Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4105-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4105-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical modelling of relative contribution of planetary waves to the atmospheric circulation
Andrey V. Koval
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg, 199034, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg, 195196, Russia
Olga N. Toptunova
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg, 195196, Russia
Maxim A. Motsakov
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg, 195196, Russia
Ksenia A. Didenko
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg, 199034, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg, 195196, Russia
Tatiana S. Ermakova
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg, 199034, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg, 195196, Russia
Nikolai M. Gavrilov
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg, 199034, Russia
Eugene V. Rozanov
CORRESPONDING AUTHOR
Physikalisch-Meteorologisches Observatorium, Davos World Radiation
Centre, Davos Dorf, 7260, Switzerland
Related authors
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Ales Kuchar, Timofei Sukhodolov, Gabriel Chiodo, Andrin Jörimann, Jessica Kult-Herdin, Eugene Rozanov, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2024-1909, https://doi.org/10.5194/egusphere-2024-1909, 2024
Short summary
Short summary
In January 2022, the Hunga Tonga-Hunga Ha'apai volcano erupted, sending massive amount of water vapor into the atmosphere. This event had a significant impact on stratospheric and lower mesosphere chemical composition. A year later stratospheric conditions have been disturbed during so-called Sudden Stratospheric. Here we simulate a novel pathway by which the water-rich eruption such as HT may have contributed to conditions during these events and consequently impacted surface climate.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
Atmos. Chem. Phys., 23, 13387–13411, https://doi.org/10.5194/acp-23-13387-2023, https://doi.org/10.5194/acp-23-13387-2023, 2023
Short summary
Short summary
The Montreal Protocol (MP) has successfully reduced the Antarctic ozone hole by banning chlorofluorocarbons (CFCs) that destroy the ozone layer. Moreover, CFCs are strong greenhouse gases (GHGs) that would have strengthened global warming. In this study, we investigate the surface weather and climate in a world without the MP at the end of the 21st century, disentangling ozone-mediated and GHG impacts of CFCs. Overall, we avoided 1.7 K global surface warming and a poleward shift in storm tracks.
Marina Friedel, Gabriel Chiodo, Timofei Sukhodolov, James Keeble, Thomas Peter, Svenja Seeber, Andrea Stenke, Hideharu Akiyoshi, Eugene Rozanov, David Plummer, Patrick Jöckel, Guang Zeng, Olaf Morgenstern, and Béatrice Josse
Atmos. Chem. Phys., 23, 10235–10254, https://doi.org/10.5194/acp-23-10235-2023, https://doi.org/10.5194/acp-23-10235-2023, 2023
Short summary
Short summary
Previously, it has been suggested that springtime Arctic ozone depletion might worsen in the coming decades due to climate change, which might counteract the effect of reduced ozone-depleting substances. Here, we show with different chemistry–climate models that springtime Arctic ozone depletion will likely decrease in the future. Further, we explain why models show a large spread in the projected development of Arctic ozone depletion and use the model spread to constrain future projections.
Tatiana Egorova, Jan Sedlacek, Timofei Sukhodolov, Arseniy Karagodin-Doyennel, Franziska Zilker, and Eugene Rozanov
Atmos. Chem. Phys., 23, 5135–5147, https://doi.org/10.5194/acp-23-5135-2023, https://doi.org/10.5194/acp-23-5135-2023, 2023
Short summary
Short summary
This paper describes the climate and atmosphere benefits of the Montreal Protocol, simulated with the state-of-the-art Earth system model SOCOLv4.0. We have added to and confirmed the previous studies by showing that without the Montreal Protocol by the end of the 21st century there would be a dramatic reduction in the ozone layer as well as substantial perturbation of the essential climate variables in the troposphere caused by the warming from increasing ozone-depleting substances.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, and Thomas Peter
Atmos. Chem. Phys., 23, 4801–4817, https://doi.org/10.5194/acp-23-4801-2023, https://doi.org/10.5194/acp-23-4801-2023, 2023
Short summary
Short summary
The future ozone evolution in SOCOLv4 simulations under SSP2-4.5 and SSP5-8.5 scenarios has been assessed for the period 2015–2099 and subperiods using the DLM approach. The SOCOLv4 projects a decline in tropospheric ozone in the 2030s in SSP2-4.5 and in the 2060s in SSP5-8.5. The stratospheric ozone increase is ~3 times higher in SSP5-8.5, confirming the important role of GHGs in ozone evolution. We also showed that tropospheric ozone strongly impacts the total column in the tropics.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022, https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Short summary
Applying the dynamic linear model, we confirm near-global ozone recovery (55°N–55°S) in the mesosphere, upper and middle stratosphere, and a steady increase in the troposphere. We also show that modern chemistry–climate models (CCMs) like SOCOLv4 may reproduce the observed trend distribution of lower stratospheric ozone, despite exhibiting a lower magnitude and statistical significance. The obtained ozone trend pattern in SOCOLv4 is generally consistent with observations and reanalysis datasets.
