Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2191-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2191-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sources and processes of iron aerosols in a megacity in Eastern China
Yanhong Zhu
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
Yue Wang
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
Jian Zhang
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
Liang Xu
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
Jingsha Xu
Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
Jinhui Shi
Key Laboratory of Marine Environmental Science and Ecology, Ocean
University of China, Ministry of Education of China, Qingdao 266010, China
Longyi Shao
State Key Laboratory of Coal Resources and Safe Mining, China
University of Mining and Technology, Beijing 100086, China
Pingqing Fu
Institute of Surface-Earth System Science, School of Earth System
Science, Tianjin University, Tianjin 300072, China
Daizhou Zhang
Faculty of Environmental and Symbiotic Sciences, Prefectural
University of Kumamoto, Kumamoto 862-8502, Japan
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
Related authors
No articles found.
Yujue Wang, Yizhe Yi, Wei Xu, Yiwen Zhang, Shubin Li, Hong-Hai Zhang, Mingliang Gu, Shibo Yan, Jialei Zhu, Chao Zhang, Jinhui Shi, Yang Gao, Xiaohong Yao, and Huiwang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3951, https://doi.org/10.5194/egusphere-2025-3951, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Marine organic aerosols remain poorly quantified, which limits our understanding on the climate regulation of marine aerosols. Based on shipboard cruises over the Pacific Ocean, we proposed an observation-based parameterization approach to estimate the primary and secondary marine organic aerosols using sea surface chlorophyll a and sea salts in marine aerosols. The results highlight that the spatial distribution of marine organic aerosols was driven by the marine biological activities.
Juncheng Qian, Thomas Wynn, Bowen Liu, Yuli Shan, Suzanne E. Bartington, Francis D. Pope, Yuqing Dai, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3839, https://doi.org/10.5194/egusphere-2025-3839, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We developed a multi-stage AutoML calibration framework to improve low-cost indoor PM2.5 sensor accuracy. Using chamber tests with varied emission sources, the method corrected drift, humidity effects, and non-linear responses, raising R2 above 0.9 and halving RMSE. The approach enables reliable, scalable indoor air quality monitoring for research and public health applications.
Qinghao Guo, Haofei Zhang, Bo Long, Lehui Cui, Yiyang Sun, Hao Liu, Yaxin Liu, Yunting Xiao, Pingqing Fu, and Jialei Zhu
Atmos. Chem. Phys., 25, 9249–9262, https://doi.org/10.5194/acp-25-9249-2025, https://doi.org/10.5194/acp-25-9249-2025, 2025
Short summary
Short summary
Limonene, a natural compound from plants, reacts with pollutants to form airborne particles that influence air quality and climate. Using advanced models with explicit chemical mechanisms, we show how different reaction pathways shape organonitrate formation, with some increasing and others decreasing particle levels. This approach enhances predictions of pollution and climate impacts while deepening our understanding of how natural and human-made emissions interact in the atmosphere.
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025, https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Short summary
This study examines the properties of dust in snow in Changchun, China, using advanced technology to analyze its size, shape, and light absorption. We found that dust composition affects how much heat is absorbed by snow, with certain minerals, such as hematite, making snowmelt faster. Our research highlights the importance of creating clear standards for classifying dust, which could improve climate models and field observations. This work helps better understand dust's role in climate change.
Claudia Di Biagio, Elisa Bru, Avila Orta, Servanne Chevaillier, Clarissa Baldo, Antonin Bergé, Mathieu Cazaunau, Sandra Lafon, Sophie Nowak, Edouard Pangui, Meinrat O. Andreae, Pavla Dagsson-Waldhauserova, Kebonyethata Dintwe, Konrad Kandler, James S. King, Amelie Chaput, Gregory S. Okin, Stuart Piketh, Thuraya Saeed, David Seibert, Zongbo Shi, Earle Williams, Pasquale Sellitto, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3512, https://doi.org/10.5194/egusphere-2025-3512, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Spectroscopy measurements show that the absorbance of dust in the far-infrared up to 25 μm is comparable in intensity to that in the mid-infrared (3–15μm) suggesting its relevance for dust direct radiative effect. Data evidence different absorption signatures for high and low/mid latitude dust, due to differences in mineralogical composition. These differences could be used to characterise the mineralogy and differentiate the origin of airborne dust based on infrared remote sensing observations.
