Articles | Volume 16, issue 21
https://doi.org/10.5194/acp-16-13725-2016
https://doi.org/10.5194/acp-16-13725-2016
Research article
 | 
07 Nov 2016
Research article |  | 07 Nov 2016

Parameterization of oceanic whitecap fraction based on satellite observations

Monique F. M. A. Albert, Magdalena D. Anguelova, Astrid M. M. Manders, Martijn Schaap, and Gerrit de Leeuw

Related authors

An enhanced emissions module for the PALM model system 23.10 with application on PM10 emissions from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-61,https://doi.org/10.5194/gmd-2024-61, 2024
Revised manuscript accepted for GMD
Short summary
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024,https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Evaluation of the first year of Pandora NO2 measurements over Beijing and application to satellite validation
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024,https://doi.org/10.5194/amt-17-377-2024, 2024
Short summary
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022,https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Impact of urban heat island on inorganic aerosol in the lower free troposphere: a case study in Hangzhou, China
Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu
Atmos. Chem. Phys., 22, 10623–10634, https://doi.org/10.5194/acp-22-10623-2022,https://doi.org/10.5194/acp-22-10623-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024,https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024,https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024,https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary

Cited articles

Albert, M. F. M. A., Schaap, M., de Leeuw, G., and Builtjes, P. J. H.: Progress in the determination of the sea spray source function using satellite data, Journal of Integrative Environmental Sciences, 7, 159–166, 2010.
Albert, M. F. M. A., Schaap, M., Manders, A. M. M., Scannell, C., O'Dowd, C. D., and de Leeuw, G.: Uncertainties in the determination of global sub-micron marine organic matter emissions, Atmos. Environ., 57, 289–300, 2012.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997.
Andreas, E. L: Sea Spray and the turbulent air-sea heat fluxes, J. Geophys. Res., 97, 11429–11441, 1992.
Anguelova, M. D.: Assessing the utility of satellite-based whitecap fraction to estimate sea spray production and CO2 transfer velocity, IOP Conf. Ser.: Earth Environ. Sci., 35, 012002, https://doi.org/10.1088/1755-1315/35/1/012002, 2016.
Download
Short summary
Sea spray source functions (SSSFs) predict production of sea salt aerosol, important for climate. Sea spray originates from bubble bursting within whitecaps, mainly formed by wind speed (U). Using satellite-based whitecap fraction (W) data analyzed on global and regional scale and explicitly accounting for sea surface temperature (T) we derive a new W(U, T) parameterization. We use it to evaluate influence of secondary factors on a SSSF via W.
Altmetrics
Final-revised paper
Preprint