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022, https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Short summary
We make high-resolution simulations of poorly understood decays of nonlinear atmospheric acoustic–gravity waves (AGWs) after deactivations of the wave forcing. The standard deviations of AGW perturbations, after fast dispersions of traveling modes, experience slower exponential decreases. AGW decay times are estimated for the first time and are 20–100 h in the stratosphere and mesosphere. This requires slow, quasi-standing and secondary modes in parameterizations of AGW impacts to be considered.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Kseniia Golubenko, Eugene Rozanov, Gennady Kovaltsov, Ari-Pekka Leppänen, Timofei Sukhodolov, and Ilya Usoskin
Geosci. Model Dev., 14, 7605–7620, https://doi.org/10.5194/gmd-14-7605-2021, https://doi.org/10.5194/gmd-14-7605-2021, 2021
Short summary
Short summary
A new full 3-D time-dependent model, based on SOCOL-AERv2, of beryllium atmospheric production, transport, and deposition has been developed and validated using directly measured data. The model is recommended to be used in studies related to, e.g., atmospheric dynamical patterns, extreme solar particle storms, long-term solar activity reconstruction from cosmogenic proxy data, and solar–terrestrial relations.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Timofei Sukhodolov, Tatiana Egorova, Andrea Stenke, William T. Ball, Christina Brodowsky, Gabriel Chiodo, Aryeh Feinberg, Marina Friedel, Arseniy Karagodin-Doyennel, Thomas Peter, Jan Sedlacek, Sandro Vattioni, and Eugene Rozanov
Geosci. Model Dev., 14, 5525–5560, https://doi.org/10.5194/gmd-14-5525-2021, https://doi.org/10.5194/gmd-14-5525-2021, 2021
Short summary
Short summary
This paper features the new atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0 and its validation. The model performance is evaluated against reanalysis products and observations of atmospheric circulation and trace gas distribution, with a focus on stratospheric processes. Although we identified some problems to be addressed in further model upgrades, we demonstrated that SOCOLv4.0 is already well suited for studies related to chemistry–climate–aerosol interactions.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Sergei P. Smyshlyaev, Pavel N. Vargin, Alexander N. Lukyanov, Natalia D. Tsvetkova, and Maxim A. Motsakov
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-11, https://doi.org/10.5194/acp-2021-11, 2021
Revised manuscript not accepted
Short summary
Short summary
The dynamical processes and changes in Arctic ozone during the winter-spring season 2019–2020 were analyzed using ozonesondes, reanalysis data and numerical experiments with chemistry-transport and trajectory models. The results of numerical experiments indicated that dynamical processes predominate in ozone loss, and the chemical ozone depletion is determined not only by heterogeneous processes on the surface of the polar stratospheric clouds, but by the gas-phase destruction as well.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020, https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
Short summary
The tropospheric ozone increase from pre-industrial to the present day leads to a radiative forcing. The top-of-atmosphere outgoing fluxes at the ozone band are controlled by ozone, water vapor, and temperature. We demonstrate a method to attribute the models’ flux biases to these key players using satellite-constrained instantaneous radiative kernels. The largest spread between models is found in the tropics, mainly driven by ozone and then water vapor.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019, https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary
Short summary
We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation (RC) in chemistry–climate models. Nudging meteorology does not constrain the mean strength of RC compared to free-running simulations, and despite the lack of agreement in the mean circulation, nudging tightly constrains the inter-annual variability in the tropical upward mass flux in the lower stratosphere. In summary, nudging strongly affects the representation of RC.
Aryeh Feinberg, Timofei Sukhodolov, Bei-Ping Luo, Eugene Rozanov, Lenny H. E. Winkel, Thomas Peter, and Andrea Stenke
Geosci. Model Dev., 12, 3863–3887, https://doi.org/10.5194/gmd-12-3863-2019, https://doi.org/10.5194/gmd-12-3863-2019, 2019
Short summary
Short summary
We have improved several aspects of atmospheric sulfur cycling in SOCOL-AER, an aerosol–chemistry–climate model. The newly implemented features in SOCOL-AERv2 include interactive deposition schemes, improved sulfur mass conservation, and expanded tropospheric chemistry. SOCOL-AERv2 shows better agreement with stratospheric aerosol observations and sulfur deposition networks compared to SOCOL-AERv1. SOCOL-AERv2 can be used to study impacts of sulfate aerosol on climate, chemistry, and ecosystems.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Pavle Arsenovic, Alessandro Damiani, Eugene Rozanov, Bernd Funke, Andrea Stenke, and Thomas Peter
Atmos. Chem. Phys., 19, 9485–9494, https://doi.org/10.5194/acp-19-9485-2019, https://doi.org/10.5194/acp-19-9485-2019, 2019
Short summary
Short summary
Low-energy electrons (LEE) are the dominant source of odd nitrogen, which destroys ozone, in the mesosphere and stratosphere in polar winter in the geomagnetically active periods. However, the observed stratospheric ozone anomalies can be reproduced only when accounting for both low- and middle-range energy electrons (MEE) in the chemistry-climate model. Ozone changes may induce further dynamical and thermal changes in the atmosphere. We recommend including both LEE and MEE in climate models.
Olga Toptunova, Margarita Choulga, and Ekaterina Kurzeneva
Adv. Sci. Res., 16, 57–61, https://doi.org/10.5194/asr-16-57-2019, https://doi.org/10.5194/asr-16-57-2019, 2019
Short summary
Short summary
Lakes affect local weather and climate. This influence should be taken into account in NWP models through parameterization. For the atmospheric simulation, global coverage of lake depth data is essential. To provide such data Global Lake Database (GLDB) has been created. More than 3 thousand in-situ lake depths all over the globe have been added. However over 83 % of newly added data have not been found on global ecosystem map ECOCLIMAP2.
Roland Eichinger, Simone Dietmüller, Hella Garny, Petr Šácha, Thomas Birner, Harald Bönisch, Giovanni Pitari, Daniele Visioni, Andrea Stenke, Eugene Rozanov, Laura Revell, David A. Plummer, Patrick Jöckel, Luke Oman, Makoto Deushi, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 921–940, https://doi.org/10.5194/acp-19-921-2019, https://doi.org/10.5194/acp-19-921-2019, 2019
Short summary
Short summary
To shed more light upon the changes in stratospheric circulation in the 21st century, climate projection simulations of 10 state-of-the-art global climate models, spanning from 1960 to 2100, are analyzed. The study shows that in addition to changes in transport, mixing also plays an important role in stratospheric circulation and that the properties of mixing vary over time. Furthermore, the influence of mixing is quantified and a dynamical framework is provided to understand the changes.
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Timofei Sukhodolov, Jian-Xiong Sheng, Aryeh Feinberg, Bei-Ping Luo, Thomas Peter, Laura Revell, Andrea Stenke, Debra K. Weisenstein, and Eugene Rozanov
Geosci. Model Dev., 11, 2633–2647, https://doi.org/10.5194/gmd-11-2633-2018, https://doi.org/10.5194/gmd-11-2633-2018, 2018
Short summary
Short summary
The Pinatubo eruption in 1991 is the strongest directly observed volcanic event. In a series of experiments, we simulate its influence on the stratospheric aerosol layer using a state-of-the-art aerosol–chemistry–climate model, SOCOL-AERv1.0, and compare our results to observations. We show that SOCOL-AER reproduces the most important atmospheric effects and can therefore be used to study the climate effects of future volcanic eruptions and geoengineering by artificial sulfate aerosol.
