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Abstract. Using the general circulation model of the middle and upper atmosphere (MUAM), a number of
numerical scenarios were implemented to study the impact of individual planetary waves (PWs) on the global
atmospheric circulation, including zonal wind, temperature, and residual meridional circulation (RMC). The
calculations were performed for the winter conditions of the Northern Hemisphere (January–February). We show
the contribution to the formation of the dynamic and temperature regimes of the MUAM made by equatorial
Kelvin waves propagating to the east, as well as atmospheric normal modes (NMs) with periods from 4 to 16 d.
In particular, it is demonstrated that the impact of a 5 d PW and an ultra-fast Kelvin wave (UFKW) can change
the speed of circulation flows by up to 6 % in the areas of their amplitude maxima. At the same time, this effect
can be significantly enhanced in certain periods of time. The presented research results are important for a deeper
understanding of the mechanisms of large-scale atmospheric interactions. Despite the obviousness and simplicity
of the problem, such work has not been carried out yet.

1 Introduction

Planetary waves (PWs, known as Rossby waves) are large-
scale variations in the hydrodynamic parameters of the atmo-
sphere (wind, temperature, density), which are formed due to
the potential vorticity conservation. The horizontal distribu-
tion of PWs is determined by the counteraction of the merid-
ional gradient of the Coriolis force and the meridional dis-
placements of the jet streams. According to the classic the-
ory (e.g. Holton, 1975), a number of waves fit along the circle
of latitude, determining the zonal wave number. The ampli-
tudes of PWs increase due to a decrease in the density of
the atmosphere when they propagate from their sources in
the troposphere. In the middle and upper atmosphere, these
disturbances become an important driver of the atmospheric
circulation. One of the important features of planetary waves
is their active interaction with the mean flow causing trans-

fer of energy and momentum. This feature was reflected in
the formulation of the generalised Eliassen Palm theorem
(Eliassen and Palm, 1961). Planetary waves can provide a
significant acceleration of the background flow in the middle
atmosphere when dissipating. This acceleration is compara-
ble to the acceleration associated with gravity waves (GWs)
and atmospheric tides (e.g. Pogoreltsev, 1999).

Another important feature of PWs, which explains the
need for their comprehensive study, is that they are a link be-
tween different atmospheric layers and regions. The PWs can
contribute to the signal propagation from the quasi-biennial
oscillation (QBO) of the equatorial zonal wind into the ther-
mosphere (Koval et al., 2022a, b) and from the equatorial re-
gion to the extratropical region (Holton and Tan, 1980). The
ability of PWs to be reflected downward at the heights of the
lower thermosphere, due to changes in vertical temperature
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gradients associated with solar activity cycle, can also have a
significant effect on the dynamic and temperature regimes of
the middle atmosphere (Koval et al., 2018a).

According to the so-called “downward control principle”
(Haynes et al., 1991), PWs are the main driving force of
meridional extratropical circulation (see also Holton et al.,
1995). Due to its global nature, meridional circulation is
considered to be the most important mechanism of dynamic
interaction between different layers and regions of the at-
mosphere, affecting the transport of aerosol, atmospheric
gases and, consequently, the composition of the atmosphere.
Changes in the meridional circulation can affect the be-
haviour of the ozone layer. The state of the ozone layer has
attracted increased attention due to global ozone depletion
(e.g. Newman et al, 2009). Planetary waves are the main
factor in the development of sudden stratospheric warming
(Schoeberl, 1978; Nath et al., 2016).

Many studies are currently dedicated to PWs, having dif-
ferent periods and zonal wave numbers. For example, nu-
merical simulations of PW influence were discussed in Liu
et al. (2004), Chang et al. (2014), Wang et al. (2017),
Forbes et al. (2018, 2020), He et al. (2020) and many oth-
ers. Ground-based radar measurements were presented by
Clark et al. (2002), Jiang et al. (2008) and Pancheva et
al. (2008), and satellite measurements were presented by
Day et al. (2011), Forbes and Zhang (2017), Pancheva et
al. (2018), and Merzlyakov et al. (2013). Processing of re-
analysis data and weather forecasting systems was presented
by Sassi et al. (2012) and Qin et al. (2021) among others.

