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Abstract. Clouds are the dominant source of small-scale

variability in surface solar radiation and uncertainty in its

prediction. However, the increasing share of solar energy in

the worldwide electric power supply increases the need for

accurate solar radiation forecasts.

In this work, we present results of a very short term global

horizontal irradiance (GHI) forecast experiment based on

hemispheric sky images. A 2-month data set with images

from one sky imager and high-resolution GHI measurements

from 99 pyranometers distributed over 10 km by 12 km is

used for validation. We developed a multi-step model and

processed GHI forecasts up to 25 min with an update inter-

val of 15 s. A cloud type classification is used to separate the

time series into different cloud scenarios.

Overall, the sky-imager-based forecasts do not outperform

the reference persistence forecasts. Nevertheless, we find that

analysis and forecast performance depends strongly on the

predominant cloud conditions. Especially convective type

clouds lead to high temporal and spatial GHI variability. For

cumulus cloud conditions, the analysis error is found to be

lower than that introduced by a single pyranometer if it is

used representatively for the whole area in distances from the

camera larger than 1–2 km. Moreover, forecast skill is much

higher for these conditions compared to overcast or clear sky

situations causing low GHI variability, which is easier to pre-

dict by persistence. In order to generalize the cloud-induced

forecast error, we identify a variability threshold indicating

conditions with positive forecast skill.

1 Introduction

As a result of worldwide growing photovoltaic electricity

production, the energy sector is facing new challenges. One

major issue is solar variability (Sayeef et al., 2012), which,

on short timescales, is mainly caused by changes in cloud

cover. With an increased share of solar power in the elec-

tricity grid, balancing power production and consumption is

getting more and more challenging for power plant and grid

operators. Consequently, flexibility options such as demand-

side management, backup capacities, inverter control, stor-

age and strengthening of the grid are in the focus of re-

search. In order to control and manage the flexibility op-

tions, the expected solar power production is an important

piece of information. Although the large variety of cloud

characteristics (opacity, motion, height, spatial distribution)

makes these cloud-induced fluctuations difficult to predict,

solar irradiance forecasting techniques have been success-

fully developed (a comprehensive overview is given in Inman

et al., 2013, and Lorenz and Heinemann, 2012). The spec-

trum comprises numerical weather models (NWPs) (Perez

et al., 2013), satellite-based forecasts using cloud motion

vectors (Kühnert et al., 2013; Lorenz et al., 2004; Hammer

et al., 1999), statistical methods based on machine learning

(Wolff et al., 2013) and time series analysis (Reikard, 2009)

predominantly developed for intra-day and day-ahead fore-

casts. For very short term forecasts with time horizons of

up to 30 min, both NWP and satellite image-based models

lack spatial and temporal resolution regarding cloud-induced

small-scale variability (Inman et al., 2013).
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With the aim to fill this gap of local high-resolution and

very short term forecasts, recent research has made use

of ground-based (whole/all/total) sky imagers. Sky imagers

have been used for years for monitoring cloud cover char-

acteristics (Pfister et al., 2003; Long et al., 2006; Cazorla

et al., 2008) and aerosol properties (Olmo et al., 2008; Ca-

zorla, 2010).

The development of solar radiation forecast methods based

on sky images has intensified in recent years (Chu et al.,

2015; West et al., 2014; Quesada-Ruiz et al., 2014; Chu et al.,

2013; Fu and Cheng, 2013; Yang et al., 2014; Bernecker

et al., 2014; Chow et al., 2011; Marquez and Coimbra, 2013).

By analysing distribution, movement and optical proper-

ties of clouds, the incoming solar irradiance can be fore-

casted. Most of the cameras that are used are equipped with

fisheye lenses capturing the whole visual sky. Evidently, the

possible spatial coverage of irradiance analysis and conse-

quently the temporal forecast horizon are variable and de-

pend on daytime and, accordingly, sun position, cloud distri-

bution (type and altitude) and cloud motion (speed and direc-

tion). Two types of forecast experiments have been reported

in recent work. Point forecasts only predict the occlusion of

the sun with clouds and therefore can only process forecasts

for the location of the camera (e.g. West et al., 2014). Area

forecasts, on the other hand, incorporate cloud base height in

order to calculate the location of clouds and shadows on the

ground (e.g. Yang et al., 2014).

This work presents results of short-term area forecast ex-

periments. We developed and applied a multi-step model on

a large data set of sky images and processed forecasts up to

25 min ahead for 99 locations distributed in the surround-

ing area. Global horizontal irradiance (GHI) measurements

at these locations are used for evaluating the forecast perfor-

mance.

The sky images, the ceilometer-based cloud base height

measurements and the pyranometer data used in this study

were collected during the High Definition of Clouds and Pre-

cipitation for advancing Climate Prediction (HD(CP)2) Ob-

servational Prototype Experiment (HOPE) in spring 2013.

The data set provides both a high spatial density of solar ra-

diation measurements and the necessary temporal resolution

of pyranometer and ceilometer data as well as sky images.

This work focuses on the investigation of the perfor-

mance under different cloud conditions. A cloud classifica-

tion scheme is used to categorize the data set into seven

different cloud conditions. This differentiation is helpful in

the comparison with reference models, such as persistence,

which are almost perfect for short forecast horizons and low

variability in cloud cover. The spatial distribution of pyra-

nometers is used to identify differences in performance for

locations distant from the camera. This analysis is helpful

for investigating the usefulness of sky-imager-based irradi-

ance field analysis instead of using several expensive pyra-

nometers. As our cloud detection scheme only provides two

binary states (sky/cloud) and no cloud transmissivity infor-

mation, the irradiance retrieval for GHI has weaknesses in

the case of deviations from this simplification. Therefore, we

also evaluate binary forecasts in order to identify the contri-

bution to the overall forecast error caused by the irradiance

retrieval.

