Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-16-3399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts
Thomas Schmidt
CORRESPONDING AUTHOR
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
John Kalisch
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Elke Lorenz
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Detlev Heinemann
Department of Energy and Semiconductor Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Related authors
No articles found.
Bruno U. Schyska, António Couto, Lueder von Bremen, Ana Estanqueiro, and Detlev Heinemann
Adv. Sci. Res., 14, 131–138, https://doi.org/10.5194/asr-14-131-2017, https://doi.org/10.5194/asr-14-131-2017, 2017
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Lukas Vollmer, Gerald Steinfeld, Detlev Heinemann, and Martin Kühn
Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, https://doi.org/10.5194/wes-1-129-2016, 2016
Short summary
Short summary
The wake flow downstream of yaw misaligned wind turbines is studied in numeric simulations of different atmospheric turbulence and shear conditions. We find that the average trajectory of the wake as well as the variation about this average is influenced by the thermal stability of the atmosphere. The results suggest that an intentional intervention in the yaw control of individual turbines to increase overall wind farm performance might be not successful during unstable thermal conditions.
Gerald M. Lohmann, Adam H. Monahan, and Detlev Heinemann
Atmos. Chem. Phys., 16, 6365–6379, https://doi.org/10.5194/acp-16-6365-2016, https://doi.org/10.5194/acp-16-6365-2016, 2016
Short summary
Short summary
Increasing numbers of photovoltaic (PV) power systems call for the characterization of irradiance variability with very high spatiotemporal resolution. We use 1 Hz irradiance data recorded by as many as 99 pyranometers and show mixed sky conditions to differ substantially from clear and overcast skies. For example, the probabilities of strong fluctuations and their respective spatial autocorrelation structures are appreciably distinct under mixed conditions.
Bomidi Lakshmi Madhavan, John Kalisch, and Andreas Macke
Atmos. Meas. Tech., 9, 1153–1166, https://doi.org/10.5194/amt-9-1153-2016, https://doi.org/10.5194/amt-9-1153-2016, 2016
Short summary
Short summary
As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of pyranometer stations (99 nos.) was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. This paper provides the details of this unique setup of the network, data, quality control, uncertainty estimation and discussion of some case days.
A. Kies, K. Nag, L. von Bremen, E. Lorenz, and D. Heinemann
Adv. Sci. Res., 12, 91–95, https://doi.org/10.5194/asr-12-91-2015, https://doi.org/10.5194/asr-12-91-2015, 2015
Related subject area
Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Constraints on simulated past Arctic amplification and lapse rate feedback from observations
Comparison of methods to estimate aerosol effective radiative forcings in climate models
Evaluation of Liquid Cloud Albedo Susceptibility in E3SM Using Coupled Eastern North Atlantic Surface and Satellite Retrievals
Montreal Protocol's impact on the ozone layer and climate
Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) – past, present, and future
Impacts of reductions in non-methane short-lived climate forcers on future climate extremes and the resulting population exposure risks in eastern and southern Asia
Radiative effect by cirrus cloud and contrails – A comprehensive sensitivity study
Investigating the radiative effect of Arctic cirrus measured in situ during the winter 2015–2016
Dependence of strategic solar climate intervention on background scenario and model physics
A Colorful look at Climate Sensitivity
Combining short-range dispersion simulations with fine-scale meteorological ensembles: probabilistic indicators and evaluation during a 85Kr field campaign
Climate consequences of hydrogen emissions
Investigating the impact of Saharan dust aerosols on analyses and forecasts of African easterly waves by constraining aerosol effects in radiance data assimilation
Distinct surface response to black carbon aerosols
Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
Impacts of multi-layer overlap on contrail radiative forcing
Bias in CMIP6 models as compared to observed regional dimming and brightening
A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared
The incorporation of the Tripleclouds concept into the δ-Eddington two-stream radiation scheme: solver characterization and its application to shallow cumulus clouds
Radiative heating rate profiles over the southeast Atlantic Ocean during the 2016 and 2017 biomass burning seasons
Effective radiative forcing and adjustments in CMIP6 models
Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
Accurate 3-D radiative transfer simulation of spectral solar irradiance during the total solar eclipse of 21 August 2017
Quantifying the bias of radiative heating rates in numerical weather prediction models for shallow cumulus clouds
The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering
Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction
Radiative impact of an extreme Arctic biomass-burning event
Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study
The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity
Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model
Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa
The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol
The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets
Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain
Disk and circumsolar radiances in the presence of ice clouds
Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field
Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions
The spectral signature of cloud spatial structure in shortwave irradiance
Effects of urban agglomeration on surface-UV doses: a comparison of Brewer measurements in Warsaw and Belsk, Poland, for the period 2013–2015
Global and regional radiative forcing from 20 % reductions in BC, OC and SO4 – an HTAP2 multi-model study
A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia
Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model
Impact of buildings on surface solar radiation over urban Beijing
On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations
An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity
The impact of parameterising light penetration into snow on the photochemical production of NOx and OH radicals in snow
A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains
Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging
Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Mark D. Zelinka, Christopher J. Smith, Yi Qin, and Karl E. Taylor
Atmos. Chem. Phys., 23, 8879–8898, https://doi.org/10.5194/acp-23-8879-2023, https://doi.org/10.5194/acp-23-8879-2023, 2023
Short summary
Short summary
The primary uncertainty in how strongly Earth's climate has been perturbed by human activities comes from the unknown radiative impact of aerosol changes. Accurately quantifying these forcings – and their sub-components – in climate models is crucial for understanding the past and future simulated climate. In this study we describe biases in previously published estimates of aerosol radiative forcing in climate models and provide corrected estimates along with code for users to compute them.