In this paper, we considered the relative contribution of
various PW modes to the formation of the global atmospheric
circulation using the unique opportunity that numerical mod-
elling gives us. In order to further understand the nature of
large-scale atmospheric dynamics, we carried out a number
of numerical experiments to quantify the sensitivity of the
zonal wind and temperature fields, as well as meridional cir-
culation components to the switching on/off sources of var-
ious PW modes in the model. Despite the obviousness and
simplicity of the problem, such work has not been carried
out yet. Unfortunately, there is no universal way to study the
impact of all Rossby waves; each wave has its own charac-
teristics, depending, in particular, on the season, the impact
of large-scale processes such as the quasi-biennial oscillation
of the equatorial zonal wind and the El Niño–Southern Os-
cillation. Therefore, we have chosen only a part of the PW
spectrum, the amplitudes of which are maximised during the
boreal winter.

2 Methodology

2.1 The MUAM

Waves are studied using the middle and upper atmosphere
model (MUAM, Pogoreltsev et al., 2007). The MUAM is a
three-dimensional nonlinear mechanistic model of the gen-

eral atmospheric circulation at heights from the surface to
the F2 ionospheric layer (up to 300–400 km). This is one of
the most promising and modern models of atmospheric wave
dynamics, which makes it possible to study the processes
in the middle and upper atmosphere, as well as their inter-
action with lower levels (see, for example, Gavrilov et al.,
2018; Ermakova et al., 2019; Koval et al., 2018a, b; 2022a,
b; Medvedeva et al., 2019). One of the advantages of the
MUAM is that it allows us to not only analyse the amplitudes
of planetary waves but also associate them with various gen-
erating sources. The log-isobaric height x =−H × ln(p/ps)
is used as the vertical coordinate in the MUAM, where p is
the pressure in hPa, ps is the surface pressure, and H is the
pressure scale height. The latitudinal and longitudinal spac-
ing of the model’s horizontal grid is 5.625◦× 5◦. A version
of the model with 56 vertical levels is used, covering a verti-
cal range from the Earth’s surface to about 300 km. The time
integration step is 225 s.

The MUAM radiation module takes into account atmo-
spheric net radiative heating due to solar and infrared irra-
diance. The thermosphere includes parameterisation of heat-
ing in the extreme ultraviolet band. Ion drag, molecular and
turbulent viscosity and thermal conductivity are included
as well. The model provides the possibility of PW excita-
tion near the Earth’s surface. The possibility of changing
the albedo of the underlying surface is available. Weather
changes and cloudiness in the troposphere are not simulated.
The MUAM uses three parameterisations of gravity waves
with different phase velocities, including orographic waves.
For a further description of the processes involved in the cur-
rent version of the model, please refer to Koval et al. (2022a).

The main parameters simulated by the MUAM include
four-dimensional fields of the zonal, meridional and vertical
velocity components, geopotential height, and temperature
with a time step of 2 h. By the MUAM initialisation, zonal
mean climatological distributions of the geopotential height
and temperature are set with the lower boundary conditions
at the 1000 hPa isobaric level. These distributions were ob-
tained using the reanalysis MERRA-2 data (Gelaro et al.,
2017) and averaged over 20 years (from 2000 to 2019) for
January–February.

Since the MUAM does not reproduce tropospheric
weather, the sources of the westward-propagating PWs (at-
mospheric normal modes, NMs) and the eastward PWs
(Kelvin waves) in the MUAM are specified using addi-
tional terms in the heat balance equation, having the form
of time-dependent sinusoidal harmonics with zonal wave
numbers m= 1 . . . 3 and periods matching the simulated
PWs. To specify the latitudinal structure of the PW com-
ponents, the corresponding Hough functions obtained using
the method described by Swarztrauber and Kasahara (1985)
are used. The PW periods are equal to the resonant response
of the atmosphere to the wave action at the lower boundary
(Pogoreltsev, 1999). Westward propagating NMs (1.1, 1.2,
1.3, and 2.1, 2.2) in the classification proposed by Longuet-
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Higgins (1968) are considered. They have periods of about
5, 10 and 16 d with a zonal number of 1, and about 4 and
7 d with a zonal number of 2. In addition, eastward propa-
gating ultra-fast Kelvin waves (UFKWs, having a period of
about 3.5 d, a zonal number of 1) are studied. In addition
to the mentioned PWs, the MUAM also includes sources
of slow and fast Kelvin waves (m= 1) and quasi-two-day
waves (m= 3). However, their amplitudes and contribution
to the global circulation during the boreal winter are weak,
so they are beyond the scope of this study.