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, https://doi.org/10.5194/acp-18-7453-2018, 2018
Clara Orbe, Huang Yang, Darryn W. Waugh, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, John F. Scinocca, Beatrice Josse, Virginie Marecal, Patrick Jöckel, Luke D. Oman, Susan E. Strahan, Makoto Deushi, Taichu Y. Tanaka, Kohei Yoshida, Hideharu Akiyoshi, Yousuke Yamashita, Andreas Stenke, Laura Revell, Timofei Sukhodolov, Eugene Rozanov, Giovanni Pitari, Daniele Visioni, Kane A. Stone, Robyn Schofield, and Antara Banerjee
Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018, https://doi.org/10.5194/acp-18-7217-2018, 2018
Short summary
Short summary
In this study we compare a few atmospheric transport properties among several numerical models that are used to study the influence of atmospheric chemistry on climate. We show that there are large differences among models in terms of the timescales that connect the Northern Hemisphere midlatitudes, where greenhouse gases and ozone-depleting substances are emitted, to the Southern Hemisphere. Our results may have important implications for how models represent atmospheric composition.
Simone Dietmüller, Roland Eichinger, Hella Garny, Thomas Birner, Harald Boenisch, Giovanni Pitari, Eva Mancini, Daniele Visioni, Andrea Stenke, Laura Revell, Eugene Rozanov, David A. Plummer, John Scinocca, Patrick Jöckel, Luke Oman, Makoto Deushi, Shibata Kiyotaka, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 18, 6699–6720, https://doi.org/10.5194/acp-18-6699-2018, https://doi.org/10.5194/acp-18-6699-2018, 2018
Pavle Arsenovic, Eugene Rozanov, Julien Anet, Andrea Stenke, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 18, 3469–3483, https://doi.org/10.5194/acp-18-3469-2018, https://doi.org/10.5194/acp-18-3469-2018, 2018
Short summary
Short summary
Global warming will persist in the 21st century, even if the solar activity undergoes an unusually strong and long decline. Decreased ozone production caused by reduction of solar activity and change of atmospheric dynamics due to the global warming might result in further thinning of the tropical ozone layer. Globally, total ozone would not recover to the pre-ozone hole values as long as the decline of solar activity lasts. This may let more ultra-violet radiation reach the Earth's surface.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Johannes Staehelin, Joanna D. Haigh, Thomas Peter, Fiona Tummon, Rene Stübi, Andrea Stenke, John Anderson, Adam Bourassa, Sean M. Davis, Doug Degenstein, Stacey Frith, Lucien Froidevaux, Chris Roth, Viktoria Sofieva, Ray Wang, Jeannette Wild, Pengfei Yu, Jerald R. Ziemke, and Eugene V. Rozanov
Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, https://doi.org/10.5194/acp-18-1379-2018, 2018
Short summary
Short summary
Using a robust analysis, with artefact-corrected ozone data, we confirm upper stratospheric ozone is recovering following the Montreal Protocol, but that lower stratospheric ozone (50° S–50° N) has continued to decrease since 1998, and the ozone layer as a whole (60° S–60° N) may be lower today than in 1998. No change in total column ozone may be due to increasing tropospheric ozone. State-of-the-art models do not reproduce lower stratospheric ozone decreases.
Olaf Morgenstern, Kane A. Stone, Robyn Schofield, Hideharu Akiyoshi, Yousuke Yamashita, Douglas E. Kinnison, Rolando R. Garcia, Kengo Sudo, David A. Plummer, John Scinocca, Luke D. Oman, Michael E. Manyin, Guang Zeng, Eugene Rozanov, Andrea Stenke, Laura E. Revell, Giovanni Pitari, Eva Mancini, Glauco Di Genova, Daniele Visioni, Sandip S. Dhomse, and Martyn P. Chipperfield
Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018, https://doi.org/10.5194/acp-18-1091-2018, 2018
Short summary
Short summary
We assess how ozone as simulated by a group of chemistry–climate models responds to variations in man-made climate gases and ozone-depleting substances. We find some agreement, particularly in the middle and upper stratosphere, but also considerable disagreement elsewhere. Such disagreement affects the reliability of future ozone projections based on these models, and also constitutes a source of uncertainty in climate projections using prescribed ozone derived from these simulations.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Laura E. Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov, and Thomas Peter
Atmos. Chem. Phys., 17, 13139–13150, https://doi.org/10.5194/acp-17-13139-2017, https://doi.org/10.5194/acp-17-13139-2017, 2017
Short summary
Short summary
Compiling stratospheric aerosol data sets after a major volcanic eruption is difficult as the stratosphere becomes too optically opaque for satellite instruments to measure accurately. We performed ensemble chemistry–climate model simulations with two stratospheric aerosol data sets compiled for two international modelling activities and compared the simulated volcanic aerosol-induced effects from the 1991 Mt Pinatubo eruption on tropical stratospheric temperature and ozone with observations.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Eugene V. Rozanov, Fiona Tummon, and Joanna D. Haigh
Atmos. Chem. Phys., 17, 12269–12302, https://doi.org/10.5194/acp-17-12269-2017, https://doi.org/10.5194/acp-17-12269-2017, 2017
Short summary
Short summary
Several ozone composites show different decadal trends, even in composites built with the same data. We remove artefacts affecting trend analysis with a new method (BASIC) and construct an ozone composite, with uncertainties. We find a significant ozone recovery since 1998 in the midlatitude upper stratosphere, with no hemispheric difference. We recommend using a similar approach to construct a composite based on the original instrument data to improve stratospheric ozone trend estimates.
Christoph Jacobi, Tatiana Ermakova, Daniel Mewes, and Alexander I. Pogoreltsev
Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017, https://doi.org/10.5194/ars-15-199-2017, 2017
Short summary
Short summary
There is continuous interest in coupling processes between the lower and middle atmosphere. Here we analyse midlatitude winds measured by radar at 82–97 km and find that especially in February they are positively correlated with El Niño. The signal is strong for the upper altitudes accessible to the radar, but weakens below. The observations can be qualitatively reproduced by numerical experiments using a mechanistic global circulation model.