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
EGUsphere, https://doi.org/10.5194/egusphere-2023-998, https://doi.org/10.5194/egusphere-2023-998, 2023
Short summary
Short summary
We evaluate how clouds change in response to changing atmospheric particle (aerosol) concentrations in a climate model and find that the model predicted cloud brightness increases too much as aerosols increase because the cloud drop number increases too much. Excessive drizzle in the model mutes this difference. Many differences between observational and model estimates are explained by varying assumptions of how much liquid has been lost in clouds, which impacts the estimated cloud drop number.
Tatiana Egorova, Jan Sedlacek, Timofei Sukhodolov, Arseniy Karagodin-Doyennel, Franziska Zilker, and Eugene Rozanov
Atmos. Chem. Phys., 23, 5135–5147, https://doi.org/10.5194/acp-23-5135-2023, https://doi.org/10.5194/acp-23-5135-2023, 2023
Short summary
Short summary
This paper describes the climate and atmosphere benefits of the Montreal Protocol, simulated with the state-of-the-art Earth system model SOCOLv4.0. We have added to and confirmed the previous studies by showing that without the Montreal Protocol by the end of the 21st century there would be a dramatic reduction in the ozone layer as well as substantial perturbation of the essential climate variables in the troposphere caused by the warming from increasing ozone-depleting substances.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Yingfang Li, Zhili Wang, Yadong Lei, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 2499–2523, https://doi.org/10.5194/acp-23-2499-2023, https://doi.org/10.5194/acp-23-2499-2023, 2023
Short summary
Short summary
Since few studies have assessed the impacts of future combined reductions in aerosols, ozone, and their precursors on future climate change, we use models with an interactive representation of tropospheric aerosols and atmospheric chemistry schemes to quantify the impact of their reductions on the Asian climate. Our results suggest that their reductions will exacerbate the warming effect caused by greenhouse gases, increasing future climate extremes and associated population exposure risk.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
EGUsphere, https://doi.org/10.5194/egusphere-2023-155, https://doi.org/10.5194/egusphere-2023-155, 2023
Short summary
Short summary
Cirrus and contrails considerably impact the Earths energy budget. Such ice clouds can have a positive (warming) or negative (cooling) net radiative effect (RE), which depends on cloud and ambient properties. The effect of 8 parameters on the cloud RE is estimated. In total, 94,500 radiative transfer simulations have been performed, spanning the typical parameter ranges associated with cirrus and contrails. Specific cases are selected and discussed. The generated data set is publicly available.
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023, https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Short summary
We employ highly resolved aircraft measurements of profiles of the ice water content (IWC) in Arctic cirrus clouds in winter and spring, when solar irradiation is low. Using radiation transfer calculations, we assess the cloud radiative effect over different surfaces like snow or ocean. The variability in the IWC of the clouds affects their overall radiative effect and drives internal processes. This helps understand the role of cirrus in a rapidly changing Arctic environment.
John T. Fasullo and Jadwiga H. Richter
Atmos. Chem. Phys., 23, 163–182, https://doi.org/10.5194/acp-23-163-2023, https://doi.org/10.5194/acp-23-163-2023, 2023
Short summary
Short summary
The continued high levels of anthropogenic greenhouse gas emissions increase the likelihood that key climate warming thresholds will be exceeded in the coming decades. Here we examine a recently proposed geoengineering approach using two recently produced climate model experiments. We find the associated latitudinal distribution of aerosol mass to exhibit substantial uncertainty, suggesting the need for significant flexibility in the location and amount of aerosol delivery, if implemented.
Bjorn Stevens and Lukas Kluft
EGUsphere, https://doi.org/10.5194/egusphere-2022-1460, https://doi.org/10.5194/egusphere-2022-1460, 2023
Short summary
Short summary
Analytic expressions are derived for the clear-sky climate sensitivity in an atmosphere within which the relative humidity depends only on temperature. The expressions have quantitative fidelity and are physically insightful. The ideas leading to this derivation also help better understand how clouds modify the clear sky sensitivity, demonstrating a more ambiguous role of clouds, and in so doing providing a better theoretical underpinning for the climate sensitivity itself.
Youness El-Ouartassy, Irène Korsakissok, Matthieu Plu, Olivier Connan, Laurent Descamps, and Laure Raynaud
Atmos. Chem. Phys., 22, 15793–15816, https://doi.org/10.5194/acp-22-15793-2022, https://doi.org/10.5194/acp-22-15793-2022, 2022
Short summary
Short summary
This work investigates the potential value of using fine-scale meteorological ensembles to represent the inherent meteorological uncertainties in atmospheric dispersion model outputs. Probabilistic scores were used to evaluate the probabilistic performance of dispersion ensembles, using an original dataset of new continuous 85Kr air concentration measurements and a well-known source term. The results show that the ensemble dispersion simulations perform better than deterministic ones.
Ilissa B. Ocko and Steven P. Hamburg
Atmos. Chem. Phys., 22, 9349–9368, https://doi.org/10.5194/acp-22-9349-2022, https://doi.org/10.5194/acp-22-9349-2022, 2022
Short summary
Short summary
Hydrogen is considered a key strategy to decarbonize the global economy. However, hydrogen is also a short-lived indirect greenhouse gas that can easily leak into the atmosphere. Given that the climate impacts from hydrogen emissions are not well understood, especially in the near term, we assess impacts over all timescales for plausible emissions rates. We find that hydrogen leakage can cause more warming than widely perceived; thus, attention is needed to minimize emissions.