2 Experimental setup and database

The data sets used in this short-term forecast experiment have

been collected during the HOPE measurement campaign in

2013. For this work, data from a network of 99 irradiance

sensors, 1 ceilometer and 1 sky imager were used (Fig. 1).

The following subsections give a short description of the data

sets used. Here, measurements from 1 April to 31 May were

used. The measurement site is located in Jülich, Germany.

The area is rather flat and surrounded by two large open-cast

lignite mines (Fig. 1).

2.1 Sky imager

A sky imager developed at the GEOMAR Helmholtz Cen-

tre for Ocean Research (Kalisch and Macke, 2008) was used

for continuous sky observations. The imager was part of

the LACROS supersite within the HOPE measurement cam-

paign; see Madhavan et al. (2015) for the location and details.

The Canon digital CCD camera equipped with a Raynox fish-

eye lens realized a field of view of 183◦. The hemispheric sky

images with 2592 pixel× 1744 pixel resolution were sam-

pled at a rate of 15 s.

2.2 Irradiance sensor network

A irradiance measurement network with 99 pyranometer sta-

tions was set up around Jülich, Germany, on an area of

10km×12km. Each station was equipped with an EKO ML-

020VM photodiode pyranometer. The 10 bit data-logging

system was synchronized with the GPS time. The irradiance

was measured with 10 Hz resolution and was averaged to

1 Hz. Maintenance and checks for cleaning and tilt were per-

formed on a weekly basis. Based on the maintenance proto-

col, data are provided with quality flags (“good”, “okay, but

sometimes spurious”, “bad or ignore completely” or “miss-

ing or no observations”).

Madhavan et al. (2015) give a description of the pyra-

nometer network within the HOPE campaign, details of the

hardware, quality flags and an investigation of measurement

uncertainties.

2.3 Additional data

Further information about cloud base height and sun posi-

tion for ray tracing and following cloud shadow mapping is

needed for processing of sky images for solar irradiance area

forecasts. Clear sky irradiance information is necessary for

reference cloud-free sky conditions and irradiance retrieval.
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Figure 1. Experimental setup: distribution of pyranometers (yel-

low), sky imager (red) and ceilometer (red) at the measurement

site. Map section corresponds to the chosen domain size of 20km×

20 km.

Information about cloud base height is retrieved from

a Jenoptik CHM15k-x ceilometer that was located next to

the sky imager. Ceilometers are recognized by the WMO

as the most accurate, reliable and efficient means of mea-

suring cloud base height from the ground when compared

with alternative equipment (World Meteorological Organi-

zation, 2008). One measurement was done every 20 s. As

a ceilometer provides only point measurements, the median

of the last 30 measurements was used in order to smooth

the signal. Although multi-layer cloud height information is

available, only lower-level cloud height was used, because

the sky imager algorithm that was used does not yet sup-

port multilayer clouds. Clear sky irradiance is estimated with

the clear sky model of Dumortier (Fontoynont et al., 1998)

and turbidity values according to Bourges (1992) and Du-

mortier (1998). The model is also used in internal operational

services for photovoltaic plant energy yield monitoring and

evaluated continuously at more than 100 sites in Germany

within our group. For a recent independent validation of the

model, see Ineichen (2013).

The solar zenith and azimuth angle are calculated with the

solar geometry2 (SG2) algorithm (Blanc and Wald, 2011).

3 Methods

In order to determine and predict the surface patterns of

global horizontal irradiance distribution from sky images,

several preprocessing steps on the image have to be done.

This section subdivides the processing chain into image anal-

ysis, irradiance analysis and irradiance forecasting. Figure 2

gives an overview of the workflow, which is described in

Raw image
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Image undistortion

Cloud motion

Surface irradiance 

Clear sky library

Cloud mapping Cloud base height

Lens function

Sun position

Measurements
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Figure 2. Sky imager analysis and forecast processing chain used

in these analyses.

more detail in the following sections. Furthermore, a cloud

classification scheme is introduced.

3.1 Image analysis

3.1.1 Cloud detection

To identify clouds, we apply a binary classification (cloud

or sky) of each image pixel (Fig. 2). As a consequence,

we do not account for variations in cloud optical thickness

(from thin semi-transparent to thick opaque). Here, we use

the concept of the red–blue ratio (RBR), first developed by

Scripps Institution of Oceanography (Johnson et al., 1989,

1991; Shields et al., 1998). RBR is the ratio between the red

and blue channel of the image. The RBR indicates whether

the scattered light comes from a cloud (value close to 1) or

blue sky (value� 1). Based on an empirically determined

threshold of RBR= 0.82, each pixel is classified as cloudy

or non-cloudy.

Cloud detection based on RBR has been used in sev-

eral sky-imager-based forecast applications (e.g. Chow et al.,

2011; Yang et al., 2014; Urquhart et al., 2015). The RBR is

not homogeneously distributed over the whole field of view

for the same sky conditions. RBR has an angular dependency

(Pfister et al., 2003) and the area close to the sun (circumso-

lar region) is affected by the bright sun (RBR≈ 1). Conse-

quently, misclassifications are likely when one single global

www.atmos-chem-phys.net/16/3399/2016/ Atmos. Chem. Phys., 16, 3399–3412, 2016
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Figure 3. Cloud detection. (a) Original image, (b) pixel intensity, (c) RBR clear sky reference, (d) RBR without correction, (e) absolute

RBR correction, (f) RBR with correction, (g) binary cloud map without correction, and (h) binary cloud map with correction.

threshold is applied to the image. Optically dense clouds,

which appear quite dark in the centre of their base (West

et al., 2014), are another source of errors. Here, the RBR is

very low and clouds can be misclassified as sky.

