharnois, M., Van Knowe, G., Hemler
Jr., K., Heinemann, D., Remund, J., Müller, S. C., Traunmüller, W.,
Steinmauer, G., Pozo, D., Ruiz-Arias, J. A., Lara-Fanego, V.,
Ramirez-Santigosa, L., Gaston-Romero, M., and Pomares, L. M.: Comparison of
numerical weather prediction solar irradiance forecasts in the US, Canada
and Europe, Sol. Energy, 94, 305–326,
https://doi.org/10.1016/j.solener.2013.05.005,
2013.
Pfister, G., McKenzie, R. L., Liley, J. B., Thomas, A., Forgan, B. W., and
Long, C. N.: Cloud coverage based on all-sky imaging and its
impact on surface solar irradiance, J. Appl. Meteorol., 42,
1421–1434,
https://doi.org/10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2,
2003.
Quesada-Ruiz, S., Chu, Y., Tovar-Pescador, J., Pedro, H. T. C., and
Coimbra, C. F. M.: Cloud-tracking methodology for intra-hour DNI
forecasting, Sol. Energy, 102, 267–275,
https://doi.org/10.1016/j.solener.2014.01.030,
2014.
Reikard, G.: Predicting solar radiation at high resolutions: a comparison
of time series forecasts, Sol. Energy, 83, 342–349,
https://doi.org/10.1016/j.solener.2008.08.007,
2009.
Sayeef, S., Heslop, S., Cornforth, D., Moore, T., Percy, S., Ward, J.,
Berry, A., and Rowe, D.: Solar Intermittency: Australia's Clean
Energy Challenge: Characterising the Effect of High Penetration
Solar Intermittency on Australian Electricity Networks, CSIRO
Sydney, Australia, 2012.
Scaramuzza, D.: OCamCalib: Omnidirectional Camera Calibration
Toolbox for Matlab, WWW document, University of Zuerich, Switzerland,
available at:
https://sites.google.com/site/scarabotix/ocamcalib-toolbox (last
access: 1 August 2015), 2014.
Scaramuzza, D., Martinelli, A., and Siegwart, R.: A toolbox for easy
calibrating omnidirectional cameras, in: Proceedings to IEEE
International Conference on Intelligent Robots and Systems (IROS
2006), 7–15 October 2006, Beijing, China, 2006.
Schmidt, T., Kalisch, J., Lorenz, E., and Heinemann, D.: Retrieving direct
and diffuse radiation with the use of sky imager pictures, Oldenburg,
Germany, available at:
http://www.uni-oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/publications/solar/conference/2015/20150417_EGU_TSchmidt_CC.pdf,
last access: 1 August 2015.
Shi, J. and Tomasi, C.: Good features to track, in: Proceedings CVPR '94,
1994 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 21–23 June 1994, Seattle, Washington, 593–600,
https://doi.org/10.1109/CVPR.1994.323794, 1994.
Shields, J. E., Karr, M. E., Tooman, T. P., Sowle, D. H., and Moore, S. T.:
The whole sky imager – a year of progress, in: Eighth Atmospheric Radiation
Measurement (ARM) Science Team Meeting, 23–27 March 1998, Tucson, Arizona, 23–27, 1998.
Shields, J. E., Karr, M. E., Burden, A. R., Johnson, R. W., Mikuls, V. W.,
Streeter, J. R., and Hodgkiss, W. S.: Research toward Multi-site
Characterization of Sky Obscuration by Clouds, Tech. rep., DTIC
Document, Scripps Institution of Oceanography, San Diego, California, USA,
2009.
Tapakis, R. and Charalambides, A. G.: Equipment and methodologies for cloud
detection and classification: a review, Sol. Energy, 95, 392–430,
https://doi.org/10.1016/j.solener.2012.11.015,
2013.
Urquhart, B., Kurtz, B., Dahlin, E., Ghonima, M., Shields, J. E., and
Kleissl, J.: Development of a sky imaging system for short-term solar power
forecasting, Atmos. Meas. Tech., 8, 875–890, https://doi.org/10.5194/amt-8-875-2015,
2015.
West, S. R., Rowe, D., Sayeef, S., and Berry, A.: Short-term irradiance
forecasting using skycams: motivation and development, Sol. Energy, 110,
188–207,
https://doi.org/10.1016/j.solener.2014.08.038,
2014.
Wolff, B., Lorenz, E., and Kramer, O.: Statistical learning for short-term
photovoltaic power predictions, in: Proceedings of DARE 2013 Workshop on Data
Analytics for Renewable Energy Integration, 23–27 September 2013, Praque,
Czech Republic, available at:
http://www.ecmlpkdd2013.org/wp-content/uploads/2013/09/dare2013_paper1_wolff.pdf
(last access: 1 August 2015), 2013.
Wood-Bradley, P., Zapata, J., and Pye, J.: Cloud Tracking with Optical Flow
for Short-Term Solar Forecasting, Solar Thermal Group, Australian National
University, Canberra, Australia, 2012.
World Meteorological Organization: Guide to Meteorological Instruments and
Methods of Observation, World Meteorological Organization, Geneva,
Switzerland, 2008.
Yang, D., Dong, Z., Reindl, T., Jirutitijaroen, P., and Walsh, W. M.: Solar
irradiance forecasting using spatio-temporal empirical kriging and vector
autoregressive models with parameter shrinkage, Sol. Energy, 103, 550–562,
https://doi.org/10.1016/j.solener.2014.01.024,
2014.
Short summary
We performed an irradiance forecast experiment based on analysis of
hemispheric sky images and evaluated results on a large data set of 99
pyranometers distributed over 10 × 12 km. We developed a surface
irradiance retrieval from cloud information derived from the images.
Very high resolution forecasts were processed up to 25 min. A main
finding is that forecast skill is enhanced in complex cloud conditions
leading to high variability in surface irradiance.
We performed an irradiance forecast experiment based on analysis of
hemispheric sky images and...
Special issue
Altmetrics
Final-revised paper
Preprint