Dustin Francis Phillip Grogan, Cheng-Hsuan Lu, Shih-Wei Wei, and Sheng-Po Chen
Atmos. Chem. Phys., 22, 2385–2398, https://doi.org/10.5194/acp-22-2385-2022, https://doi.org/10.5194/acp-22-2385-2022, 2022
Short summary
Short summary
This study shows that incorporating aerosols into satellite radiance calculations affects the representation of African easterly waves (AEWs), and their environment, over North Africa and the eastern Atlantic in a numerical weather model. These changes are driven by radiative effects of Saharan dust captured by the aerosol-affected radiances, which modify the initial fields and can improve the forecasting of AEWs.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Gregory Faluvegi, Bjørn H. Samset, Timothy Andrews, Dirk Olivié, Toshihiko Takemura, and Xuhui Lee
Atmos. Chem. Phys., 21, 13797–13809, https://doi.org/10.5194/acp-21-13797-2021, https://doi.org/10.5194/acp-21-13797-2021, 2021
Short summary
Short summary
Previous studies showed that black carbon (BC) could warm the surface with decreased incoming radiation. With climate models, we found that the surface energy redistribution plays a more crucial role in surface temperature compared with other forcing agents. Though BC could reduce the surface heating, the energy dissipates less efficiently, which is manifested by reduced convective and evaporative cooling, thereby warming the surface.
Jiaojiao Liu and Xiangjun Shi
Atmos. Chem. Phys., 21, 10609–10624, https://doi.org/10.5194/acp-21-10609-2021, https://doi.org/10.5194/acp-21-10609-2021, 2021
Short summary
Short summary
Cirrus thinning, which reduces the warming effect of cirrus clouds, has been investigated as a new geoengineering approach. In this study, a flexible seeding method is used to exploit the potential cooling effect of cirrus thinning. Simulation results show that the seeding method is essential for estimating the cooling effect. Cirrus thinning with the flexible seeding method could produce a considerable cooling effect, which is much stronger than the fixed seeding method.
Inés Sanz-Morère, Sebastian D. Eastham, Florian Allroggen, Raymond L. Speth, and Steven R. H. Barrett
Atmos. Chem. Phys., 21, 1649–1681, https://doi.org/10.5194/acp-21-1649-2021, https://doi.org/10.5194/acp-21-1649-2021, 2021
Short summary
Short summary
Contrails cause ~50 % of aviation climate impacts, but this is highly uncertain. This is partly due to the effect of overlap between contrails and other cloud layers. We developed a model to quantify this effect, finding that overlap with natural clouds increased contrails' radiative forcing in 2015. This suggests that cloud avoidance may help in reducing aviation's climate impacts. We also find that contrail–contrail overlap reduces impacts by ~3 %, increasing non-linearly with optical depth.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020, https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Short summary
Understanding how ice clouds influence the Earth's energy balance remains a key challenge for predicting the future climate. These clouds are ubiquitous and are composed of ice crystals that have complex shapes that are incredibly difficult to model. This work exploits new measurements of the Earth's emitted thermal energy made from instruments flown on board an aircraft to test how well the latest ice cloud models can represent these clouds. Results indicate further developments are required.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 20, 10733–10755, https://doi.org/10.5194/acp-20-10733-2020, https://doi.org/10.5194/acp-20-10733-2020, 2020
Short summary
Short summary
Unresolved interaction between clouds and atmospheric radiation is a source of uncertainty in weather and climate models. The present study highlights the potential of the state-of-the-art Tripleclouds radiative solver for shallow cumulus clouds, exposing the significance of properly representing subgrid cloud horizontal heterogeneity. The Tripleclouds concept was thereby incorporated in the widely employed δ-Eddington two-stream radiation scheme within the comprehensive libRadtran library.
Allison B. Marquardt Collow, Mark A. Miller, Lynne C. Trabachino, Michael P. Jensen, and Meng Wang
Atmos. Chem. Phys., 20, 10073–10090, https://doi.org/10.5194/acp-20-10073-2020, https://doi.org/10.5194/acp-20-10073-2020, 2020
Short summary
Short summary
Uncertainties in marine boundary layer clouds arise in the presence of biomass burning aerosol, as is the case over the southeast Atlantic Ocean. Heating due to this aerosol has the potential to alter the thermodynamic profile as the aerosol is transported across the Atlantic Ocean. Radiation transfer experiments indicate local shortwave aerosol heating is ~2–8 K d−1; however uncertainties in this quantity exist due to the single-scattering albedo and back trajectories of the aerosol plume.
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Camilla W. Stjern, Gregory Faluvegi, and Bjørn H. Samset
Atmos. Chem. Phys., 20, 8251–8266, https://doi.org/10.5194/acp-20-8251-2020, https://doi.org/10.5194/acp-20-8251-2020, 2020
Short summary
Short summary
By using climate simulations, we found that both CO2 and black carbon aerosols could reduce low-level cloud cover, which is mainly due to changes in relative humidity, cloud water, dynamics, and stability. Because the impact of cloud on solar radiation is in effect only during daytime, such cloud reduction could enhance solar heating, thereby raising the daily maximum temperature by 10–50 %, varying by region, which has great implications for extreme climate events and socioeconomic activity.
Tobias Donth, Evelyn Jäkel, André Ehrlich, Bernd Heinold, Jacob Schacht, Andreas Herber, Marco Zanatta, and Manfred Wendisch
Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020, https://doi.org/10.5194/acp-20-8139-2020, 2020
Short summary
Short summary
Solar radiative effects of Arctic black carbon (BC) particles (suspended in the atmosphere and in the surface snowpack) were quantified under cloudless and cloudy conditions. An atmospheric and a snow radiative transfer model were coupled to account for radiative interactions between both compartments. It was found that (i) the warming effect of BC in the snowpack overcompensates for the atmospheric BC cooling effect, and (ii) clouds tend to reduce the atmospheric BC cooling and snow BC warming.