To overcome these disadvantages, we correct the RBR

with a set of clear sky images similar to Chow et al. (2011)

and Shields et al. (2009). Here, the clear sky library (CSL)

contains RBR images from one clear sky day (4 May 2013)

of the measurement period. The database serves as a refer-

ence for clear sky conditions (see Fig. 3 for an example). The

reference image (Fig. 3c) is selected by calculating the angu-

lar distance of the currently sun position from the references

and choosing the closest one.

A modified RBR (Rmod) is given for each pixel at the im-

age position i,j by the following equation:

Rmod,i,j =Rorig,i,j −RCSL,i,j ×

(
a× S

− b× (Ii,j − 200)
)
. (1)

It first accounts for the difficult circumsolar area. We defined

the grade of saturation (S ∈ [0,1]) as the average pixel inten-

sity in the disc up to an angular distance of 5◦ to the centre

of the sunspot. A value of S = 1 would correspond to a com-

pletely saturated sun area (each pixel’s intensity I = 255).

Weighted by the grade of saturation S multiplied with a con-

stant factor a, we subtract the clear sky RBR (RCSL) from

the original RBR (Rorig). Moreover, a correction based on

the pixel intensity I 1 multiplied with a second constant fac-

tor b and clear sky RBR RCSL is applied, which increases

RBR in the case of dark clouds and decreases RBR in the

case of bright clouds (Fig. 3).

1Pixel intensity/luminance I = 0.299× red+ 0.587× green+

0.114× blue.

The values for a = 0.1, b = 0.0018 and Rthres = 0.82 that

discriminates clouds and sky were determined empirically on

a test data set of 40 images with different sky conditions.

They were adjusted with the aim of achieving good results

for all possible sky conditions, including in particular thick

and dark clouds, semi-transparent cirrus clouds and clear sky.

Note that the used CSL introduces errors on days where

solar zenith and azimuth angles deviate from the reference

day. Moreover, days with different atmospheric conditions

(aerosol load, scattered light) from those of the reference

day will lead to errors not quantified in the RBR corrections

(Ghonima et al., 2012).

The proposed approach aims to reduce the mentioned mis-

classifications in the circumsolar area and in the case of thick

and dark clouds.

3.1.2 Camera calibration and image undistortion

In order to project an image pixel from a fisheye lens im-

age in geometric coordinates, two types of parameters are

needed. First, intrinsic parameters describe the geometric

distortion introduced by the optics used to project 2-D im-

age pixel points onto a unit sphere. Next, extrinsic parame-

ters describe the transformation from the unit sphere in the

real world. This can be expressed with a rotation matrix ac-

counting for orientation errors.

The intrinsic parameters are determined by a calibration of

the fisheye lens following Scaramuzza (2014). The method

detects straight known lines on photographs of a checker-

board and retrieves the distortion (Scaramuzza et al., 2006).

Assuming a radial symmetrical distortion, a fifth-degree

polynomial function with coefficients k in Eq. (2) is fitted

on the detected data points. It assigns each pixel’s distance r

from the centre of the image to the corresponding incidence

angle θ .

Atmos. Chem. Phys., 16, 3399–3412, 2016 www.atmos-chem-phys.net/16/3399/2016/
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θi,j = f (ri,j )

= k0+ k1ri,j + k2r
2
i,j + k3r

3
i,j + k4r

4
i,j + k5r

5
i,j (2)

Extrinsic parameters are estimated by a visual comparison

of the reprojected sun position (azimuth and zenith angle)

to image coordinates and their visual appearance in the im-

age. In this case, we assume a perfectly horizontally mounted

camera and define a rotation matrix which rotates the top of

the image to geographic north. Equation (2) and the rotation

matrix are used for undistorting the image.

3.1.3 Image masking

Static artificial objects in the field of view are masked out.

Furthermore, the field of view had been limited to an inci-

dence angle of 80◦ in order to reduce perspective errors at

large incidence angles.

3.1.4 Cloud mapping

Determination of the three-dimensional position of a cloudy

pixel with incidence angle θi,j needs the clouds’ base height,

h, as a further input. The geometric distance of a single pixel

di,j from the position of the camera is calculated with

di,j = h× tan(θi,j ). (3)

The clouds’ position is then calculated using the measured

cloud base height from the ceilometer and the pixels’ inci-

dence θi,j and azimuth angles φi, j retrieved from the camera

calibration (Sect. 3.1.2).

3.1.5 Shadow mapping

With the information about current sun position (azimuth an-

gle φsun and zenith angle θsun) and cloud base height h, a sun

ray tracing is applied to map the cloud layer as a shadow

layer on the ground. Eq. (4) gives the basic formula for cal-

culating the horizontal distance d of a cloud’s shadow on the

ground from the camera.

dxi,j = h× tan(θi,j )× sin(φi,j )+h× tan(θsun)× sin(φsun)

dyi,j = h× tan(θi,j )× cos(φi,j )+h× tan(θsun)× cos(φsun)

di,j =

√
dx2

i,j + dy
2
i,j (4)

A topographically flat surface was assumed. The applica-

tion of a more realistic topography could lead to better re-

sults, but considering the almost flat surface at the measure-

ment site, the introduced error will be small related to other

error sources.

3.1.6 Gridding

In order to analyse the cloud shadow field at the location of

the pyranometer stations, image pixels are mapped on a reg-

ular grid of 20km×20km with a resolution of 20 m. One has

to consider that, depending on cloud base height, the raw im-

age pixel resolution is higher than the final grid resolution in

the image centre and lower in the outer region. In the former

case the central pixel is used, while nearest-neighbour inter-

polation is used for interpolating in regions where the image

resolution is below the grid resolution. Afterwards, a Gaus-

sian filter with σ = 3 is applied on the gridded binary data to

smooth cloud edges. The effect of smoothed cloud edges is

illustrated in the time series of the forecast example in Fig. 6.