Yuliya Kurdyaeva, Sergey Kshevetskii, Nikolay Gavrilov, and Sergey Kulichkov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-76, https://doi.org/10.5194/gmd-2017-76, 2017
Revised manuscript not accepted
Short summary
Short summary
Various meteorological phenomena generate acoustic-gravity waves in the atmosphere and cause wave variations of atmospheric pressure. There are networks of microbarographs, which record pressure variations on the Earth's surface. The hydrodynamic problem of propagation of waves in the atmosphere from pressure variations on the Earth's surface is formulated. The problem wellposedness is proved. A supercomputer program for simulation of waves from pressure variations is developed and applied.
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017, https://doi.org/10.5194/angeo-35-677-2017, 2017
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
William T. Ball, Aleš Kuchař, Eugene V. Rozanov, Johannes Staehelin, Fiona Tummon, Anne K. Smith, Timofei Sukhodolov, Andrea Stenke, Laura Revell, Ancelin Coulon, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 16, 15485–15500, https://doi.org/10.5194/acp-16-15485-2016, https://doi.org/10.5194/acp-16-15485-2016, 2016
Short summary
Short summary
We find monthly, mid-latitude temperature changes above 40 km are related to ozone and temperature variations throughout the middle atmosphere. We develop an index to represent this atmospheric variability. In statistical analysis, the index can account for up to 60 % of variability in tropical temperature and ozone above 27 km. The uncertainties can be reduced by up to 35 % and 20 % in temperature and ozone, respectively. This index is an important tool to quantify current and future ozone recovery.
Stefan Brönnimann, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz
Atmos. Chem. Phys., 16, 15529–15543, https://doi.org/10.5194/acp-16-15529-2016, https://doi.org/10.5194/acp-16-15529-2016, 2016
Short summary
Short summary
The Quasi-Biennial Oscillation is a wind oscillation in the equatorial stratosphere. Effects on climate have been found, which is relevant for seasonal forecasts. However, up to now only relatively short records were available, and even within these the climate imprints were intermittent. Here we analyze a 108-year long reconstruction as well as four 405-year long simulations. We confirm most of the claimed QBO effects on climate, but they are small, which explains apparently variable effects.
Stefan Muthers, Christoph C. Raible, Eugene Rozanov, and Thomas F. Stocker
Earth Syst. Dynam., 7, 877–892, https://doi.org/10.5194/esd-7-877-2016, https://doi.org/10.5194/esd-7-877-2016, 2016
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic circulation system which transports large amounts of heat from the tropics to the north. This circulation is strengthened when less solar irradiance reaches the Earth, e.g. due to reduced solar activity or geoengineering techniques. In climate models, however, this response is overestimated when chemistry–climate interactions and the following shift in the atmospheric circulation systems are not considered.
Laura E. Revell, Andrea Stenke, Eugene Rozanov, William Ball, Stefan Lossow, and Thomas Peter
Atmos. Chem. Phys., 16, 13067–13080, https://doi.org/10.5194/acp-16-13067-2016, https://doi.org/10.5194/acp-16-13067-2016, 2016
Short summary
Short summary
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the Earth's radiative balance. We have analysed trends in stratospheric water vapour through the 21st century as simulated by a coupled chemistry–climate model following a range of greenhouse gas emission scenarios. We have also quantified the contribution that methane oxidation in the stratosphere makes to projected water vapour trends.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
J.-X. Sheng, D. K. Weisenstein, B.-P. Luo, E. Rozanov, F. Arfeuille, and T. Peter
Atmos. Chem. Phys., 15, 11501–11512, https://doi.org/10.5194/acp-15-11501-2015, https://doi.org/10.5194/acp-15-11501-2015, 2015
Short summary
Short summary
We have conducted a perturbed parameter model ensemble to investigate Mt.
Pinatubo's 1991 initial sulfur mass emission. Our results suggest that (a) the initial mass loading of the Pinatubo eruption is ~14 Mt of SO2; (b) the injection vertical distribution is strongly skewed towards the lower stratosphere, leading to a peak mass sulfur injection at 18-21 km; (c) the injection magnitude and height affect early southward transport of the volcanic cloud observed by SAGE II.
S. Muthers, F. Arfeuille, C. C. Raible, and E. Rozanov
Atmos. Chem. Phys., 15, 11461–11476, https://doi.org/10.5194/acp-15-11461-2015, https://doi.org/10.5194/acp-15-11461-2015, 2015
Short summary
Short summary
After volcanic eruptions different radiative and chemical processes take place in the stratosphere which perturb the ozone layer and cause pronounced dynamical changes. In idealized chemistry-climate model simulations the importance of these processes and the modulating role of the climate state is analysed. The chemical effect strongly differs between a preindustrial and present-day climate, but the effect on the dynamics is weak. Radiative processes dominate the dynamics in all climate states.
N. M. Gavrilov, S. P. Kshevetskii, and A. V. Koval
Geosci. Model Dev., 8, 1831–1838, https://doi.org/10.5194/gmd-8-1831-2015, https://doi.org/10.5194/gmd-8-1831-2015, 2015
Short summary
Short summary
We performed high-resolution numerical simulations of nonlinear acoustic-gravity waves (AGWs) at altitudes 0–500km and compared them with analytical polarization relations of linear AGW theory. After some transition time, t > te, the numbers of numerically simulated and analytical pairs of AGW parameters, which are equal to confidence 95%, are larger at altitudes 30-60km and are smaller at t < te. The differences reveal circumstances where numerical simulations of waves are required.
L. E. Revell, F. Tummon, A. Stenke, T. Sukhodolov, A. Coulon, E. Rozanov, H. Garny, V. Grewe, and T. Peter
Atmos. Chem. Phys., 15, 5887–5902, https://doi.org/10.5194/acp-15-5887-2015, https://doi.org/10.5194/acp-15-5887-2015, 2015
Short summary
Short summary
We have examined the effects of ozone precursor emissions and climate change on the tropospheric ozone budget. Under RCP 6.0, ozone in the future is governed primarily by changes in nitrogen oxides (NOx). Methane is also important, and induces an increase in tropospheric ozone that is approximately one-third of that caused by NOx. This study highlights the critical role that emission policies globally have to play in determining tropospheric ozone evolution through the 21st century.