Tianyu Zhang, Yizhu Chen, Huanhuan Zhang, Lei Liu, Chengpeng Huang, Zhengyang Fang, Yifan Zhang, Fu Wang, Lan Luo, Guohua Zhang, Xinming Wang, and Mingjin Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2235, https://doi.org/10.5194/egusphere-2025-2235, 2025
Short summary
Short summary
This work investigated seasonal variations of aerosol Al solubility for supermicron and submicron particles at two locations in northern China. We conclude that atmospheric chemical processing, in which aerosol liquid water and acidity play vital roles, dictates aerosol Al solubility.
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
Atmos. Chem. Phys., 25, 5947–5958, https://doi.org/10.5194/acp-25-5947-2025, https://doi.org/10.5194/acp-25-5947-2025, 2025
Short summary
Short summary
Pollution with per- and polyfluoroalkyl substances (PFAS) has received attention due to their environmental persistence and bioaccumulation, but their sources remain poorly understood. PM10 (particulate matter) collected above a scaled-down activated sludge tank treating domestic sewage in the UK was analysed for a range of short-, medium-, and long-chain PFAS. Eight PFAS were detected in the PM10. Our results suggest that wastewater treatment processes, i.e. activated sludge aeration, could aerosolise PFAS into airborne PM.
Shubin Li, Yujue Wang, Yiwen Zhang, Yizhe Yi, Yuchen Wang, Yuqi Guo, Chao Yu, Yue Jiang, Jinhui Shi, Chao Zhang, Jialei Zhu, Wei Hu, Jianzhen Yu, Xiaohong Yao, Huiwang Gao, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2154, https://doi.org/10.5194/egusphere-2025-2154, 2025
Short summary
Short summary
Organosulfates (OSs) are an unrecognized and potentially important component in marine organic aerosols. In this study, we quantified and characterized the OSs over East Asian marginal seas. The chemical nature and spatiotemporal distribution of OSs were modified by the joint influence of marine emissions and transported terrestrial pollutants. The results highlight the vital roles of OSs in shaping organic aerosol formation and sulfur cycle during summer in marine boundary layer.
Wenxin Zhang, Wei Hu, Mutong Niu, Quanfei Zhu, Na An, Qiang Zhang, Rui Jin, Xiaoli Fu, Jian Hao, Jianbo Yang, Jingle Liu, Jing Shi, Suqin Han, Junjun Deng, Libin Wu, Yuqi Feng, Kimitaka Kawamura, and Pingqing Fu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2269, https://doi.org/10.5194/egusphere-2025-2269, 2025
Short summary
Short summary
This study investigated airborne endotoxins varying with height and season in northern China. By analyzing specific hydroxy fatty acids in aerosols, we estimated endotoxins at ground level and higher altitudes. Higher concentrations were observed near the ground during winter, likely driven by microbial emissions and combustion sources. Our findings suggest that air pollution and meteorological factors can influence endotoxin concentrations, posing potential health risks in urban environments.
Hanzheng Zhu, Yaman Liu, Man Yue, Shihui Feng, Pingqing Fu, Kan Huang, Xinyi Dong, and Minghuai Wang
Atmos. Chem. Phys., 25, 5175–5197, https://doi.org/10.5194/acp-25-5175-2025, https://doi.org/10.5194/acp-25-5175-2025, 2025
Short summary
Short summary
Dust-soluble iron deposition from East Asia plays an important role in the marine ecology of the Northwest Pacific. Using the developed model, our findings highlight a dual trend: a decrease in the overall deposition of soluble iron from dust but an increase in the solubility of the iron itself due to the enhanced atmospheric processing. The study underscores the critical roles of both dust emission and atmospheric processing in soluble iron deposition and marine ecology.
Yuqing Dai, Bowen Liu, Chengxu Tong, David Carslaw, Robert MacKenzie, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1376, https://doi.org/10.5194/egusphere-2025-1376, 2025
Short summary
Short summary
Air pollution causes millions of deaths annually, driving policies to improve air quality. However, assessing these policies is challenging because weather changes can hide their true impact. We created a logical evaluation framework and found that a widely applied machine learning approach that adjusts for weather effects could underestimate the effectiveness of short-term policies, like emergency traffic controls. We proposed a refined approach that could largely reduce such underestimation.
Mingyu Li, Zhanjie Xu, Zhichao Dong, Junjun Deng, Pingqing Fu, and Chandra Mouli Pavuluri
EGUsphere, https://doi.org/10.5194/egusphere-2025-1335, https://doi.org/10.5194/egusphere-2025-1335, 2025
Short summary
Short summary
This study investigated the seasonal and diurnal variability of fine aerosol composition in two forest ecosystems in North and South China. Carbonaceous/nitrogenous compound concentrations were higher in winter than summer at both sites. The forest fine aerosols in high latitude exhibited significantly greater influence from fossil fuel combustion compared to that in low latitude.
