Articles | Volume 23, issue 22
https://doi.org/10.5194/acp-23-14239-2023
https://doi.org/10.5194/acp-23-14239-2023
Research article
 | 
16 Nov 2023
Research article |  | 16 Nov 2023

The evolution of deep convective systems and their associated cirrus outflows

George Horner and Edward Gryspeerdt

Related authors

How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025,https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of weather systems on observed precipitation at Ny-Ålesund (Svalbard)
Kerstin Ebell, Christian Buhren, Rosa Gierens, Giovanni Chellini, Melanie Lauer, Andreas Walbröl, Sandro Dahlke, Pavel Krobot, and Mario Mech
Atmos. Chem. Phys., 25, 7315–7342, https://doi.org/10.5194/acp-25-7315-2025,https://doi.org/10.5194/acp-25-7315-2025, 2025
Short summary
Analysis of ship emission effects on clouds over the southeastern Atlantic using geostationary satellite observations
Nikos Benas, Jan Fokke Meirink, Rob Roebeling, and Martin Stengel
Atmos. Chem. Phys., 25, 6957–6973, https://doi.org/10.5194/acp-25-6957-2025,https://doi.org/10.5194/acp-25-6957-2025, 2025
Short summary
Relationship between latent and radiative heating fields of tropical cloud systems using synergistic satellite observations
Xiaoting Chen, Claudia J. Stubenrauch, and Giulio Mandorli
Atmos. Chem. Phys., 25, 6857–6880, https://doi.org/10.5194/acp-25-6857-2025,https://doi.org/10.5194/acp-25-6857-2025, 2025
Short summary
Shallow cloud variability in Houston, Texas, during the ESCAPE and TRACER field experiments
Zackary Mages, Pavlos Kollias, Bernat Puigdomènech Treserras, Paloma Borque, and Mariko Oue
Atmos. Chem. Phys., 25, 6025–6045, https://doi.org/10.5194/acp-25-6025-2025,https://doi.org/10.5194/acp-25-6025-2025, 2025
Short summary
How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025,https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary

Cited articles

Berry, E. and Mace, G. G.: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data, J. Geophys. Res.-Atmos., 119, 9492–9508, https://doi.org/10.1002/2014JD021458, 2014. a
Bourgeois, Q., Ekman, A. M. L., Igel, M. R., and Krejci, R.: Ubiquity and impact of thin mid-level clouds in the tropics, Nat. Commun., 7, 12432, https://doi.org/10.1038/ncomms12432, 2016. a, b
Chen, Y. and Del Genio, A. D.: Evaluation of tropical cloud regimes in observations and a general circulation model, Clim. Dynam., 32, 355–369, https://doi.org/10.1007/s00382-008-0386-6, 2009. a
Choi, Y.-S. and Ho, C.-H.: Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observations, Geophys. Res. Lett., 33, L21811, https://doi.org/10.1029/2006GL027403, 2006. a, b
Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer, J. Geophys. Res.-Atmos., 113, D07204, https://doi.org/10.1029/2007JD009000, 2008a. a, b, c
Download
Short summary
Tropical deep convective clouds, and the thin cirrus (ice) clouds that flow out from them, are important for modulating the energy budget of the tropical atmosphere. This work uses a new method to track the evolution of the properties of these clouds across their entire lifetimes. We find these clouds cool the atmosphere in the first 6 h before switching to a warming regime after the deep convective core has dissipated, which is sustained beyond 120 h from the initial convective event.
Share
Altmetrics
Final-revised paper
Preprint