Paul Ockenfuß, Claudia Emde, Bernhard Mayer, and Germar Bernhard
Atmos. Chem. Phys., 20, 1961–1976, https://doi.org/10.5194/acp-20-1961-2020, https://doi.org/10.5194/acp-20-1961-2020, 2020
Short summary
Short summary
We model solar radiation as it would be measured on the Earth's surface in the core shadow of a total solar eclipse. Subsequently, we compare our results to observations during the total eclipse 2017 for ultraviolet, visible and near-infrared wavelengths. Moreover, we analyze the effect of the surface reflectance, the ozone profile, aerosol and the topography and give a visualization of the prevailing photons paths in the atmosphere during the eclipse.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 19, 8083–8100, https://doi.org/10.5194/acp-19-8083-2019, https://doi.org/10.5194/acp-19-8083-2019, 2019
Short summary
Short summary
The interaction between radiation and clouds represents a source of uncertainty in numerical weather prediction (NWP), due to both intrinsic problems of one-dimensional radiation schemes and poor representation of clouds. The underlying question addressed in this study is how large the bias is of radiative heating rates in NWP models for shallow cumulus clouds and how it scales with various parameters, such as solar zenith angle, surface albedo, cloud cover and liquid water path.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Rick D. Russotto and Thomas P. Ackerman
Atmos. Chem. Phys., 18, 11905–11925, https://doi.org/10.5194/acp-18-11905-2018, https://doi.org/10.5194/acp-18-11905-2018, 2018
Short summary
Short summary
In simulations with different climate models in which the strength of the Sun is reduced to cancel the surface warming from a quadrupling of atmospheric carbon dioxide, low cloud cover decreases, high cloud cover increases, the upper troposphere and stratosphere cool, and water vapor concentration decreases. The stratospheric cooling and low cloud reduction result in more sunlight reduction being needed than originally thought.
Justyna Lisok, Anna Rozwadowska, Jesper G. Pedersen, Krzysztof M. Markowicz, Christoph Ritter, Jacek W. Kaminski, Joanna Struzewska, Mauro Mazzola, Roberto Udisti, Silvia Becagli, and Izabela Gorecka
Atmos. Chem. Phys., 18, 8829–8848, https://doi.org/10.5194/acp-18-8829-2018, https://doi.org/10.5194/acp-18-8829-2018, 2018
Short summary
Short summary
The aim of the presented study was to investigate the impact on the radiation budget and atmospheric dynamics of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. We found that the smoke plume may significantly alter radiative properties of the atmosphere. Furthermore, the simulations of atmospheric dynamics indicated a vertical positive displacement and broadening of the plume with time.
Simon Gruber, Simon Unterstrasser, Jan Bechtold, Heike Vogel, Martin Jung, Henry Pak, and Bernhard Vogel
Atmos. Chem. Phys., 18, 6393–6411, https://doi.org/10.5194/acp-18-6393-2018, https://doi.org/10.5194/acp-18-6393-2018, 2018
Short summary
Short summary
A numerical model also used for operational weather forecast was applied to investigate the impact of contrails and contrail cirrus on the radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enables the model to simulate high clouds that are otherwise missing. In a case study, we find that the effect of these extra clouds is to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.
Andrew E. Dessler, Thorsten Mauritsen, and Bjorn Stevens
Atmos. Chem. Phys., 18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018, https://doi.org/10.5194/acp-18-5147-2018, 2018
Short summary
Short summary
One of the most important parameters in climate science is the equilibrium climate sensitivity (ECS). Estimates of this quantity based on 20th-century observations suggest low values of ECS (below 2 °C). We show that these calculations may be significantly in error. Together with other recent work on this problem, it seems probable that the ECS is larger than suggested by the 20th-century observations.
Jake J. Gristey, J. Christine Chiu, Robert J. Gurney, Cyril J. Morcrette, Peter G. Hill, Jacqueline E. Russell, and Helen E. Brindley
Atmos. Chem. Phys., 18, 5129–5145, https://doi.org/10.5194/acp-18-5129-2018, https://doi.org/10.5194/acp-18-5129-2018, 2018
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Netsanet K. Alamirew, Martin C. Todd, Claire L. Ryder, John H. Marsham, and Yi Wang
Atmos. Chem. Phys., 18, 1241–1262, https://doi.org/10.5194/acp-18-1241-2018, https://doi.org/10.5194/acp-18-1241-2018, 2018
Short summary
Short summary
This paper quantifies the radiative effects of dust and water vapour in the Saharan heat low. Dust has a warming effect at the top of the atmosphere while cooling the surface. Water vapour has a warming effect both at the top of atmosphere and the surface. We find dust and water vapour have similar effects in driving the variability in the top-of-atmosphere radiative budget, while dust has a stronger effect than water vapour in controlling day-to-day variability of the surface radiative budget.
Fabian Jakub and Bernhard Mayer
Atmos. Chem. Phys., 17, 13317–13327, https://doi.org/10.5194/acp-17-13317-2017, https://doi.org/10.5194/acp-17-13317-2017, 2017
Short summary
Short summary
The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle.
Guadalupe Sanchez, Antonio Serrano, and María Luisa Cancillo
Atmos. Chem. Phys., 17, 12697–12708, https://doi.org/10.5194/acp-17-12697-2017, https://doi.org/10.5194/acp-17-12697-2017, 2017
Short summary
Short summary
This study proposes models to estimate the UVER diffuse irradiance, which means, at least, 40 % of the ultraviolet solar radiation reaching the Earth's surface at mid-latitudes. These models are inspired by expressions originally used to estimate total diffuse fraction and rely on variables commonly available to favor their applicability. The best model in this paper performs better than previous approaches and no additional information about the cloud or aerosol layer is needed.
Päivi Haapanala, Petri Räisänen, Greg M. McFarquhar, Jussi Tiira, Andreas Macke, Michael Kahnert, John DeVore, and Timo Nousiainen
Atmos. Chem. Phys., 17, 6865–6882, https://doi.org/10.5194/acp-17-6865-2017, https://doi.org/10.5194/acp-17-6865-2017, 2017
Short summary
Short summary
The dependence of solar-disk and circumsolar radiances on ice cloud
properties is studied with a Monte Carlo radiative transfer model. Ice
crystal roughness (or more generally, non-ideality) is found to be the
most important parameter influencing the circumsolar radiance, and ice
crystal sizes and shapes also play significant roles. When comparing
with radiances measured with the SAM instrument, rough ice crystals
reproduce the measurements better than idealized smooth ice crystals do.
