Articles | Volume 23, issue 24
https://doi.org/10.5194/acp-23-15365-2023
https://doi.org/10.5194/acp-23-15365-2023
Research article
 | 
15 Dec 2023
Research article |  | 15 Dec 2023

The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic

Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen

Related authors

Estimating turbulent energy flux vertical profiles from uncrewed aircraft system measurements: exemplary results for the MOSAiC campaign
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023,https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top
Ulrike Egerer, André Ehrlich, Matthias Gottschalk, Hannes Griesche, Roel A. J. Neggers, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021,https://doi.org/10.5194/acp-21-6347-2021, 2021
Short summary
The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019,https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evidence of Tropospheric Uplift into the Stratosphere via the Tropical Western Pacific Cold Trap
Xiaoyu Sun, Katrin Müller, Mathias Palm, Christoph Ritter, Denghui Ji, Tim Balthasar Röpke, and Justus Notholt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3981,https://doi.org/10.5194/egusphere-2024-3981, 2025
Short summary
Impact of boundary layer stability on urban park cooling effect intensity
Martial Haeffelin, Jean-François Ribaud, Jonnathan Céspedes, Jean-Charles Dupont, Aude Lemonsu, Valéry Masson, Tim Nagel, and Simone Kotthaus
Atmos. Chem. Phys., 24, 14101–14122, https://doi.org/10.5194/acp-24-14101-2024,https://doi.org/10.5194/acp-24-14101-2024, 2024
Short summary
Investigation of non-equilibrium turbulence decay in the atmospheric boundary layer using Doppler lidar measurements
Maciej Karasewicz, Marta Wacławczyk, Pablo Ortiz-Amezcua, Łucja Janicka, Patryk Poczta, Camilla Kassar Borges, and Iwona S. Stachlewska
Atmos. Chem. Phys., 24, 13231–13251, https://doi.org/10.5194/acp-24-13231-2024,https://doi.org/10.5194/acp-24-13231-2024, 2024
Short summary
Measurement report: The promotion of the low-level jet and thermal effects on the development of the deep convective boundary layer at the southern edge of the Taklimakan Desert
Lian Su, Chunsong Lu, Jinlong Yuan, Xiaofei Wang, Qing He, and Haiyun Xia
Atmos. Chem. Phys., 24, 10947–10963, https://doi.org/10.5194/acp-24-10947-2024,https://doi.org/10.5194/acp-24-10947-2024, 2024
Short summary
Estimating scalar turbulent fluxes with slow-response sensors in the stable atmospheric boundary layer
Mohammad Allouche, Vladislav I. Sevostianov, Einara Zahn, Mark A. Zondlo, Nelson Luís Dias, Gabriel G. Katul, Jose D. Fuentes, and Elie Bou-Zeid
Atmos. Chem. Phys., 24, 9697–9711, https://doi.org/10.5194/acp-24-9697-2024,https://doi.org/10.5194/acp-24-9697-2024, 2024
Short summary

Cited articles

Abarbanel, H. D. I., Holm, D. D., Marsden, J. E., and Ratiu, T.: Richardson number criterion for the nonlinear stability of three-dimensional stratified flow, Phys. Rev. Lett., 52, 2352–2355, https://doi.org/10.1103/PhysRevLett.52.2352, 1984. a
Algarra, I., Eiras-Barca, J., Miguez-Macho, G., Nieto, R., and Gimeno, L.: On the assessment of the moisture transport by the Great Plains low-level jet, Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, 2019. a
Andreas, E. L., Claffey, K. J., and Makshtas, A. P.: Low-level atmospheric jets and inversions over the western Weddell Sea, Bound.-Lay. Meteorol., 97, 459–486, https://doi.org/10.1023/A:1002793831076, 2000. a
Banta, R. M., Pichugina, Y. L., and Brewer, W. A.: Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet, J. Atmos. Sci., 63, 2700–2719, https://doi.org/10.1175/JAS3776.1, 2006. a
Blackadar, A. K.: Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions, B. Am. Meteorol. Soc., 38, 283–290, https://doi.org/10.1175/1520-0477-38.5.283, 1957. a, b
Download
Short summary
Low-level jets (LLJs) are strong winds near the surface and occur frequently in the Arctic in stable conditions. Using tethered-balloon profile measurements in Greenland, we analyze a multi-hour period with an LLJ that later weakens and finally collapses. Increased shear-induced turbulence at the LLJ bounds mostly does not reach the ground until the LLJ collapses. Our findings support the hypothesis that a passive tracer can be advected with an LLJ and mixed down when the LLJ collapses.
Share
Altmetrics
Final-revised paper
Preprint