The spatial resolution of the model is relatively coarse.
However, as the previous studies have shown, this resolution
is more than enough to resolve global atmospheric oscilla-
tions, including tides (e.g. Suvorova and Pogoreltsev, 2011;
Shevchuk et al., 2018; Didenko et al., 2022) and planetary
waves (e.g. Gavrilov et al., 2018; Koval et al., 2018a, b;
2022a, b and references therein). Very important drivers of
the atmospheric circulation are gravity waves (GWs). Nat-
urally, the GWs (of orographic and non-orographic origin)
cannot be resolved by the MUAM, so parameterisations are
used to involve their dynamic and thermal effects. There
are three of them in model. For GWs that have slow phase
speeds (5–30 m s−1) a parameterisation by Lindzen (1981)
is implemented. For faster waves with phase speeds of 30–
125 m s−1, which are particularly important in the thermo-
sphere, a version of the spectral parameterisation proposed
by Yiğit and Medvedev (2009) is applied. The parameterisa-
tion uses 15 GW spectral components uniformly distributed
within the period range from 40 min to 3 h. A third pa-
rameterisation implemented into the MUAM is responsible
for accounting for the stationary GWs of orographic origin
(Gavrilov and Koval, 2013).

2.2 Residual meridional circulation (RMC)

A significant problem when considering meridional flows in
the framework of the classical Eulerian approach (i.e. with
zonal averaging of meridional and vertical circulation flows)
is that, in the equations of dynamics, the wave sources of
momentum and heat are compensated by advective flows of
momentum and heat (Charney and Drazin, 1961). This fea-
ture does not allow one to isolate and analyse the wave ac-
tion on the mean flow. At the same time, in the continuity
equation for long-lived gas components, there is a compen-
sation of wave and mean flows. Thus, the use of the Eule-
rian mean meridional circulation is inefficient for calculating
mass transfer and long-lived gas species and analysing wave–
mean flow interaction. A thorough analysis of this topic was
made by Butchart (2014). In this study, the Transformed Eu-
lerian Mean (TEM) approach, introduced by Andrews and
McIntyre (1976), was used to diagnose the impact of PWs on
the mean flow. The TEM approach is based on consideration
of the components of the mean residual meridional circula-
tion (RMC), which is a superposition of eddy and advective
mean transport. Formulas for calculating the RMC compo-

Table 1. Scenarios of model calculations, including different PWs.

Runs 4DW 5DW 7DW 10DW 16DW UFKW

1 + + + + + +

2 + + + + +

3 + + + + +

4 + + + + +

5 + + + + +

6 + + + + +

7 + + + + +

nents are presented, for example, by Koval et al. (2022a).
The time-averaged RMC represents the net average move-
ment of air masses and, therefore, in contrast to the conven-
tional mean Eulerian circulation, it approximates the average
advective movement of atmospheric species.

2.3 Scenarios of model experiments

A series of numerical experiments (model runs) was carried
out for January–February to identify the influence of various
wave components on the variability of the global circulation
and the RMC. The scenarios of the model runs are presented
in Table 1: a reference run of the model (no. 1) was carried
out to calculate the atmospheric circulation with the inclusion
of all sources of the considered PWs, and other runs were
performed with the sources of individual waves turned off.
Designations of 4DW, 5DW . . . denote PWs having periods
of 4, 5 d and others; UFKW means ultra-fast Kelvin wave.
The PW amplitudes were obtained using the longitude–time
Fourier expansion into the first four harmonics applied to the
geopotential height fields. Next, an approximation was car-
ried out using the least squares method to the given oscilla-
tion periods.

