Articles | Volume 24, issue 10
Research article
22 May 2024
Research article |  | 22 May 2024

The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China

Huige Di and Yun Yuan

Related authors

The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196,,, 2024
Short summary
Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
Yun Yuan, Huige Di, Yuanyuan Liu, Tao Yang, Qimeng Li, Qing Yan, Wenhui Xin, Shichun Li, and Dengxin Hua
Atmos. Meas. Tech., 15, 4989–5006,,, 2022
Short summary
Determination of atmospheric column condensate using active and passive remote sensing technology
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567,,, 2022
Short summary
Performance evaluation of an integrated path differential absorption LIDAR model for surface pressure from low-Earth orbit
Guanglie Hong, Yu Dong, and Huige Di
Atmos. Meas. Tech. Discuss.,,, 2022
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909,,, 2024
Short summary
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574,,, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383,,, 2024
Short summary
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634,,, 2024
Short summary
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952,,, 2024
Short summary

Cited articles

Bergeron, T.: On the physics of clouds and precipitation, Proc. 5th Assembly UGGI, Lisbon, Portugal, 1935, 156–180 pp., 1935. 
Braham, R. R.: Cirrus Cloud Seeding as a Trigger for Storm Development, J. Atmos. Sci., 24, 311–312,<0311:CCSAAT>2.0.CO;2, 1967. 
Cheng, C. and Yi, F.: Falling Mixed-Phase Ice Virga and their Liquid Parent Cloud Layers as Observed by Ground-Based Lidars, Remote Sens.-Basel, 12, 2094,, 2020. 
Choularton, T. W. and Perry, S. J.: A model of the orographic enhancement of snowfall by the seeder-feeder mechanism, Q. J. Roy. Meteor. Soc., 112, 335–345,, 1986. 
Di, H., Yuan, Y., Yan, Q., Xin, W., Li, S., Wang, J., Wang, Y., Zhang, L., and Hua, D.: Determination of atmospheric column condensate using active and passive remote sensing technology, Atmos. Meas. Tech., 15, 3555–3567,, 2022. 
Short summary
We observed the seeder–feeder process among double-layer clouds using a cloud radar and microwave radiometer. By defining the parameters of the seeding depth and seeding time of the upper cloud affecting the lower cloud, we find that the cloud particle terminal velocity is significantly enhanced during the seeder–feeder period, and the lower the height and thinner the thickness of the height difference between double-layer clouds, the lower the height and thicker the thickness of seeding depth.
Final-revised paper