T. Sukhodolov, E. Rozanov, A. I. Shapiro, J. Anet, C. Cagnazzo, T. Peter, and W. Schmutz
Geosci. Model Dev., 7, 2859–2866, https://doi.org/10.5194/gmd-7-2859-2014, https://doi.org/10.5194/gmd-7-2859-2014, 2014
Short summary
Short summary
The performance of the main generations of the ECHAM shortwave radiation schemes is analysed in terms of the representation of the solar signal in the heating rates. The way to correct missing or underrepresented spectral intervals in the solar signal in the heating rates is suggested using the example of ECHAM6 and six-band ECHAM5 schemes. The suggested method is computationally fast and suitable for any other radiation scheme.
S. Muthers, J. G. Anet, A. Stenke, C. C. Raible, E. Rozanov, S. Brönnimann, T. Peter, F. X. Arfeuille, A. I. Shapiro, J. Beer, F. Steinhilber, Y. Brugnara, and W. Schmutz
Geosci. Model Dev., 7, 2157–2179, https://doi.org/10.5194/gmd-7-2157-2014, https://doi.org/10.5194/gmd-7-2157-2014, 2014
M. Kozubek, E. Rozanov, and P. Krizan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23891-2014, https://doi.org/10.5194/acpd-14-23891-2014, 2014
Revised manuscript not accepted
N. M. Gavrilov, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeyev
Atmos. Meas. Tech., 7, 1003–1010, https://doi.org/10.5194/amt-7-1003-2014, https://doi.org/10.5194/amt-7-1003-2014, 2014
F. Arfeuille, D. Weisenstein, H. Mack, E. Rozanov, T. Peter, and S. Brönnimann
Clim. Past, 10, 359–375, https://doi.org/10.5194/cp-10-359-2014, https://doi.org/10.5194/cp-10-359-2014, 2014
N. M. Gavrilov
Atmos. Chem. Phys., 13, 12107–12116, https://doi.org/10.5194/acp-13-12107-2013, https://doi.org/10.5194/acp-13-12107-2013, 2013
F. Arfeuille, B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Brönnimann, L. W. Thomason, and T. Peter
Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, https://doi.org/10.5194/acp-13-11221-2013, 2013
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
S. Brönnimann, J. Bhend, J. Franke, S. Flückiger, A. M. Fischer, R. Bleisch, G. Bodeker, B. Hassler, E. Rozanov, and M. Schraner
Atmos. Chem. Phys., 13, 9623–9639, https://doi.org/10.5194/acp-13-9623-2013, https://doi.org/10.5194/acp-13-9623-2013, 2013
A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter
Geosci. Model Dev., 6, 1407–1427, https://doi.org/10.5194/gmd-6-1407-2013, https://doi.org/10.5194/gmd-6-1407-2013, 2013
Y. Brugnara, S. Brönnimann, J. Luterbacher, and E. Rozanov
Atmos. Chem. Phys., 13, 6275–6288, https://doi.org/10.5194/acp-13-6275-2013, https://doi.org/10.5194/acp-13-6275-2013, 2013
V. Zubov, E. Rozanov, T. Egorova, I. Karol, and W. Schmutz
Atmos. Chem. Phys., 13, 4697–4706, https://doi.org/10.5194/acp-13-4697-2013, https://doi.org/10.5194/acp-13-4697-2013, 2013
I. Ermolli, K. Matthes, T. Dudok de Wit, N. A. Krivova, K. Tourpali, M. Weber, Y. C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S. K. Solanki, and T. N. Woods
Atmos. Chem. Phys., 13, 3945–3977, https://doi.org/10.5194/acp-13-3945-2013, https://doi.org/10.5194/acp-13-3945-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event
Effects of Nonmigrating Diurnal Tides on the Na Layer in the Mesosphere and Lower Thermosphere
Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil
Quasi-10 d wave activity in the southern high-latitude mesosphere and lower thermosphere (MLT) region and its relation to large-scale instability and gravity wave drag
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature
Decay times of atmospheric acoustic–gravity waves after deactivation of wave forcing
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010
Self-consistent global transport of metallic ions with WACCM-X
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements
A study of the dynamical characteristics of inertia–gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model
Forcing mechanisms of the terdiurnal tide
Local time dependence of polar mesospheric clouds: a model study
The role of the winter residual circulation in the summer mesopause regions in WACCM
Influence of the sudden stratospheric warming on quasi-2-day waves
On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER
Environmental influences on the intensity changes of tropical cyclones over the western North Pacific
Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry
The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment – Part 2: Observations of the convective environment
CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model
Junfeng Yang, Jianmei Wang, Dan Liu, Wenjie Guo, and Yiming Zhang
Atmos. Chem. Phys., 24, 10113–10127, https://doi.org/10.5194/acp-24-10113-2024, https://doi.org/10.5194/acp-24-10113-2024, 2024
Short summary
Short summary
Atmospheric drag may vary dramatically under the influence of atmospheric density over aircraft flights at 20–100 km. This indicates that the natural density evolution needs to be analyzed. However, the middle-atmospheric density response to sudden stratospheric warming (SSW) events has rarely been reported. In this study, the density distribution and mass transport process are illustrated based on observation data and global numerical model simulations during the 2021 major SSW event.