3 Amplitudes of planetary waves

Figure 1 shows the amplitudes of geopotential height vari-
ations due to the observing planetary waves for January–
February. The wave amplitude according to the results of
the initial model simulation with the inclusion of sources
of all considered PWs (run no. 1) is presented on the left
side. For comparison, the right panels show the amplitudes of
these waves for the model simulations with each wave source
turned off (see scenarios in Table 1).

The amplitude of the eastward propagating UFKW (a pe-
riod of about 3.5 d) is shown in Fig. 1a. Kelvin waves are lo-
calised in the low-latitude region unlike classic atmospheric
NMs, the horizontal structure of which is caused primarily
by the action of the Coriolis force weakening them near the
Equator. The UFKW is mainly excited by the tropospheric
source specified in the MUAM. Its generation by internal at-
mospheric interactions is relatively weak (compare the left
and right panels of Fig. 1a). The westward propagating NMs,
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Figure 1. Amplitudes of variations of geopotential height (m) with
the source of the respective PW in the MUAM being turned on (left
panels) and off (right panels) for the following PW modes: (a) ultra-
fast Kelvin wave, (b) 5 d PW, (c) 16 d (all with a zonal wave number
m= 1) and (d) 4 d PW (with m= 2). Note that the colour scale is
different for different panels.

shown in Fig. 1b–d, have maxima in the middle latitudes
of both hemispheres. Waves with larger phase velocities (4
and 5 d NMs) can propagate in both hemispheres (Fig. 1b
and d), while slower waves predominantly propagate through
the eastward wind structures of the winter hemisphere (in
our case the Northern Hemisphere) (Fig. 11c). This is due
to propagation barriers of these waves occurring when their
phase velocity is less than the westward zonal jet stream in
the summer stratosphere and mesosphere (see, for example,

Charney and Drazin, 1961). The presence of these barriers is
also confirmed by the calculation of the refractive index of
the atmosphere for the PWs considered. According to Mat-
suno (1970), PWs propagate along waveguides: regions of
positive refractive index. Our calculations showed that in the
Southern Hemisphere, the waveguide for 10 and 16 d waves
is interrupted, preventing their direct upward propagation.
These waves propagate to the Southern Hemisphere from
the Northern Hemisphere, crossing the Equator in the strato-
sphere, as was shown, for example, in the study by Koval et
al. (2018a).

Figure 1 shows the deficiency of waves generated in the
middle atmosphere inside the model, and the PW amplitudes
with the sources turned off (right panels) do not exceed a
numerical noise level. An exception is the maximum ampli-
tude of the 16 d PW in the right panel of Fig. 1c, which is
formed at latitude near 60◦ S and altitude of about 100 km.
When the tropospheric source is turned off, this maximum of
geopotential height reaches 15 m in the right panel of Fig. 1c,
whereas it is about 24 m for the turned-on wave source (the
left panel of Fig. 1c). This reveals that an interesting effect of
the 16 d PW generation by internal atmospheric sources was
discovered. The main source of the 16 d wave generation in
the southern lower thermosphere of the MUAM may be elu-
cidated by the nonlinear interaction of the 5 and 4 d waves,
whose amplitudes have maxima in the same latitude–altitude
region in the left panels of Fig. 1b and d. Therefore, further
study of this phenomenon is required.