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500, https://doi.org/10.5194/acp-17-5477-2017, https://doi.org/10.5194/acp-17-5477-2017, 2017
Short summary
Short summary
Radiation is driving weather and climate. Yet, the effect of radiation on clouds is not fully understood and often only poorly represented in models. Better understanding and better parameterizations of the radiation–cloud interaction are therefore essential. Using our newly developed fast
neighboring column approximationfor 3-D thermal heating and cooling rates, we show that thermal radiation changes cloud circulation and causes organization and a deepening of the clouds.
Nicolas Bellouin, Laura Baker, Øivind Hodnebrog, Dirk Olivié, Ribu Cherian, Claire Macintosh, Bjørn Samset, Anna Esteve, Borgar Aamaas, Johannes Quaas, and Gunnar Myhre
Atmos. Chem. Phys., 16, 13885–13910, https://doi.org/10.5194/acp-16-13885-2016, https://doi.org/10.5194/acp-16-13885-2016, 2016
Short summary
Short summary
This study uses global climate models to quantify how strongly man-made emissions of selected pollutants modify the energy budget of the Earth. The pollutants studied interact directly and indirectly with sunlight and terrestrial radiation and remain a relatively short time in the atmosphere, leading to regional and seasonal variations in their impacts. This new data set is useful to compare the potential climate impacts of different pollutants in support of policies to reduce climate change.
Shi Song, K. Sebastian Schmidt, Peter Pilewskie, Michael D. King, Andrew K. Heidinger, Andi Walther, Hironobu Iwabuchi, Gala Wind, and Odele M. Coddington
Atmos. Chem. Phys., 16, 13791–13806, https://doi.org/10.5194/acp-16-13791-2016, https://doi.org/10.5194/acp-16-13791-2016, 2016
Short summary
Short summary
The radiative effects of spatially complex cloud fields are notoriously difficult to estimate and are afflicted with errors up to ±50 % of the incident solar radiation. We find that horizontal photon transport, the leading cause for these three-dimensional effects, manifests itself through a spectral fingerprint – a new observable that holds promise for reducing the errors associated with spatial complexity by moving the problem to the spectral dimension.
Agnieszka E. Czerwińska, Janusz W. Krzyścin, Janusz Jarosławski, and Michał Posyniak
Atmos. Chem. Phys., 16, 13641–13651, https://doi.org/10.5194/acp-16-13641-2016, https://doi.org/10.5194/acp-16-13641-2016, 2016
Short summary
Short summary
This article presents a comparison between the two surface-UV dose series, measured with Brewer spectrophotometers working simultaneously at two different sites in Poland: in a large city agglomeration and in the suburbs. We consider whether the city of Warsaw acts as a shield from ultraviolet overexposure. Our study proves that the UV level in Warsaw is slightly lower than that found in cleaner suburbs of the city.
Camilla Weum Stjern, Bjørn Hallvard Samset, Gunnar Myhre, Huisheng Bian, Mian Chin, Yanko Davila, Frank Dentener, Louisa Emmons, Johannes Flemming, Amund Søvde Haslerud, Daven Henze, Jan Eiof Jonson, Tom Kucsera, Marianne Tronstad Lund, Michael Schulz, Kengo Sudo, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 16, 13579–13599, https://doi.org/10.5194/acp-16-13579-2016, https://doi.org/10.5194/acp-16-13579-2016, 2016
Short summary
Short summary
Air pollution can reach distant regions through intercontinental transport. Here we first present results from the Hemispheric Transport of Air Pollution Phase 2 exercise, where many models performed the same set of coordinated emission-reduction experiments. We find that mitigations have considerable extra-regional effects, and show that this is particularly true for black carbon emissions, as long-range transport elevates aerosols to higher levels where their radiative influence is stronger.
Nataly Chubarova, Yekaterina Zhdanova, and Yelena Nezval
Atmos. Chem. Phys., 16, 11867–11881, https://doi.org/10.5194/acp-16-11867-2016, https://doi.org/10.5194/acp-16-11867-2016, 2016
Short summary
Short summary
Biologically active ultraviolet (UV) radiation is an important environmental factor, which affect human health and nature. UV radiation has a significant increase with the altitude. We propose a new method for calculating the altitude UV dependence for different types of biologically active UV radiation. The proposed method was implemented in the on-line UV tool (http://momsu.ru/uv/) for Northern Eurasia. The possible UV effects on human health were considered over Alpine zone.
Alex Montornès, Bernat Codina, John W. Zack, and Yolanda Sola
Atmos. Chem. Phys., 16, 5949–5967, https://doi.org/10.5194/acp-16-5949-2016, https://doi.org/10.5194/acp-16-5949-2016, 2016
Short summary
Short summary
This paper documents a new package for the Weather Research and Forecasting--Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950–2050 and is also extensible to a longer period. First, a description of the implementation together with a validation for the period 1950–2050 of all solar eclipse trajectories is presented. Second, the model response is analyzed in four total solar eclipse episodes. Global horizontal irradiance (GHI) outcomes are validated with respect to ground-based measurements.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Cenlin He, Wee-Liang Lee, Xing Chang, Qinbin Li, Shuxiao Wang, Hsien-Liang R. Tseng, Lai-Yung R. Leung, and Jiming Hao
Atmos. Chem. Phys., 16, 5841–5852, https://doi.org/10.5194/acp-16-5841-2016, https://doi.org/10.5194/acp-16-5841-2016, 2016
Short summary
Short summary
We examine the impact of buildings on surface solar fluxes in Beijing by accounting for their 3-D structures. We find that inclusion of buildings changes surface solar fluxes by within ±1 W m−2, ±1–10 W m−2, and up to ±100 W m−2 at grid resolutions of 4 km, 800 m, and 90 m, respectively. We can resolve pairs of positive-negative flux deviations on different sides of buildings at ≤ 800 m resolutions. We should treat building-effect on solar fluxes differently in models with different resolutions.
