Articles | Volume 16, issue 5
Atmos. Chem. Phys., 16, 3033–3040, 2016
Atmos. Chem. Phys., 16, 3033–3040, 2016

Research article 09 Mar 2016

Research article | 09 Mar 2016

Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

Rajan K. Chakrabarty et al.

Related authors

Diel cycle impacts on the chemical and light absorption properties of organic carbon aerosol from wildfires in the western United States
Benjamin Sumlin, Edward Fortner, Andrew Lambe, Nishit J. Shetty, Conner Daube, Pai Liu, Francesca Majluf, Scott Herndon, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 21, 11843–11856,,, 2021
Short summary
Measuring light absorption by freshly emitted organic aerosols: optical artifacts in traditional solvent-extraction-based methods
Nishit J. Shetty, Apoorva Pandey, Stephen Baker, Wei Min Hao, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 19, 8817–8830,,, 2019
Short summary
Accounting for the effects of nonideal minor structures on the optical properties of black carbon aerosols
Shiwen Teng, Chao Liu, Martin Schnaiter, Rajan K. Chakrabarty, and Fengshan Liu
Atmos. Chem. Phys., 19, 2917–2931,,, 2019
Short summary
Aerosol light absorption from optical measurements of PTFE membrane filter samples: sensitivity analysis of optical depth measures
Apoorva Pandey, Nishit J. Shetty, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 12, 1365–1373,,, 2019
Short summary
Aerosol emissions factors from traditional biomass cookstoves in India: insights from field measurements
Apoorva Pandey, Sameer Patel, Shamsh Pervez, Suresh Tiwari, Gautam Yadama, Judith C. Chow, John G. Watson, Pratim Biswas, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 17, 13721–13729,,, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors
Yu Wang, Aristeidis Voliotis, Yunqi Shao, Taomou Zong, Xiangxinyue Meng, Mao Du, Dawei Hu, Ying Chen, Zhijun Wu, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 11303–11316,,, 2021
Short summary
Ice nucleation on surrogates of boreal forest SOA particles: effect of water content and oxidative age
Ana A. Piedehierro, André Welti, Angela Buchholz, Kimmo Korhonen, Iida Pullinen, Ilkka Summanen, Annele Virtanen, and Ari Laaksonen
Atmos. Chem. Phys., 21, 11069–11078,,, 2021
Short summary
Viscosity and phase state of aerosol particles consisting of sucrose mixed with inorganic salts
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228,,, 2021
Short summary
Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol ∕ (NH4)2SO4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification
Shuaishuai Ma, Zhe Chen, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 21, 9705–9717,,, 2021
Short summary
Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area
Zhaobin Sun, Xiujuan Zhao, Ziming Li, Guiqian Tang, and Shiguang Miao
Atmos. Chem. Phys., 21, 8863–8882,,, 2021
Short summary

Cited articles

Abu-Rahmah, A., Arnott, W. P., and Moosmüller, H.: Integrating Nephelometer with a Low Truncation Angle and an Extended Calibration Scheme, Meas. Sci. Technol., 17, 1723–1732, 2006.
Arnott, W. P., Moosmüller, H., Rogers, C. F., Jin, T., and Bruch, R.: Photoacoustic Spectrometer for Measuring Light Absorption by Aerosol: Instrument Description, Atmos. Environ., 33, 2845–2852, 1999.
Bachelet, D., Lenihan, J., Neilson, R., Drapek, R., and Kittel, T.: Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska, Can. J. Forest Res., 35, 2244–2257, 2005.
Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Kicklighter, D. W., and Melillo, J.: Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century, Glob. Change Biol., 15, 1491–1510, 2009.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, 2008.
Short summary
Brown carbon aerosols dominate particulate emissions from the burning of Alaskan and Siberian peatlands. They physically occur as amorphous "tar balls" with negligible black carbon mixing. They absorb very strongly in the shorter visible wavelengths, characterized by a mean Ångström coefficient of ≈ 9. These aerosols could result in a net warming of the atmosphere, provided the albedo of the underlying surface is greater than 0.6.
Final-revised paper