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel R. Marsh, and John Maurice Campbell Plane
EGUsphere, https://doi.org/10.5194/egusphere-2024-1792, https://doi.org/10.5194/egusphere-2024-1792, 2024
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The nonmigrating diurnal tides are the persistent global oscillations. We investigate the nonmigrating diurnal tidal variations in the metal layers using satellite observations and global climate model simulations; this has not been studied previously due to the limitations of measurements. We show that the nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Wonseok Lee, In-Sun Song, Byeong-Gwon Song, and Yong Ha Kim
Atmos. Chem. Phys., 24, 3559–3575, https://doi.org/10.5194/acp-24-3559-2024, https://doi.org/10.5194/acp-24-3559-2024, 2024
Short summary
Short summary
We investigate the seasonal variation of westward-propagating quasi-10 d wave (Q10DW) activity in the southern high-latitude mesosphere. The observed Q10DW is amplified around equinoxes. The model experiments indicate that the Q10DW can be enhanced in the high-latitude mesosphere due to large-scale instability. However, an excessively strong instability in the summer mesosphere spuriously generates the Q10DW in the model, potentially leading to inaccurate model dynamics.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023, https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022, https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Short summary
We make high-resolution simulations of poorly understood decays of nonlinear atmospheric acoustic–gravity waves (AGWs) after deactivations of the wave forcing. The standard deviations of AGW perturbations, after fast dispersions of traveling modes, experience slower exponential decreases. AGW decay times are estimated for the first time and are 20–100 h in the stratosphere and mesosphere. This requires slow, quasi-standing and secondary modes in parameterizations of AGW impacts to be considered.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853, https://doi.org/10.5194/acp-21-12835-2021, https://doi.org/10.5194/acp-21-12835-2021, 2021
Short summary
Short summary
The winter winds over Antarctica form a stable vortex. However, in 2019 the vortex was disrupted and the temperature in the polar stratosphere rose by 50°C. This event, called a sudden stratospheric warming, is a rare event in the Southern Hemisphere, with the only known major event having taken place in 2002. The 2019 event helps us unravel its causes, which are largely unknown. We have discovered a unique behaviour of the equatorial winds in 2002 and 2019 that may signal an impending SH SSW.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020, https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Ryosuke Shibuya and Kaoru Sato
Atmos. Chem. Phys., 19, 3395–3415, https://doi.org/10.5194/acp-19-3395-2019, https://doi.org/10.5194/acp-19-3395-2019, 2019
Short summary
Short summary
The first long-term simulation using the high-top non-hydrostatic general circulation model (NICAM) was executed to analyze mesospheric gravity waves. A new finding in this paper is that the spectrum of the vertical fluxes of the zonal momentum has an isolated peak at frequencies slightly lower than f at latitudes from 30 to 75° S at a height of 70 km. This study discusses the physical mechanism for an explanation of the existence of the isolated spectrum peak in the mesosphere.
Friederike Lilienthal, Christoph Jacobi, and Christoph Geißler
Atmos. Chem. Phys., 18, 15725–15742, https://doi.org/10.5194/acp-18-15725-2018, https://doi.org/10.5194/acp-18-15725-2018, 2018
Short summary
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
Francie Schmidt, Gerd Baumgarten, Uwe Berger, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, https://doi.org/10.5194/acp-18-8893-2018, 2018
Short summary
Short summary
Local time variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere are studied using a combination of a global circulation model and a microphysical model. We investigate the brightness, altitude, and occurrence of the clouds and find a good agreement between model and observations. The variations are caused by tidal structures in background parameters. The temperature varies by about 2 K and water vapor by about 3 ppmv at the altitude of ice particle sublimation near 81.5 km.
Maartje Sanne Kuilman and Bodil Karlsson
Atmos. Chem. Phys., 18, 4217–4228, https://doi.org/10.5194/acp-18-4217-2018, https://doi.org/10.5194/acp-18-4217-2018, 2018
Short summary
Short summary
In this study, we investigate the role of the winter residual circulation in the summer mesopause region using the Whole Atmosphere Community Climate Model. In addition, we study the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. We strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
Sheng-Yang Gu, Han-Li Liu, Xiankang Dou, and Tao Li
Atmos. Chem. Phys., 16, 4885–4896, https://doi.org/10.5194/acp-16-4885-2016, https://doi.org/10.5194/acp-16-4885-2016, 2016
Short summary
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
S. Kowalewski, C. von Savigny, M. Palm, I. C. McDade, and J. Notholt
Atmos. Chem. Phys., 14, 10193–10210, https://doi.org/10.5194/acp-14-10193-2014, https://doi.org/10.5194/acp-14-10193-2014, 2014
Shoujuan Shu, Fuqing Zhang, Jie Ming, and Yuan Wang
Atmos. Chem. Phys., 14, 6329–6342, https://doi.org/10.5194/acp-14-6329-2014, https://doi.org/10.5194/acp-14-6329-2014, 2014
S. Palit, T. Basak, S. K. Mondal, S. Pal, and S. K. Chakrabarti
Atmos. Chem. Phys., 13, 9159–9168, https://doi.org/10.5194/acp-13-9159-2013, https://doi.org/10.5194/acp-13-9159-2013, 2013
M. T. Montgomery and R. K. Smith
Atmos. Chem. Phys., 12, 4001–4009, https://doi.org/10.5194/acp-12-4001-2012, https://doi.org/10.5194/acp-12-4001-2012, 2012
C. G. Hoffmann, D. E. Kinnison, R. R. Garcia, M. Palm, J. Notholt, U. Raffalski, and G. Hochschild
Atmos. Chem. Phys., 12, 3261–3271, https://doi.org/10.5194/acp-12-3261-2012, https://doi.org/10.5194/acp-12-3261-2012, 2012
Cited articles
Andrews, D. G. and McIntyre, M. E.: Planetary waves in horizontal and
vertical shear: The generalized Eliassen-Palm relation and the mean zonal
acceleration, J. Atmos. Sci., 33, 2031–2048,
https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2, 1976.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184,
https://doi.org/10.1002/2013RG000448, 2014.
Chang, L. C., Yue, L., Wang, W., Wu, Q., and Meier, R. R.: Quasi two day
wave-related variability in the background dynamics and composition of the
mesosphere/thermosphere and the ionosphere, J. Geophys. Res.-Space, 119, 4786–4804, 2014.
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale
disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66,
83–109, 1961.
Clark, R., Burrage, M., Franke, S., Manson, A., Meek, C., Mitchell, N., and
Muller, H.: Observations of 7-d planetary waves with MLT radars and the
UARS-HRDI instrument, J. Atmos. Sol.-Terr. Phy.,
64, 1217–1228, 2002.