3.2 Cloud classification

We apply a cloud classification algorithm in order to clas-

sify each image instance in different cloud condition cat-

egories. This data separation is used for evaluating fore-

cast performance under different cloud conditions. A re-

view of existing cloud detection and classification method-

ologies is given by Tapakis and Charalambides (2013). Here,

we modified the cloud classification scheme introduced by

Heinle et al. (2010). The modified classification algorithm

uses “support vector classification” (SVC) as it outperforms

k-nearest neighbours (k-NN) in our application. We also ex-

tended the number of features to 16 image-based features and

trained on a data set of 600 images manually classified into

seven categories. The seven categories are meteorologically

justified according to Heinle et al. (2010)

– cumulus (Cu);

– stratocumulus (Sc);

– cirrocumulus (Cc), altocumulus (Ac);

– nimbostratus (Ns), cumulonimbus (Cb);

– stratus (St), altostratus (As);

– cirrostratus (Cs), cirrus (Ci);

– clear sky (Clear).

Three of the additional features include image texture

properties derived from the grey-level co-occurrence matrix

(GLCM) and defined by (Haralick et al., 1973). The angular

second-moment (ASM) feature is a further measure for ho-

mogeneity, correlation is a measure of grey-tone linear de-

pendencies and dissimilarity is a measure that defines the

variation of grey level pairs in an image (Gebejes and Huer-

tas, 2013). Furthermore, as possible informative features, the

ratio of the number of saturated pixels (all channels have in-

tensities of 255) to all non-masked pixels, the average pixel

intensity, and the average RBR value are used as input.

The classification was validated by 10-fold cross-

validation with an accuracy of 92 %. Note that only the dom-

inant cloud type according to the classification model is de-

termined.

www.atmos-chem-phys.net/16/3399/2016/ Atmos. Chem. Phys., 16, 3399–3412, 2016
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3.3 Irradiance analysis

The transformation from surface shadow fields to irradiance

fields is based on past records of clear sky indices measured

at each pyranometer station. The clear sky index k∗ is the

ratio of measured global horizontal irradiance GHImeas and

a clear sky reference value GHIclear (Eq. 5).

k∗ =
GHImeas

GHIclear

(5)

A typical histogram of measured k∗ has two peaks for

overcast and clear sky conditions. Here, this information is

used for the irradiance retrieval for the two states: shadow

and no shadow (see Fig. 4).

We calculate the histogram for each station for the previ-

ous 30 min to account for changing atmospheric conditions.

The method takes the global peak below for k∗ < 0.5 for

shadow state and k∗ > 0.9 for no shadow. We decided to

use 100 bins for 0.2≤ k∗ ≤ 1.4. If no peaks can be deter-

mined (in the case of homogeneous irradiance conditions in

the previous 30 min), default values of k∗hist = 0.4 and k∗hist =

1.0, respectively, have been assigned for the two states. See

Sect. 2.3 for the clear sky irradiance model used. The corre-

sponding GHI can then be calculated with

GHI= k∗hist×GHIclear. (6)

The spatial smoothing (introduced in Sect. 3.1.6) of the

shadow field leads to smoothed cloud shadow edges. This

could be regarded as more realistic for transitions from non-

shaded to completely shaded conditions. Despite the adapta-

tion to the situation of the previous 30 min, irradiance levels

for clear sky (diffuse+ direct irradiance) and cloudy sky (dif-

fuse irradiance only) may deviate from measured values (see

Fig. 6). A more realistic retrieval can benefit from the esti-

mation of direct and diffuse components, e.g. by considering

additional image features with machine learning (Schmidt

et al., 2015).

3.4 Irradiance forecast

3.4.1 Cloud motion

The fundamental information needed for cloud forecasts is

cloud movement and cloud transformation. As the transfor-

mation (development and dissolution) of clouds is a very

complex task, our algorithm does not yet account for that.

As a consequence, predicted cloud scenes are the result of

a translation of the current analysed cloud scene. Cloud

movement is determined by applying the optical flow algo-

rithm available in OpenCV (Open source Computer Vision

Library, http://opencv.org). Optical flow calculations have

been used in other sky imager applications by West et al.

(2014) and Wood-Bradley et al. (2012). The first step is to de-

termine good features to track in the image (Shi and Tomasi,

1994). These objects – mostly found on strong gradients like

Figure 4. Histogram of measured clear sky indices k∗ of the previ-

ous 30 min from one pyranometer station in order to determine k∗

for shadow and no-shadow state.

cloud edges – serve as input for the Lucas–Kanade track-

ing algorithm (Lucas and Kanade, 1981; Bouguet, 2001).

The algorithm yields cloud motion vectors (CMVs). In this

study, new features are determined every 2 min as old fea-

tures change too much or move out of the visible image. The

algorithm is applied to the original greyscale image, where

artificial objects are masked out.

Similar to the cloud shadow projection, each single CMV

is transformed to the underlying metric grid by projecting the

image coordinates of the vectors initial and terminal point.

(Sect. 3.1.6). Figure 5 shows an example of the transforma-

tion from the circular fisheye image to the grid. This scene

illustrates the rectification of the CMVs, which is important

for quality control and averaging to a global CMV.

