Articles | Volume 14, issue 3
Atmos. Chem. Phys., 14, 1701–1715, 2014
https://doi.org/10.5194/acp-14-1701-2014
Atmos. Chem. Phys., 14, 1701–1715, 2014
https://doi.org/10.5194/acp-14-1701-2014

Research article 14 Feb 2014

Research article | 14 Feb 2014

Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks

C.-M. Gan et al.

Related authors

Representing the effects of stratosphere–troposphere exchange on 3-D O3 distributions in chemistry transport models using a potential vorticity-based parameterization
Jia Xing, Rohit Mathur, Jonathan Pleim, Christian Hogrefe, Jiandong Wang, Chuen-Meei Gan, Golam Sarwar, David C. Wong, and Stuart McKeen
Atmos. Chem. Phys., 16, 10865–10877, https://doi.org/10.5194/acp-16-10865-2016,https://doi.org/10.5194/acp-16-10865-2016, 2016
Short summary
Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States
C.-M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, D. Wong, R. Gilliam, and C. Wei
Atmos. Chem. Phys., 15, 12193–12209, https://doi.org/10.5194/acp-15-12193-2015,https://doi.org/10.5194/acp-15-12193-2015, 2015
Short summary
Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?
J. Xing, R. Mathur, J. Pleim, C. Hogrefe, C.-M. Gan, D. C. Wong, and C. Wei
Atmos. Chem. Phys., 15, 9997–10018, https://doi.org/10.5194/acp-15-9997-2015,https://doi.org/10.5194/acp-15-9997-2015, 2015
Short summary
Observations and modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe
J. Xing, R. Mathur, J. Pleim, C. Hogrefe, C.-M. Gan, D. C. Wong, C. Wei, R. Gilliam, and G. Pouliot
Atmos. Chem. Phys., 15, 2723–2747, https://doi.org/10.5194/acp-15-2723-2015,https://doi.org/10.5194/acp-15-2723-2015, 2015
Short summary
Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010
J. Xing, J. Pleim, R. Mathur, G. Pouliot, C. Hogrefe, C.-M. Gan, and C. Wei
Atmos. Chem. Phys., 13, 7531–7549, https://doi.org/10.5194/acp-13-7531-2013,https://doi.org/10.5194/acp-13-7531-2013, 2013

Related subject area

Subject: Radiation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Changes in the surface broadband shortwave radiation budget during the 2017 eclipse
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020,https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions
Johannes Stapf, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020,https://doi.org/10.5194/acp-20-9895-2020, 2020
Deposition of brown carbon onto snow: changes in snow optical and radiative properties
Nicholas D. Beres, Deep Sengupta, Vera Samburova, Andrey Y. Khlystov, and Hans Moosmüller
Atmos. Chem. Phys., 20, 6095–6114, https://doi.org/10.5194/acp-20-6095-2020,https://doi.org/10.5194/acp-20-6095-2020, 2020
Short summary
Solar UV radiation measurements in Marambio, Antarctica, during years 2017–2019
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020,https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
A revisiting of the parametrization of downward longwave radiation in summer over the Tibetan Plateau based on high-temporal-resolution measurements
Mengqi Liu, Xiangdong Zheng, Jinqiang Zhang, and Xiangao Xia
Atmos. Chem. Phys., 20, 4415–4426, https://doi.org/10.5194/acp-20-4415-2020,https://doi.org/10.5194/acp-20-4415-2020, 2020
Short summary

Cited articles

Augustine, J. A. and Dutton, E. G.: Variability of the surface radiation budget over the United States from 1996 through 2011 from high-quality measurements, J. Geophys. Res.-Atmos., 118, 43–53, https://doi.org/10.1029/2012JD018551, 2013.
Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD – A national surface radiation budget network for atmospheric research, B. Am. Meteorol. Soc., 81, 2341–2357, https://doi.org/10.1175/1520-477(2000)081<2341:SANSRB>2.3.CO;2, 2000.
Augustine, J. A., Hodges, G. B., Cornwall, C. R., Michalsky, J. J., and Medina, C. I.: An update on SURFRAD – The GCOS surface radiation budget network for the continental United States, J. Atmos. Ocean. Tech., 22, 1460–1472, https://doi.org/10.1175/JTECH1806.1, 2005.
Augustine, J. A., Hodges, G. B., Dutton, E. G., Michalsky, J. J., and Cornwall, C. R.: An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD), J. Geophys. Res., 113, D11204, https://doi.org/10.1029/2007JD009504, 2008.
Burkhardt, U., Kärcher, B., and Schumann, U.: Global modeling of the contrail and contrail cirrus climate impact, B. Am. Meteorol. Soc., 91, 479–484, https://doi.org/10.1175/2009BAMS2656.1, 2010.
Download
Altmetrics
Final-revised paper
Preprint