Day, K. A., Hibbins, R. E., and Mitchell, N. J.: Aura MLS observations of the westward-propagating s=1, 16-day planetary wave in the stratosphere, mesosphere and lower thermosphere, Atmos. Chem. Phys., 11, 4149–4161, https://doi.org/10.5194/acp-11-4149-2011, 2011.
Didenko, K. A., Koval, A. V., Ermakova, T. S., and Lifar, V. D.: Interactions of stationary planetary waves during winter 2008–2009 and 2018–2019 sudden stratospheric warmings, Proc. of SPIE, 28th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, https://doi.org/10.1117/12.2644458, 2022.
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E.,
Conde, M., Hernandez, G., Noto, G., Zawdie, K. A., McDonald, S. E., Huba, J.
D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The
quiet time thermosphere, Earth and Space Science, 2, 301–319,
https://doi.org/10.1002/2014EA000089, 2015.
Eliassen A. and Palm E.: On the transfer of energy in stationary mountain
waves, Geophys. Norv., 22, 1–23, 1961.
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M. Jr.,
Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B., Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas, F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A whole-atmosphere empirical model of
temperature and neutral species densities, Earth and Space Science, 7,
e2020EA001321, https://doi.org/10.1029/2020EA001321, 2020.
Ermakova T. S., Aniskina, O. G., Statnaya, I. A., Motsakov, M. A., and
Pogoreltsev A. I.: Simulation of the ENSO influence on the extra-tropical
middle atmosphere, Earth Planets Space, 71, 8,
https://doi.org/10.1186/s40623-019-0987-9, 2019.
Forbes, J. M. and Zhang, X.: The quasi-6 day wave and its interactions with
solar tides, J. Geophys. Res.-Space, 122,
4764–4776, https://doi.org/10.1002/2017JA023954, 2017.
Forbes, J. M., Zhang, X., and Maute, A.: Planetary wave (PW) generation in
the thermosphere driven by the PW-modulated tidal spectrum, J.
Geophys. Res.-Space, 125, e2019JA027704,
https://doi.org/10.1029/2019JA027704, 2020.
Forbes, J. M., Zhang, X., Maute, A., and Hagan, M. E.: Zonally symmetric
oscillations of the thermosphere at planetary wave periods, J.
Geophys. Res.-Space, 123, 4110–4128,
https://doi.org/10.1002/2018JA025258, 2018.
Gavrilov, N. M. and Koval, A. V.: Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics, Izv. Atmos. Ocean. Phys., 49, 244–251 https://doi.org/10.1134/S0001433813030067, 2013.
Gavrilov, N. M., Koval, A. V., Pogoreltsev, A. I., and Savenkova, E. N.:
Simulating planetary wave propagation to the upper atmosphere during
stratospheric warming events at different mountain wave scenarios, Adv.
Space Res., 61, 1819–1836, https://doi.org/10.1016/j.asr.2017.08.022, 2018.
He, M., Chau, J. L., Forbes, J. M., Thorsen, D., Li, G., Siddiqui, T. A., Yamazaki, Y., and Hocking, W. K.: Quasi-10-day wave and semidiurnal tide nonlinear interactions during
the Southern Hemispheric SSW 2019 observed in the Northern Hemispheric
mesosphere, Geophys. Res. Lett., 47, e2020GL091453,
https://doi.org/10.1029/2020GL091453, 2020.
Holton, J. R.: The dynamic meteorology of the stratosphere and mesosphere,
Meteorol. Monogr., 15, 218, https://doi.org/10.1002/qj.49710243325, 1975.
Holton, J. R. and Tan, H.: The influence of the equatorial quasibiennial
oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37,
2200–2208, 1980.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglas, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33,
403–439, 1995.
Huang, Y., Zhang, S., Li, C., Li, H., Huang, K., and Huang, C.: Annual and
interannual variations in global 6.5 DWS from 20 to 110 km during 2002–2016
observed by TIMED/SABER, J. Geophys. Res.-Space,
122, 8985–9002, https://doi.org/10.1002/2017JA023886, 2017.
Jiang, G., Xu, J., Xiong, J., Ma, R., Ning, B., Murayama, Y., Thorsen, D., Gurubaran, S., Vincent, R. A., Reid, I., and Franke, S. J.: A
case study of the mesospheric 6.5-day wave observed by radar systems,
J. Geophys. Res., 113, D16111,
https://doi.org/10.1029/2008JD009907, 2008.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Shevchuk, N. O.:
Influence of solar activity on penetration of traveling planetary-scale waves
from the troposphere into the thermosphere, J. Geophys. Res.-Space, 123, 6888–6903, https://doi.org/10.1029/2018JA025680,
2018a.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Savenkova, E. N.:
Comparisons of planetary wave propagation to the upper atmosphere during
stratospheric warming events at different QBO phases, J. Atmos.
Sol.-Terr. Phy., 171, 201–209,
https://doi.org/10.1016/j.jastp.2017.04.013, 2018b.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Kandieva, K. K.:
Dynamical impacts of stratospheric QBO on the global circulation up to the
lower thermosphere, J. Geophys. Res.-Atmos., 127,
e2021JD036095, https://doi.org/10.1029/2021JD036095, 2022a.
Koval, A. V., Gavrilov, N. M., Kandieva, K. K. Ermakova, T. S., and Didenko, K. A.:
Numerical simulation of stratospheric QBO impact on the planetary waves up
to the thermosphere, Sci. Rep., 12, 21701, https://doi.org/10.1038/s41598-022-26311-x 2022b.
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.
Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin D. M., and
Yee, J. H.: The 6.5-day wave and its seasonal variability in the middle and
upper atmosphere, J. Geophy. Res.-Atmos., 109, D21112,
https://doi.org/10.1029/2004jd004795, 2004.
Longuet-Higgins, M. S.: The eigenfunctions of Laplace's tidal equation over
a sphere, Philos. T. R. Soc. Lond., 262, 511–607, 1968.
Matsuno, T.: Vertical propagation of stationary planetary waves in the winter
Northern Hemisphere, J. Atmos. Sci., 27, 871–883, 1970.