To increase the CMV quality, we first mask out the cir-

cumsolar area in the feature detection step, as its bright-

ness disturbs the algorithm. Next, we apply a quality con-

trol. Initial CMVs are flagged as invalid if their speed is

lower than 0.2 ms−1 to avoid tracking artificial objects in the

image. If clouds are moving at a speed below that thresh-

old and all CMVs are flagged as invalid, a persistent cloud

mask is assumed. If sudden changes in direction and speed

(changes in cloud speed > 2 ms−1) of follow-up vectors oc-

cur, which can happen if brightness in the image changes

rapidly, these vectors are removed. The final CMVs are then

averaged to one global vector which determines the principal

movement of the cloud scene for the forecast. Due to recal-

culation of CMV positions every 2 min, discontinuities in the

global CMV may occur. As these are unlikely to represent

true changes in cloud motion, which is rather inert, the last

four global vectors are also averaged in time. Furthermore,

each change in the average CMV will affect the forecasted

cloud distribution and the irradiance forecast. An approach

that uses the uncertainty in cloud motion for an estimation of

uncertainty irradiance forecasts is being developed.

Atmos. Chem. Phys., 16, 3399–3412, 2016 www.atmos-chem-phys.net/16/3399/2016/
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Figure 5. Example of cloud motion analysis with the optical flow

technique. Left: cloud motion vectors (CMVs) drawn in the binary

cloud image (clouds in white). Right: CMVs transformed to the cor-

responding shadow map (shadows in grey) on the regular grid. The

number of detected vectors is reduced for this visualization.

3.4.2 Solar irradiance prediction

Irradiance forecasts are calculated for each pyranometer sta-

tion with a horizon of a maximum of 1500 s and a resolution

of 1 s. A forecast run is computed for each image (every 15 s).

This is done by advecting the “frozen” cloud field with the

global CMV (Sect. 3.4.1) and calculating the surface shadow

maps (Sect. 3.1.6) and irradiance maps (Sect. 3.3). We con-

sidered the varying sun position in the 25 min forecast hori-

zon by computing its position for each forecast step. After-

wards, the irradiance forecast at each pyranometer station is

retrieved.

As an example, Fig. 6 illustrates a forecast run for a pyra-

nometer in the north of the sensor arrangement. The thick

coloured line represents the forecast path along the opposite

direction of the global CMV, indicating a mean cloud motion

from a southern direction. Here, cloud speed is low enough

for processing a full forecast up to 25 min ahead for this lo-

cation. The binary pattern of the forecast is a result of the

measured GHI in the previous 30 min (Sect. 3.3). Although

the binary pattern is represented in the forecast time series,

slight smoothing at the cloud edges is pronounced as well.

3.5 Concept of evaluation

In order to evaluate the forecast data set we focused on two

main aspects:

1. How accurate is the sky-imager-based analysis during

different cloud conditions and with respect to distance

from the camera?

2. How accurate are sky-imager-based forecasts in dif-

ferent cloud conditions especially compared to persis-

tence?

For answering the first question, we analyse mean bias er-

ror (MBE) and root mean square error (RMSE) spatial distri-

bution (see Sect. 3.5.2) for each cloud class. By sorting the
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Figure 6. Forecast example. Upper left: masked raw image. Cen-

tre left: binary cloud decision map with CMVs over the last 60 s.

Right: shadow map on the regular 20km× 20km grid. Pyranome-

ter stations and measurements are given in coloured dots. Stations

with a black cross were flagged as invalid for that time and not used

for the analysis. The forecast path along the mean cloud direction

for one station is drawn as a thick line. Bottom: corresponding time

series.

stations by distance from the camera position, we were able

to compare the analysis (forecast lead time= 0) error to the

error introduced if a single pyranometer at the location of the

camera was representative of the whole area.

The second question is investigated by evaluating the fore-

cast performance depending on the forecast lead time. As

a reference forecast we use persistence. Persistence forecasts

account for changing sun angles but assume no change in

cloudiness described by a constant clear sky index k∗:

GHI(t0+1t)= k
∗(t0)×GHIclear(t0+1t). (7)

We keep the raw resolution of 1 s for the persistence def-

inition. As a consequence, persistence forecasts have no ini-

tial error, but it increases with time. To evaluate performance

in different cloud conditions the data set is separated in the

seven analysed classes. Forecast error and skill are then cal-

culated for each of the classes (for definition of error metrics

see Sect. 3.5.2).

During the processing chain, several assumptions and sim-

plifications are made which contribute to final analysis and

forecast errors. One error source is the irradiance retrieval

(Sect. 3.3) based on binary cloud maps processed before.

Particularly, cloud irradiance enhancements due to reflec-

tions at cloud edges, irradiance reductions due to semi-

transparent clouds, and changes in diffuse irradiance levels
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Figure 7. Left: statistics of available and evaluated forecast instances at all 99 stations depending on the forecast horizon. Right: spatial

distribution of available and analysed forecast instances for a forecast horizon of 10 min. Stations with a red circle represent stations with

more than 70 % of data available.

due to a changing cloud distribution cannot be accurately

addressed with the proposed methods. Therefore, we eval-

uate the ability of the forecast to distinguish between the

two states (sunny and cloudy) by introducing a threshold of

k∗ = 0.7. The time series in Fig. 6 illustrate the error intro-

duced by GHI values deviating from the average.

3.5.1 Data selection

To analyse the performance of our forecasting system, we

had to attend to data availability and quality. The total num-

ber of processed forecast runs is 138 912, corresponding to

the number of available images processed for sun elevations

greater than 10◦. The number of forecasts used for the evalu-

ation is reduced by non-available measurements or forecasts.