G. Alexandri, A. K. Georgoulias, P. Zanis, E. Katragkou, A. Tsikerdekis, K. Kourtidis, and C. Meleti
Atmos. Chem. Phys., 15, 13195–13216, https://doi.org/10.5194/acp-15-13195-2015, https://doi.org/10.5194/acp-15-13195-2015, 2015
Short summary
Short summary
It is shown here that RegCM4 regional climate model adequately simulates surface solar radiation (SSR) over Europe but significantly over/underestimates several parameters that determine the transmission of solar radiation in the atmosphere. The agreement between RegCM4 and satellite-based SSR observations is actually a result of the conflicting effect of these parameters. We suggest that there should be a reassessment of the way these parameters are represented within this and other models.
M. E. Nicholls
Atmos. Chem. Phys., 15, 9003–9029, https://doi.org/10.5194/acp-15-9003-2015, https://doi.org/10.5194/acp-15-9003-2015, 2015
H. G. Chan, M. D. King, and M. M. Frey
Atmos. Chem. Phys., 15, 7913–7927, https://doi.org/10.5194/acp-15-7913-2015, https://doi.org/10.5194/acp-15-7913-2015, 2015
W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu
Atmos. Chem. Phys., 15, 5405–5413, https://doi.org/10.5194/acp-15-5405-2015, https://doi.org/10.5194/acp-15-5405-2015, 2015
Short summary
Short summary
This paper investigates 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (CAM4/CLM4) with a 0.23°×0.31° resolution for simulations over 6 years. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations.
C. R. MacIntosh, K. P. Shine, and W. J. Collins
Atmos. Chem. Phys., 15, 3957–3969, https://doi.org/10.5194/acp-15-3957-2015, https://doi.org/10.5194/acp-15-3957-2015, 2015
Short summary
Short summary
This study examines quantitatively the impact of methodological choices, in particular of averaging of multi-model ensembles, on climate metrics for ozone precursors.
Estimates of the standard deviation of radiative forcing (RF), global warming and temperature potential (GWP, GTP) from ensemble-mean input fields generally overestimate the true value.
The multi-model average fields are appropriate for calculating mean metrics, but are not a reliable method for calculating the uncertainty.
R. Román, J. Bilbao, and A. de Miguel
Atmos. Chem. Phys., 15, 375–391, https://doi.org/10.5194/acp-15-375-2015, https://doi.org/10.5194/acp-15-375-2015, 2015
Short summary
Short summary
This paper develops two models for the reconstruction of ultraviolet erythemal radiation (UVER). The models are based on shortwave radiation (SW) and sunshine duration measurements. Both models are used to reconstruct UVER irradiation at nine Spanish places from 1950 to 2011. The trends of UVER are calculated at different periods. UVER presented a brightening phenomenon, but not dimming, due to the ozone depletion until the mid-1990s.
Cited articles
Bernecker, D., Riess, C., Angelopoulou, E., and Hornegger, J.:
Continuous short-term irradiance forecasts using sky images,
Sol. Energy,
110, 303–315,
https://doi.org/10.1016/j.solener.2014.09.005, 2014.
Blanc, P. and Wald, L.: A Library for Computing the Relative Position of the
Sun and the Earth, Tech. rep., GMES, Paris, France, 2011.
Bouguet, J.-Y.: Pyramidal implementation of the affine lucas kanade feature
tracker description of the algorithm, Intel Corporation, 5, 1–10, 2001.
Bourges, B. D.: Yearly variations of the Linke turbidity factor, in:
Climatic Data Handbook of Europe, Kluwer Academic Publishing, Dordrecht,
the Netherlands, 61–64, 1992.
Cazorla, A.: Development of a Sky Imager for Cloud Classification and
Aerosol Characterization, PhD thesis, Universidad de Granada, Granada, Spain,
2010.
Cazorla, A., Olmo, F. J., and Alados-Arboledas, L.: Development of a sky
imager for cloud cover assessment, J. Opt. Soc. Am. A, 25, 29–39,
https://doi.org/10.1364/JOSAA.25.000029, 2008.
Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J.,
and Washom, B.: Intra-hour forecasting with a total sky imager at the UC San
Diego solar energy testbed, Sol. Energy, 85, 2881–2893,
https://doi.org/10.1016/j.solener.2011.08.025,
2011.
Chu, Y., Pedro, H. T. C., and Coimbra, C. F. M.: Hybrid intra-hour DNI
forecasts with sky image processing enhanced by stochastic learning, Sol.
Energy, 98, 592–603,
https://doi.org/10.1016/j.solener.2013.10.020,
2013.
Chu, Y., Li, M., Pedro, H. T. C., and Coimbra, C. F. M.: Real-time prediction
intervals for intra-hour DNI forecasts, Renew. Energ., 83, 234–244,
https://doi.org/10.1016/j.renene.2015.04.022,
2015.
Dumortier, D.: The Satellite Model of Turbidity Variations in Europe,
Technical report, École Nationale des Travaux Publics de l'État,
Vaulx-en-Velin, France, 1998.
Fontoynont, M., Dumortier, D., Heinnemann, D., Hammer, A., Olseth, J.,
Skarveit, A., Ineichen, P., Reise, C., Page, J., Roche, L., Beyer, H. G., and
Wald, L.: Satellight: a WWW server which provides high quality daylight and
solar radiation data for Western and Central Europe, in: 9th
Conference on Satellite Meteorology and Oceanography, 25–29 May
1998, American Meteorological Society, Boston, Massachusetts, USA, 434–437,
1998.
Fu, C.-L. and Cheng, H.-Y.: Predicting solar irradiance with all-sky image
features via regression, Sol. Energy, 97, 537–550,
https://doi.org/10.1016/j.solener.2013.09.016,
2013.