A detailed comparison of the MUAM-simulated PW am-
plitudes for January–February with satellite and radar ob-
servations, also with reanalysis data was carried out. For
example, the amplitudes of PWs in the geopotential field
calculated according to NCEP/NCAR reanalysis data at 10
and 30 hPa pressure levels were presented in the study by
Pancheva et al. (2008). The values of these amplitudes agree
with our results. The calculated PW amplitudes in geopo-
tential height according to the MERRA-2 reanalysis data
and averaged over the years used for the initialisation of the
MUAM also have similar value and structure to the simulated
one’s. Additionally, Yamazaki et al. (2021) present the distri-
butions of the 4 d PW amplitudes according to measurements
of geopotential height using the microwave limb sounder on
the Aura satellite, the structure of which corresponds to our
calculations. Whereas, the presented values of the PW ampli-
tudes may differ significantly, which is primarily due to the
fact that the data for individual specific days are presented
in the specified article. The data from the global numeri-
cal weather forecasting system (NOGAPS-ALPHA) are used
by Sassi et al. (2012) to calculate structures of geopotential
height variations by atmospheric NMs. These structures are
similar to our distributions. In addition, the 5 d wave amplifi-
cation in the southern mesosphere, similar to the one demon-
strated in the left panel of Fig. 1a, is shown. For a more de-
tailed analysis of the simulated PWs, in order to compare
with the published data, the amplitudes of temperature vari-
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ations by PWs were also calculated. The simulated 5 d PW
and UFKW in temperature fields were compared, in partic-
ular, with the wave amplitudes calculated from TIMED/S-
ABER temperature data (Pancheva et al., 2010). The ampli-
tude value accordance (up to 6 K at the magnetic local time
(MLT) height for January for the 5 d PW at the mid-latitudes
of both hemispheres; for the UFKW – at the Equator) and the
spatial distribution accordance of PWs across latitudes were
found. Moreover, the simulated PW amplitudes correlate in
magnitude and spatial distribution with the respective waves
obtained in a number of studies (Pancheva et al., 2008, 2009;
Forbes et al., 2017; Pedatella and Forbes, 2009; Huang et al.,
2017).

4 Relative PW contribution to the general
atmospheric circulation

The residual meridional circulation (RMC) was calculated
to analyse the changes in atmospheric circulation caused by
various PWs for each MUAM simulation scenario presented
in Table 1, with all PW sources turned on for comparisons
with model runs at turned-off sources of particular wave
modes. The RMC structure should be sensitive to the PW
impact as it is a combination of advective and wave-induced
eddy components. The latter is primarily driven to PWs ac-
cording to the “downward control” principle (Haynes et al.,
1991). Figure 2 shows the RMC components and tempera-
ture averaged over January–February for model run no. 1 (see
Table 1) (all PW sources included) and differences in these
fields due to turning off each analysed PW mode. Respective
mean zonal wind increments are shown in Fig. 3. Simulated
mean zonal wind (Fig. 3a) and temperature (Fig. 2a) corre-
late with those obtained with the empirical models HWM-14
(Drob et al., 2015) and NRLMSIS 2.0 (Emmert et al., 2020),
also with a semiempirical wind model by Jacobi et al. (2009)
and with the MERRA-2 reanalysis data.

Figures 2 and 3 show influence of turning off each individ-
ual PW to the mean zonal temperature and zonal wind. The
main impacts are usually localised in the regions of maxi-
mum PW amplitudes. The greatest contribution to the circu-
lation change is made by the 5 d PW. The main differences in
Fig. 2c occur in the southern lower thermosphere, which cor-
respond to a RMC strengthening in a layer between 80 and
120 km after switching on the 5 d PW tropospheric source.
The acceleration of zonal wind (eastward above 100 km, and
westward below) is observed in the same region in Fig. 3c.
This effect is primarily explained by the convergence of the
Eliassen–Palm flux (EP) in this region. The acceleration of
the RMC there leads to the lifting up of a warmer air and
warming of the atmospheric layer between 60 and 90 km, as
well as to the acceleration of air transport from the coldest
region of the atmosphere (about 90 km, at latitudes from the
South Pole to 60◦ N), which leads to the cooling of the atmo-
sphere above this layer. In addition, in the circumpolar south-

ern stratosphere, at a level of about 60 km, there is decelera-
tion of the zonal wind, which, on the contrary, is associated
with the EP flux divergence. The described changes in RMC
and zonal wind between 60 and 120 km can reach values up
to 6 %, forming a significant contribution to the atmospheric
circulation from only one wave. Relative changes in RMC
components and zonal wind are presented in Figs. S1b–S3b
in the supplemental information.