We decided to use only measurements which were flagged

by the data provider as “good”. As stations were maintained

once a week and quality flags were given for the whole week,

data gaps most of the time cover a whole week (Madhavan

et al., 2015). As a consequence, a reduced subset of 50 sta-

tions with at least 70 % of the maximal possible number of

measurements available was used when comparing perfor-

mance for different stations (Sect. 4.2). Forecast availability

for each location is limited by several factors. The size of the

underlying grid, the field of view of the camera (we masked

out the area beyond 80◦ lens angle of incidence), current

cloud base height, cloud speed and direction, and the sun po-

sition lead to a varying maximum forecast horizon. Figure 7

illustrates the data availability for the evaluation depending

on the forecast horizon as well as the spatial distribution for

a forecast horizon of 10 min.

3.5.2 Error metrics

For measuring the accuracy and performance of the forecast

system we used mean bias error (MBE, Eq. 8), root mean

square error (RMSE, Eq. 9), forecast skill (FS, Eq. 10) and

accuracy (ACC, Eq. 11) in this analysis.

MBE is the average deviation of the forecast or analysis y

from the measurement x:

MBE=
1

n

n∑
i=1

(xi − yi), (8)

where subscript i refers to a single forecast or analysis y or

measurement x.

By definition, RMSE is given by

RMSE=

√√√√1

n

n∑
i=1

(xi − yi)
2. (9)

FS is given by

FS= 1−
RMSESkyImager

RMSEPersistence

. (10)

A positive FS means that the sky-imager-based forecast out-

performs persistence (Eq. 7).

ACC is used for measuring the ratio of the number of cor-

rectly predicted states (sunny and cloudy) in all instances

(Metz, 1978):

ACC=
TS+TC

TS+TC+FS+FC
, (11)

where TS represents “true sunny”, TC “true cloudy”, FS

“false sunny” and FC “false cloudy”. For example, a fore-

cast is true sunny if measured and predicted k∗ are > 0.7.

A forecast is false sunny if measured k∗ > 0.7 and predicted

k∗ ≤ 0.7.

These error metrics are calculated for each station and

forecast horizon separately.

4 Results and discussion

4.1 Cloud type distribution

Table 1 shows the results of the cloud classification. This ta-

ble gives an overview of the predominant cloud conditions
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Table 1. Results of cloud type classification. The first two rows give the frequency of occurrence and its share of the total number of

analysed images. k∗ and V represent the corresponding k∗ statistics (average, variability) of station 33, which had the highest number of

valid measurements during the period. Average and standard deviation are given for the measured cloud base height (CBH), the analysed

hemispheric cloud coverage (CC) and cloud motion speed (Cspd).

Cloud type Cu Sc Ac/Cc Cb/Ns Ci/Cs St/As Clear sky

Number 24 242 17 112 9417 13 228 19 822 40 019 15 072

Fraction 17.5 % 12.3 % 6.8 % 9.5 % 14.3 % 28.8 % 10.6 %

GHI (Wm−2) 478 293 388 131 417 138 503

k∗ 0.81 0.46 0.75 0.23 0.80 0.24 0.99

V 0.34 0.23 0.29 0.14 0.16 0.07 0.10

CBH (m) 2200± 1500 1600± 800 2700± 1400 1300± 700 3400± 2500 1300± 800 NaN

CC (%) 55± 32 95± 11 59± 31 99± 3 64± 34 100± 1.0 5± 8

Cspd (ms−1) 9.6± 6.0 11.6± 5.5 10.8± 6.6 7.8± 5.2 7.1± 6.5 7.0± 5.7 NaN

and their characteristics mainly affecting the surface solar ir-

radiance and its variability in space and time. The GHI statis-

tics are calculated for a single station which had the highest

availability. Variability V is defined according to Marquez

and Coimbra (2012),

V =

√√√√ 1

N

N∑
i=1

(
k∗(ti)− k

∗(ti −1t)
)2

=

√√√√ 1

N

N∑
i=1

(
1k∗(ti)

)2
, (12)

with the number of images in each class N and 1t set to

5 min.

As expected, the convective cloud type classes Cu, Ac/Cc

and Sc have the highest variability. Sc, in contrast to Cu

and Ac/Cc, has a high cloud coverage and therefore causes

a lower average clear sky index. St/As causes low variabil-

ity close to that of clear sky. The non-intuitive variability for

scenes classified as clear sky can be traced back to scenes not

fully clear but predominantly clear (not shown here). Cb/Ns

and Ci/Cs also cause low variability compared to the first

three classes. Cu, Sc, and Ac/Cc occurred about 37 % of the

time, while low-variability classes except for clear sky oc-

curred 53 % of the time; 10 % were clear. No big differences

can be seen in the cloud motion statistics for all non-clear

situations. An average cloud speed of 10 ms−1 has the effect

that a cloud will move across the domain in about 33 min

from east to west or from north to south. This number illus-

trates one aspect of the limits to the forecast horizon. For fur-

ther evaluation purposes we group the convective type clouds

Cu, Sc, Ac/Cc together into a new category, “heterogeneous”

clouds, while the cloud types St/As, Ci/Cs and the clear sky

situations build the category “homogeneous” clouds, as they

cause rather low variability in surface solar irradiance.

4.2 Irradiance analysis accuracy

Irradiance analysis is evaluated depending on the distance of

the stations from the camera and according to the different

cloud classes.

The spatial distribution of the mean bias error MBE of the

GHI analysis (forecast lead time t = 0) is shown in Fig. 8

for Cu and clear sky situations. Here, the MBE is given for

each of the stations of the subset introduced in Sect. 3.5.1.