Gebejes, A. and Huertas, R.: Texture Characterization based on
Grey-Level Co-occurrence Matrix, Proceedings ICTIC (Proceedings in
Conference of Informatics and Management Sciences), Faculty of Management
Science and Informatics, University of Zilina, Slovakia, ISBN: 978-80-554-0648-0,
vol. 2, 375–378, 2013.
Ghonima, M. S., Urquhart, B., Chow, C. W., Shields, J. E., Cazorla, A., and
Kleissl, J.: A method for cloud detection and opacity classification based on
ground based sky imagery, Atmos. Meas. Tech., 5, 2881–2892,
https://doi.org/10.5194/amt-5-2881-2012, 2012.
Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.:
Intercomparison of spatial forecast verification methods, Weather
Forecast., 24, 1416–1430,
https://doi.org/10.1175/2009WAF2222269.1,
2009.
Hammer, A., Heinemann, D., Lorenz, E., and Lückehe, B.: Short-term
forecasting of solar radiation: a statistical approach using satellite data,
Sol. Energy, 67, 139–150,
https://doi.org/10.1016/S0038-092X(00)00038-4,
1999.
Haralick, R., Shanmugam, K., and Dinstein, I.: Textural features for
image classification, IEEE T. Syst. Man Cyb., SMC-3, 610–621,
https://doi.org/10.1109/TSMC.1973.4309314,
1973.
Heinle, A., Macke, A., and Srivastav, A.: Automatic cloud classification of
whole sky images, Atmos. Meas. Tech., 3, 557–567,
https://doi.org/10.5194/amt-3-557-2010, 2010.
Ineichen, P.: Long Term Satellite Hourly, Daily and Monthly Global, Beam and
Diffuse Irradiance Validation. Interannual Variability Analysis, IEA Report,
University of Geneva, Geneva, Switzerland, 2013.
Inman, R. H., Pedro, H. T. C., and Coimbra, C. F. M.: Solar forecasting
methods for renewable energy integration, Prog. Energ. Combust., 39,
535–576,
https://doi.org/10.1016/j.pecs.2013.06.002,
2013.
Johnson, R., Hering, W., and Shields, J.: Automated Visibility and Cloud
Cover Measurements with a Solid State Imaging System, SIO Ref.
89-7, GL- TR-89-0061, NTIS No. ADA216906, final rept. 26 September
1984–25 September 1988, Marine Physical Laboratory, Scripps Institution of
Oceanography, University of California, San Diego, USA, 1989.
Johnson, R. W., Koehler, T. L., and Shields, J.: Analysis and
Interpretation of Simultaneous Multi-Station Whole Sky Imagery,
SIO 91-33, PL- TR-91-2214, NTIS No. ADA253685, final rept. 26 September
1984–25 September 1988, Marine Physical Laboratory, Scripps Institution of
Oceanography, University of California, San Diego, USA, 1991.
Kalisch, J. and Macke, A.: Estimation of the total cloud cover with high
temporal resolution and parametrization of short-term fluctuations of sea
surface insolation, Meteorol. Z., 17, 603–611, 2008.
Kühnert, J., Lorenz, E., and Heinemann, D.: Satellite-based
irradiance and power forecasting for the German energy market,
in: Solar Energy Forecasting and Resource Assessment, Elsevier Ltd.,
Boston, MA, p. 504, 2013.
Long, C. N., Sabburg, J. M., Calbó, J., and Pagès, D.: Retrieving
cloud characteristics from ground-based daytime color all-sky
images, J. Atmos. Ocean. Tech., 23, 633–652,
https://doi.org/10.1175/JTECH1875.1, 2006.
Lorenz, E. and Heinemann, D.: Prediction of solar irradiance and
photovoltaic power, in: Comprehensive Renewable Energy, vol. 1,
Elsevier Ltd., Oxford, UK, 239–292, 2012.
Lorenz, E., Heinemann, D., and Hammer, A.: Short-term forecasting of solar
radiation based on satellite data, in: Proceedings of EuroSun 2004,
20–23 June 2004, Freiburg, Germany, 841–848, 2004.
Lucas, B. D. and Kanade, T.: An iterative image registration
technique with an application to stereo vision, in: Proceedings of
the 7th International Joint Conference on Artificial Intelligence
– Volume 2, IJCAI'81, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 674–679, available at:
http://dl.acm.org/citation.cfm?id=1623264.1623280 (last access:
1 August 2015), 1981.
Madhavan, B. L., Kalisch, J., and Macke, A.: Shortwave surface radiation
budget network for observing small-scale cloud inhomogeneity fields, Atmos.
Meas. Tech. Discuss., 8, 2555–2589, https://doi.org/10.5194/amtd-8-2555-2015, 2015.
Marquez, R. and Coimbra, C. F. M.: Proposed metric for evaluation of
solar forecasting models, J. Sol. Energ.-T. ASME, 135, 011016,
https://doi.org/10.1115/1.4007496, 2012.
Marquez, R. and Coimbra, C. F. M.: Intra-hour DNI forecasting based on
cloud tracking image analysis, Sol. Energy, 91, 327–336,
https://doi.org/10.1016/j.solener.2012.09.018,
2013.
Metz, C. E.: Basic Principles of ROC Analysis, Semin. Nucl. Med., 8,
283–298,
https://doi.org/10.1016/S0001-2998(78)80014-2,1978.
Olmo, F. J., Cazorla, A., Alados-Arboledas, L., Lopez-Alvarez, M. A.,
Hernandez-Andres, J., and Romero, J.: Retrieval of the optical depth using an
all-sky CCD camera, Appl. Optics, 47, 182–189, 2008.