The maximum UFKW amplitude is located at 100 km in
the equatorial region (see Fig. 1b). Then the wave propagates
higher, gradually attenuating. Its contribution to the circula-
tion flow changes is also maximised in this region and ex-
erted mainly in the strengthening of the zonal wind (Fig. 3b)
and the RMC (Fig. 2b). Similar to the 5 d PW, the RMC in-
crements can reach up to 5 %–6 % as it is shown in Figs. S1a
and S2a. Figure S3a shows that zonal mean wind changes
in the equatorial region between 80 and 120 km can exceed
10 % in areas where wind values are greater than 5 m s−1.
The UFKW impact in the 100–120 km layer leads to cool-
ing in the Northern Hemisphere caused by a slowdown in
meridional transport and additional up-drafts causing adia-
batic cooling.

The impact of the 16 d wave on the circulation, as shown
above (Figs. 2e and 3e), is comparable in value with the 5 d
PW and UFKW; however, it has a different structure. Maxi-
mum PW amplitude occurs in the stratosphere of the North-
ern Hemisphere, and its contribution to atmospheric circu-
lation is observed in this region. Figure 2e shows that the
introduction of the 16 d wave leads to cooling of the layer
below 50 km and heating of the overlying layer. The temper-
ature changes here are explained by the change in the RMC
components: in particular, the acceleration and weakening of
the RMC-descending branch contributes to adiabatic heating
and cooling, respectively. This is accompanied by accelera-
tion of the zonal wind (Fig. 3e), directed in this region to the
east (Fig. 3a). Statistically significant changes in circulation
components may reach 6 % in the high-latitude stratosphere
as shown in Figs. S1d and S2d. Below, in Figs. 5 and 6, it is
shown that action of the 16 d PW may be stronger than the
5 d PW and UFKW at certain points in time.

The 10 and 4 d PWs make a smaller contribution to the
dynamic and thermal regime of the atmosphere. Specifically,
the structure of the 10 d wave in the middle atmosphere is
similar to the structure of the 16 d one: the amplitude max-
imum is observed in the northern stratosphere, but due to
the higher phase velocity, its waveguide in the southern mid-
dle atmosphere is wider. Propagating in the Southern Hemi-
sphere, it contributes to the zonal wind acceleration up to
heights of 140 km (Fig. 3d) and to the respective temperature
changes. A faster 7 d wave, like the 5 d wave, is able to prop-
agate along waveguides in both hemispheres. Generally, the
10 and 7 d PW contributions cause the same effects as the 5 d
one described above, although they are much weaker in this
region.
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Figure 2. (a) RMC components (arrows, m s−1, vertical component multiplied by 200) and mean zonal temperature components (colours,
K) for January–February with all PW sources turned on; (b–f) increments in RMC and temperature due to switching off sources of PWs:
UFKW, 5, 10, 16 and 4 d waves, respectively. Shaded areas show insignificant temperature and/or RMC increments at 95 %.

Figure 3. (a) Zonal wind components (colours, (m s−1) for January–February with all PW sources turned on; (b–f) increments in zonal wind
due to switching off sources of PWs: UFKW, 5, 10, 16 and 4 d waves. Shaded areas show insignificant wind increments at 95 %.

The relatively weak increments, examined in Figs. 2 and
3, require an assessment of statistical significance. Such an
assessment was carried out using the Student’s paired t test
applied to 45 312 pairs of samples in each of the latitude–
altitude grid nodes (64 longitude points× 708 time points
for January–February with a 2 h model output). Statistically
insignificant increments at the 95 % significance level are

marked with shading. In Fig. 4, shading indicates statistically
insignificant data on either temperature or RMC.

For a more detailed analysis of the PW effects on atmo-
spheric circulation, the time series of mean zonal tempera-
ture and zonal wind variations due to the considered PW ef-
fects were observed – Figs. 4 and 5, respectively. Latitudes
and heights corresponding to the maxima of the PW ampli-
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Figure 4. Time series of mean zonal temperature variations due to
the inclusion of tropospheric sources of various PWs in the regions
of their maximum amplitudes in the MUAM.