The MBE distribution for Cu shows a negative MBE of about

−80 Wm−2 for stations close to the camera, increasing with

distance to positive values around 70 Wm−2. A similar over-

estimation for stations close to the camera can also be found

for Ac/Cc, Sc and Ci/Cs (not shown here). This is probably

explained by the fact that the correction of RBR (Sect. 3.1.1)

is too strong in the circumsolar region (affecting these loca-

tions) in the presence of the mentioned clouds. As a result,

clouds in the circumsolar region are possibly too often mis-

classified as clear sky and surface irradiance is overestimated

in the area around the camera. This phenomenon is not found

for St and Ns/Cb situations dominated by (dark) overcast sky

not affected by the correction. Moreover, the clear sky MBE

distribution in Fig. 8 shows that the correction performs on

average well in clear sky situations as no significant MBE for

stations surrounding the camera is present.

An increasing tendency in MBE with distance from the

camera is also found for the aforementioned types Ac/Cc, Sc,

and Ci/Cs, while it is not present during clear sky or overcast

stratus clouds (only clear sky is shown here). A similar ten-

dency is identified for RMSE in Fig. 9 showing the cumulus

conditions again. However, even if there is a large (absolute)

MBE for stations close to the camera, no increased RMSE

is present. This makes it clear that the main contribution to

RMSE is the standard deviation of the analysis error and not

the MBE.

Several possible explanations for these results can be iden-

tified. First, the perspective error increases with distance

from the centre of the image. As a result, convective clouds

with vertical extent (mostly cumulus), which are interpreted

www.atmos-chem-phys.net/16/3399/2016/ Atmos. Chem. Phys., 16, 3399–3412, 2016
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Figure 8. Mean bias error (MBE) of sky imager analysis for each

pyranometer and for cumulus cloud type (top) and clear sky condi-

tions (bottom).

as horizontally flat in our scheme, are projected incorrectly if

they are seen from their side near the edge of the field of view.

Among other things, this leads to an underestimation of gaps

in the cloud layer contributing to RMSE and a positive MBE.

Furthermore, uncertainties in cloud base height lead to higher

errors in the shadow mapping the more distant the clouds are

(can be derived from Eq. 4). Moreover, cloud base height was

measured at the position of the camera. Therefore, its repre-

sentativeness for locations more distant is reduced depending

on the cloud situation. This displacement of shadow patterns

contributes mainly to RMSE. As the temporal and spatial res-

olution of 1 Hz and 20 m, respectively, is quite high, double

penalties in the case of small cumulus or broken cloud layers

are likely (Gilleland et al., 2009) and increase RMSE even

more. Furthermore, the pixel resolution is reduced for larger

lens incidence angles. This leads to a reduced spatial resolu-

tion for locations distant from the camera, which affects the

accuracy of the camera-based irradiance analysis.

Moreover, Fig. 9 shows the RMSE that is introduced if

a single pyranometer is used representatively for the whole

area. It is assumed that the pyranometer closest to the cam-

era is the reference sensor, and the RMSEs of its measure-
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Figure 9. Root mean square error (RMSE) of sky imager analysis

for each station and for cumulus cloud type (blue dots). The red

triangles mark the RMSE of each station when compared to the

station closest to the camera. This station has no error and therefore

is not shown in this figure.

ments compared to the remaining pyranometers are calcu-

lated. As expected, the error increases very fast with distance

as the cross-correlation between the sensor pairs is reduced

especially in conditions with high GHI variability. It can be

stated that the “break-even” distance, where the sky-imager-

based irradiance analysis outperforms a single sensor spatial

extrapolation for these highly variable cloud conditions, is

found at a distance between 1 and 2 km from the camera. For

other convective cloud types a distance of 2–3 km for Sc and

Ac/Cc and 6 km for Ns/Cb is found. In the case of St/As and

Ci/Cs clouds and in clear sky conditions, the analysis error is

always larger due to the high sensor pair correlation in these

less variable situations.

4.3 Forecast performance

Figure 10 shows the RMSE of the sky imager forecast and its

corresponding persistence forecasts depending on the fore-

cast horizon for the different cloud conditions. Here, the av-

erage RMSE of all evaluated pyranometer stations is shown.

As expected, the overall forecast error is higher in situations

with more variability in cloud cover and therefore in surface

solar irradiance. For cumulus clouds (Cu), the RMSE reaches

its maximum of almost 250 Wm−2 for a forecast horizon of

10 min, while the error is almost constant over the forecast

horizon at 70 Wm−2 in clear sky conditions. Forecasts in

the presence of other convective type clouds Sc and Ac/Cc

show a similar behaviour with a slightly lower RMSE than

Cu. On average for all stations, it can be stated that sky im-

ager forecasts cannot outperform persistence under all cloud

conditions. Even if persistence error increases fast with time,

it stays lower than the corresponding deterministic forecast

error during the whole forecast horizon. For cumulus clouds,

a decrease in RMSE after about 10 min is visible even for

persistence. The reason could be the varying and limited
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Figure 10. Average RMSE of all stations depending on the forecast

horizon and the predominant cloud conditions. Solid lines repre-

sent the sky imager forecasts, while dashed lines show persistence

errors.

forecast horizon depending on cloud base height, cloud speed

and direction, sun position, and the location of each individ-

ual pyranometer. The limits of the underlying domain are

a fixed constraint. A detailed analysis (not shown here) re-

vealed that forecast runs with large forecast horizons have

a lower RMSE value, probably caused by lower cloud speed

resulting in less GHI variability. This is maximally expressed

in the cumulus cloud class.

From Fig. 10 it can also be seen that the difference be-

tween sky imager forecast RMSE and persistence RMSE is

much more pronounced for the stratiform cloud types St/As

and Ci/Cs. Figure 11 underlines this result as it shows the

forecast skill FS for the categories of “homogeneous” and

“heterogeneous” clouds defined in Sect. 4.1. While the sky-

imager-based forecasts are able to outperform persistence

under heterogeneous conditions for at least a few stations af-

ter about 10 min, the forecast skill under homogeneous con-

ditions is much worse.