Perez, R., Lorenz, E., Pelland, S., Beauharnois, M., Van Knowe, G., Hemler
Jr., K., Heinemann, D., Remund, J., Müller, S. C., Traunmüller, W.,
Steinmauer, G., Pozo, D., Ruiz-Arias, J. A., Lara-Fanego, V.,
Ramirez-Santigosa, L., Gaston-Romero, M., and Pomares, L. M.: Comparison of
numerical weather prediction solar irradiance forecasts in the US, Canada
and Europe, Sol. Energy, 94, 305–326,
https://doi.org/10.1016/j.solener.2013.05.005,
2013.
Pfister, G., McKenzie, R. L., Liley, J. B., Thomas, A., Forgan, B. W., and
Long, C. N.: Cloud coverage based on all-sky imaging and its
impact on surface solar irradiance, J. Appl. Meteorol., 42,
1421–1434,
https://doi.org/10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2,
2003.
Quesada-Ruiz, S., Chu, Y., Tovar-Pescador, J., Pedro, H. T. C., and
Coimbra, C. F. M.: Cloud-tracking methodology for intra-hour DNI
forecasting, Sol. Energy, 102, 267–275,
https://doi.org/10.1016/j.solener.2014.01.030,
2014.
Reikard, G.: Predicting solar radiation at high resolutions: a comparison
of time series forecasts, Sol. Energy, 83, 342–349,
https://doi.org/10.1016/j.solener.2008.08.007,
2009.
Sayeef, S., Heslop, S., Cornforth, D., Moore, T., Percy, S., Ward, J.,
Berry, A., and Rowe, D.: Solar Intermittency: Australia's Clean
Energy Challenge: Characterising the Effect of High Penetration
Solar Intermittency on Australian Electricity Networks, CSIRO
Sydney, Australia, 2012.
Scaramuzza, D.: OCamCalib: Omnidirectional Camera Calibration
Toolbox for Matlab, WWW document, University of Zuerich, Switzerland,
available at:
https://sites.google.com/site/scarabotix/ocamcalib-toolbox (last
access: 1 August 2015), 2014.
Scaramuzza, D., Martinelli, A., and Siegwart, R.: A toolbox for easy
calibrating omnidirectional cameras, in: Proceedings to IEEE
International Conference on Intelligent Robots and Systems (IROS
2006), 7–15 October 2006, Beijing, China, 2006.
Schmidt, T., Kalisch, J., Lorenz, E., and Heinemann, D.: Retrieving direct
and diffuse radiation with the use of sky imager pictures, Oldenburg,
Germany, available at:
http://www.uni-oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/publications/solar/conference/2015/20150417_EGU_TSchmidt_CC.pdf,
last access: 1 August 2015.
Shi, J. and Tomasi, C.: Good features to track, in: Proceedings CVPR '94,
1994 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 21–23 June 1994, Seattle, Washington, 593–600,
https://doi.org/10.1109/CVPR.1994.323794, 1994.
Shields, J. E., Karr, M. E., Tooman, T. P., Sowle, D. H., and Moore, S. T.:
The whole sky imager – a year of progress, in: Eighth Atmospheric Radiation
Measurement (ARM) Science Team Meeting, 23–27 March 1998, Tucson, Arizona, 23–27, 1998.
Shields, J. E., Karr, M. E., Burden, A. R., Johnson, R. W., Mikuls, V. W.,
Streeter, J. R., and Hodgkiss, W. S.: Research toward Multi-site
Characterization of Sky Obscuration by Clouds, Tech. rep., DTIC
Document, Scripps Institution of Oceanography, San Diego, California, USA,
2009.
Tapakis, R. and Charalambides, A. G.: Equipment and methodologies for cloud
detection and classification: a review, Sol. Energy, 95, 392–430,
https://doi.org/10.1016/j.solener.2012.11.015,
2013.
Urquhart, B., Kurtz, B., Dahlin, E., Ghonima, M., Shields, J. E., and
Kleissl, J.: Development of a sky imaging system for short-term solar power
forecasting, Atmos. Meas. Tech., 8, 875–890, https://doi.org/10.5194/amt-8-875-2015,
2015.
West, S. R., Rowe, D., Sayeef, S., and Berry, A.: Short-term irradiance
forecasting using skycams: motivation and development, Sol. Energy, 110,
188–207,
https://doi.org/10.1016/j.solener.2014.08.038,
2014.
Wolff, B., Lorenz, E., and Kramer, O.: Statistical learning for short-term
photovoltaic power predictions, in: Proceedings of DARE 2013 Workshop on Data
Analytics for Renewable Energy Integration, 23–27 September 2013, Praque,
Czech Republic, available at:
http://www.ecmlpkdd2013.org/wp-content/uploads/2013/09/dare2013_paper1_wolff.pdf
(last access: 1 August 2015), 2013.
Wood-Bradley, P., Zapata, J., and Pye, J.: Cloud Tracking with Optical Flow
for Short-Term Solar Forecasting, Solar Thermal Group, Australian National
University, Canberra, Australia, 2012.
World Meteorological Organization: Guide to Meteorological Instruments and
Methods of Observation, World Meteorological Organization, Geneva,
Switzerland, 2008.
Yang, D., Dong, Z., Reindl, T., Jirutitijaroen, P., and Walsh, W. M.: Solar
irradiance forecasting using spatio-temporal empirical kriging and vector
autoregressive models with parameter shrinkage, Sol. Energy, 103, 550–562,
https://doi.org/10.1016/j.solener.2014.01.024,
2014.
Short summary
We performed an irradiance forecast experiment based on analysis of
hemispheric sky images and evaluated results on a large data set of 99
pyranometers distributed over 10 × 12 km. We developed a surface
irradiance retrieval from cloud information derived from the images.
Very high resolution forecasts were processed up to 25 min. A main
finding is that forecast skill is enhanced in complex cloud conditions
leading to high variability in surface irradiance.
We performed an irradiance forecast experiment based on analysis of
hemispheric sky images and...
Special issue
Altmetrics
Final-revised paper
Preprint