Medvedeva, I. V., Semenov, A. I., Pogoreltsev, A. I., and Tatarnikov, A. V.:
Influence of sudden stratospheric warming on the mesosphere/lower
thermosphere from the hydroxyl emission observations and numerical
simulations, J. Atmos. Sol.-Terr. Phy., 187,
22–32, https://doi.org/10.1016/j.jastp.2019.02.005, 2019.
Merzlyakov, E., Solovjova, T., and Yudakov, A.: The interannual variability
of a 5–7 day wave in the middle atmosphere in autumn from era product data,
aura MLS data, and meteor wind data, J. Atmos.
Sol.-Terr. Phy., 102, 281–289, 2013.
Nath, D., Chen, W., Zelin, C., Pogoreltsev, A. I., and Wei, K. Dynamics of
2013 Sudden Stratospheric Warming event and its impact on cold weather over
Eurasia: Role of planetary wave reflection, Sci. Rep., 6, 24174,
https://doi.org/10.1038/srep24174, 2016.
Newman, P. A., Oman, L. D., Douglass, A. R., Fleming, E. L., Frith, S. M., Hurwitz, M. M., Kawa, S. R., Jackman, C. H., Krotkov, N. A., Nash, E. R., Nielsen, J. E., Pawson, S., Stolarski, R. S., and Velders, G. J. M.: What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113–2128, https://doi.org/10.5194/acp-9-2113-2009, 2009.
Pancheva, D., Mukhtarov, P., Andonov, B., Mitchell, N. J., and Forbes, J. M.
Planetary waves observed by TIMED/SABER in coupling the stratosphere-
mesosphere-lower thermosphere during the winter of 2003/2004: part
2 – altitude and latitude planetary wave structure, J. Atmos. Sol.-Terr.
Phy., 71, 75–87, https://doi.org/10.1016/j.jastp.2008.09.027, 2009.
Pancheva, D., Mukhtarov, P., Andonov, B., and Forbes, J. M.: Global
distribution and climatological features of the 5–6-day planetary waves seen
in the SABER/TIMED temperatures (2002–2007), J. Atmos. Sol.-Terr. Phy., 72,
26–37, 2010.
Pancheva, D., Mukhtarov, P., and Siskind, D. E.: The quasi-6-day waves in
NOGAPS-ALPHA forecast model and their climatology in MLS/Aura measurements
(2005–2014), J. Atmos. Sol.-Terr. Phy., 181,
19–37, 2018.
Pedatella, N. M. and Forbes, J. M.: Modulation of the equatorial F-region by
the quasi-16-day planetary wave, Geophys. Res. Lett., 36, L09105,
https://doi.org/10.1029/2009GL037809, 2009.
Pogoreltsev, A. I.: Simulation of planetary waves and their influence on the
zonally averaged circulation in the middle atmosphere, Earth Planets Space,
51, 773–784, 1999.
Pogoreltsev,
A. I.: Numerical simulation of secondary planetary waves arising
from the nonlinear interaction of the normal atmospheric modes, Phys. Chem.
Earth Pt. C, 26, 395–403, 2001.
Pogoreltsev, A. I.: Generation of normal atmospheric modes by
stratospheric vacillations, Izv. Atmos. Ocean. Phy., 43, 423–435, 2007.
Pogoreltsev, A. I., Vlasov, A. A., Froehlich, K., and Jacobi, Ch.: Planetary
waves in coupling the lower and upper atmosphere, J. Atmos. Sol.-Terr.
Phy., 69, 2083–2101, https://doi.org/10.1016/j.jastp.2007.05.014, 2007.
Pogoreltsev, A. I., Savenkova, E. N., and Pertsev, N. N.: Sudden stratopheric
warmings: the role of normal atmospheric modes, Geomagn. Aeronomy,
54, 1–15, doi 10.1134/S0016793214020169, 2014.
Qin, Y., Gu, S.-Y., and Dou, X.: A new mechanism for the generation of
quasi-6-day and quasi-10-day waves during the 2019 Antarctic sudden
stratospheric warming, J. Geophys. Res.-Atmos., 126,
e2021JD035568, https://doi.org/10.1029/2021JD035568, 2021.
Sassi, F., Garcia, R., and Hoppel, K.: Large-scale Rossby normal modes
during some recent Northern Hemisphere winters, J. Atmos.
Sci., 69, 820–839, 2012.
Schoeberl, M.: Stratospheric warmings – observations and theory, Rev.
Geophys., 16, 521–538, https://doi.org/10.1029/RG016i004p00521, 1978.
Shevchuk N. O., Ortikov, M. Yu., and Pogoreltsev, A. I.: Modeling of atmospheric
tides with account of diurnal variations of ionospheric conductivity,
Russ. J. Phys. Chem. B, 12, 576–589, https://doi.org/10.1134/S199079311803017X, 2018.
Suvorova, E. V. and Pogoreltsev, A. I.: Modeling of nonmigrating tides in the
middle atmosphere, Geomagmetizm and Aeronomy, 51, 105–115, https://doi.org/10.1134/S0016793210061039, 2011.
Swarztrauber, P. N. and Kasahara, A.: The vector harmonic analysis of
Laplace's tidal equations, SIAM J. Sci. Stat. Comp., 6, 464–491, 1985.
Wang, J. C., Chang, L. C., Yue, J., Wang, W., and Siskind, D. E.: The quasi
2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA, J.
Geophys. Res.-Space, 122, 5709–5732, 2017.
Yamazaki, Y., Matthias, V., and Miyoshi, Y.: Quasi-4-day wave: Atmospheric
manifestation of the first symmetric Rossby normal mode of zonal wavenumber
2, J. Geophys. Res.-Atmos., 126, e2021JD034855,
https://doi.org/10.1029/2021JD034855, 2021.
Yiğit, E., and Medvedev, A. S.: Heating and cooling of the thermo-sphere by internal gravity waves, Geophys. Res. Lett., 36, L14807, https://doi.org/10.1029/2009GL038507, 2009.
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The...
Altmetrics
Final-revised paper
Preprint