In order to determine the influence of the irradiance re-

trieval based on the binary cloud/sky decision on the forecast

error, binary forecasts with the accuracy metric (Eq. 11) are

also evaluated. It is expected that the forecast performance

is higher if only the two main states, sun and shadow, are

considered, as GHI forecast errors are introduced into our

algorithm during conditions in which the measured GHI dis-

tribution deviates strongly from our simplified binary model

from Sect. 3.3.

The evaluated accuracy for both sky-imager-based fore-

casts and persistence is shown in Fig. 12. Obviously, the

accuracy for stratus (St) and nimbostratus/cumulonimbus

(Ns/Cb) clouds is very high for both forecasts, indicating

that irradiance is constantly lower than k∗ = 0.7 and that this

state is predicted accurately. The clear sky case can also be

predicted with an accuracy of more than 90 %. Forecasts in

times of semi-transparent cirrus/cirrostratus (Ci/Cs) clouds

still have a low skill, indicating that misclassifications in

Figure 11. Average forecast skill of all stations depending on fore-

cast horizon. The classified cloud types are summarized in two

groups. The coloured confidence interval illustrates the standard de-

viation of the forecast skill of all stations.
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errors.

cloud detection are preceding the irradiance retrieval. More-

over, from our experience we know that the RBR threshold

used for cloud detection is not able to distinguish well be-

tween thin cirrus clouds and blue sky. Stratocumulus (Sc)

also achieves high accuracy larger than 80 % for the whole

horizon. In contrast to RMSE, forecast accuracy can out-

perform persistence from a forecast lead time of 3–4 min

on. This indicates that GHI forecast errors for Sc condi-

tions, which are dominated by high cloud coverage, can be

attributed a considerable amount to irradiance retrieval er-

rors. For Cu and Ac/Cc, only low improvements can be

stated compared to RMSE for continuous forecast verifica-

tion. As a consequence, other error sources like spatial mis-

match dominate the error in this case. Furthermore, this re-

sult is of interest for applications focusing on binary events,

which is the case for concentrated solar power (CSP), dealing

mainly with variations in direct normal irradiance.
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In the previous section, we identified a spatial “break-

even” distance for GHI analysis for different cloud classes.

Such a “break-even” point can also be identified for an in-

creased temporal GHI variability. Figure 13 displays the

RMSE (based on clear sky index k∗) of a 10 min forecast

depending on the prevailing variability (Eq. 12) for 10 min

k∗ increments. Here, no distinction in cloud classes is made.

RMSE and variability are calculated for short moving time

windows of 25 min each. The time step between two time

windows is 1 min, resulting in an overlapping database. The

lines in Fig. 13 represent the average values of each bin. With

that definition, persistence forecast errors fall on the diago-

nal line of the plot. This analysis summarizes the previous

investigations of forecast errors under specific cloud condi-

tions. In situations of low GHI variability there is only low

forecast skill, which is increased with increased GHI vari-

ability. As these situations are much less frequent (see dash-

dotted line in Fig. 13), this skill is not visible in the aver-

age error statistics. Therefore, the strength of deterministic

sky-imager-based forecasts for changing cloud conditions is

made visible here. It can be stated that there is a specific value

of 0.3 to 0.4 k∗ variability in the given case where a sky-

imager-based forecast can have skill against persistence. For

other locations in the area covered, the results are similar,

with a slightly different “break-even” value (not shown here).

5 Conclusions

A short-term GHI forecast experiment based on hemispheric

images of the visible sky was conducted on a large data

set of spatially distributed pyranometers. A processing chain

comprising cloud detection, cloud motion, cloud and shadow

mapping, and irradiance retrieval was proposed and applied

to sky images retrieved during April and May 2013. The re-

sults show that the forecast performance and the benefit of

sky-imager-based forecasts vary a lot depending on the given

cloud conditions. A cloud classification scheme was used to

determine seven different cloud conditions in order to evalu-

ate the performance in more detail. Even though the overall

forecast performance is quite low compared to persistence,

one has to point out that the skill increases in heterogeneous

cloud conditions, leading to increased variability in surface

solar irradiance.

The evaluation of the GHI analysis shows the potential of

sky imagers for areal irradiance monitoring. The study shows

that the sky imager retrieval for distances of more than 1–

2 km from the camera under cumulus cloud conditions out-

performs a single pyranometer representing the spatial irra-

diance distribution. This value is increased for stratocumulus

and altocumulus/cirrocumulus to 2–3 km and for nimbostra-

tus/cumulonimbus to 6 km. As setting up a pyranometer net-

work with a comparable density or resolution to a sky imager

is more expensive than a camera, a camera-based areal irra-

diance monitoring can be beneficial.
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Figure 13. Forecast error (RMSE) vs. variability for pyranometer

33 located close to the camera (solid line). Persistence error (dashed

line) is marked on the diagonal. The number of instances averaged

in each bin with size k∗ = 0.02 (dash-dotted line) is given on the

right y axis to illustrate the robustness.

The impact of irradiance retrieval on forecast errors is

shown by comparing standard GHI forecast errors to a binary

forecast evaluation. This indicates potential for improve-

ments by enhancing the irradiance retrieval. We also see po-

tential to improve the model in the handling of multi-layer

clouds (accurate cloud base height and cloud motion) and

in a better cloud detection (assigning transmissivity to each

cloud pixel instead of simple binary states). With these im-

provements in image processing and forecast methods, fore-

cast error will be reduced continuously in the future. Sky-

imager-based analysis and forecast methods can then con-

tribute to site monitoring and short-term forecasting, espe-

cially in highly variable cloud conditions.
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