Figure 5. Time series of mean zonal wind variations due to the
inclusion of tropospheric sources of various PWs in the regions of
their maximum amplitudes in the MUAM.

tudes were selected: the Equator, 100 km is for the UFKW;
the 5 d wave is considered at 50◦ S and 105 km; 7, 10 and
16 d waves: 50◦ N and 55 km; 4 d wave: 45◦ S and 105 km.

In all cases, especially for the zonal wind (Fig. 5), the
wave structure of increments with a period corresponding to
the period of the considered PW is observed. In particular,
wind changes, which significantly exceed the averaged data
for January and February (presented in Fig. 3) can be seen
in this figure. Specifically, the inclusion of the 16 d wave and
the UFKW can cause the wind speed changes up to 4, and
5 m s−1, respectively. The PWs with zonal number 2 (4 and
7 d) make much smaller changes to the zonal flow, while the
weakening of the zonal flow is accompanied by the increase
of these waves as well as the 5 d wave and the UFKW by
the end of February. Temperature variations in Fig. 4 have a
more complex structure since temperature variations are af-
fected by not only pressure fluctuations but also meridional
circulation fluctuations.

5 Conclusion and summary

A number of model simulations have been carried out
for January–February, using a three-dimensional nonlinear
mechanistic numerical model of the general circulation of
the middle and upper atmosphere (MUAM), to estimate the
sensitivity of the atmosphere dynamic and thermal regime to
the various planetary wave impacts. The MUAM allows the

inclusion of selective sources of various PW modes, which
gives the opportunity for deeper study into the contribution of
each PW to the atmospheric circulation structure. Moreover,
for a more detailed diagnostics of the PW effect on the mean
flow, the transformed Eulerian mean approach was used, im-
plying the calculation of the residual mean meridional circu-
lation, which is a superposition of eddy and advective mean
transport.

The amplitudes of the simulated PWs are consistent with
the ground-based, satellite observations data, as well as with
the reanalysis and assimilation of meteorological data. The
obtained increments of hydrometeorological parameters are
maximal, as a rule, in the regions of maximum amplitudes of
the considered PWs. In particular, the inclusion of the 5 d PW
and an UFKW can transform the components of the residual
meridional circulation up to 6 % each, forming a significant
contribution to the atmospheric circulation. The impact of
the 16 d wave on the circulation is comparable in value with
the 5 d PW and UFKW; however, it has a different structure.
Changes in circulation components occur in the high-latitude
stratosphere and may reach up to 6 %. In turn, all the above-
mentioned changes in the meridional circulation, especially
its vertical component, as well as a variation of wave activity
fluxes, can cause variations in the background temperature
of more than 1 K. At the same time, at certain moments, this
effect is much stronger. In addition, the waves can be super-
imposed on one another, and their effect can be summarised,
i.e. the cumulative effect of the considered waves can signif-
icantly increase at certain moments in time.

The effect of the 16 d PW generation by an internal at-
mospheric source in the southern lower thermosphere was
found, independent of the tropospheric PW sources specified
in the model. Most probably, the point is that the 4 d PW
with a wave number 2 interacts nonlinearly with a 5 d PW
with a wave number 1 causing a secondary wave excitation.
Such a mechanism is described, e.g. by Pogoreltsev (2001):
when two waves having frequencies ω and zonal numbers
m interact, a new (secondary) wave arises in which the fre-
quency and wave number are the sum or difference of the
corresponding values of the primary waves. Hence, the direct
effect of the PWs can be enhanced due to their nonlinear in-
teractions. Finally, this causes deceleration of the mean flow,
creating better conditions for the sudden stratospheric warm-
ing (SSW) onset (e.g. Pogoreltsev et al., 2014). However, ad-
ditional calculations are required to confirm this theory.

In addition, it should also be noted that for proper mod-
elling of large-scale atmospheric dynamics, all models of the
general atmospheric circulation should be tested for the abil-
ity to reproduce the global resonant properties of the atmo-
sphere (the so-called atmospheric normal modes). This pos-
sibility has been repeatedly described in the MUAM (e.g.
Pogoreltsev, 2007; Koval et al., 2018a), which underlines the
reliability of the results obtained.
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