Zhichao Dong, Subba Rao Devineni, Xiaoli Fu, Zhanjie Xu, Mingyu Li, Pingqing Fu, Cong-Qiang Liu, and Chandra Mouli Pavuluri
EGUsphere, https://doi.org/10.5194/egusphere-2025-899, https://doi.org/10.5194/egusphere-2025-899, 2025
Preprint archived
Short summary
Short summary
We developed new method to detect and measure organosulfates in PM2.5. By synthesizing organosulfates and combining them with commercial standards, we improved detection accuracy. Testing air samples from Tianjin, China, we found wintertime levels of organosulfates were much higher than in other regions. Our results show how human actions directly impact air quality and provide a tool to track pollution sources. This work helps scientists understand and address harmful aerosols in environments.
Yaxin Liu, Yunting Xiao, Lehui Cui, Qinghao Guo, Yiyang Sun, Pingqing Fu, Cong-Qiang Liu, and Jialei Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-763, https://doi.org/10.5194/egusphere-2025-763, 2025
Short summary
Short summary
Dust carries iron deposits into the ocean, providing essential nutrients for the growth of marine phytoplankton, influencing their carbon uptake capacity. A model constrained by global datasets on dust iron content, ocean iron solubility, and dissolved iron concentrations was used to assess the contributions of 11 major dust sources to carbon uptake in 8 marine areas, enhancing understanding of the impact of global dust emissions on marine deposition and carbon cycle with decreased uncertainty.
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025, https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Short summary
The metabolic capacity of atmospheric microorganisms after settling into habitats is poorly understood. We studied the molecular composition of exometabolites for cultured typical airborne microbes and traced their metabolic processes. Bacteria and fungi produce highly oxidized exometabolites and have significant variations in metabolism among different strains. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024, https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Short summary
Analysis of modeling, in situ, and remote sensing measurements reveals the microphysical state of orographic clouds and their response to aerosol from the boundary layer and free troposphere. We show that cloud response to aerosol is robust, as predicted supersaturation and cloud droplet number levels agree with those determined from in-cloud measurements. The ability to determine if clouds are velocity- or aerosol-limited allows for novel model constraints and remote sensing products.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
Lehui Cui, Yunting Xiao, Wei Hu, Lei Song, Yujue Wang, Chao Zhang, Pingqing Fu, and Jialei Zhu
Earth Syst. Sci. Data, 15, 5403–5425, https://doi.org/10.5194/essd-15-5403-2023, https://doi.org/10.5194/essd-15-5403-2023, 2023
Short summary
Short summary
Isoprene is a crucial non-methane biogenic volatile organic compound with the largest global emissions, which has high chemical reactivity and serves as the primary source of natural secondary organic aerosols. This study built a module to present a 20-year global hourly dataset of marine phytoplankton-generated biological and photochemistry-generated isoprene emissions in the sea microlayers based on the latest advancements in biological, physical, and chemical processes.
Jingjing Meng, Yachen Wang, Yuanyuan Li, Tonglin Huang, Zhifei Wang, Yiqiu Wang, Min Chen, Zhanfang Hou, Houhua Zhou, Keding Lu, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 14481–14503, https://doi.org/10.5194/acp-23-14481-2023, https://doi.org/10.5194/acp-23-14481-2023, 2023
Short summary
Short summary
This study investigated the effect of COVID-19 lockdown (LCD) measures on the formation and evolutionary process of diacids and related compounds from field observations. Results demonstrate that more aged organic aerosols are observed during the LCD due to the enhanced photochemical oxidation. Our study also found that the reactivity of 13C was higher than that of 12C in the gaseous photochemical oxidation, leading to higher δ13C values of C2 during the LCD than before the LCD.
Li Wu, Hyo-Jin Eom, Hanjin Yoo, Dhrubajyoti Gupta, Hye-Rin Cho, Pingqing Fu, and Chul-Un Ro
Atmos. Chem. Phys., 23, 12571–12588, https://doi.org/10.5194/acp-23-12571-2023, https://doi.org/10.5194/acp-23-12571-2023, 2023
Short summary
Short summary
Hygroscopicity of ambient marine aerosols is of critical relevance to investigate their atmospheric impacts, which, however, remain uncertain due to their complex compositions and mixing states. Therefore, a study on the hygroscopic behavior of ambient marine aerosols for understanding the phase states when interacting with water vapor at different RH levels and their subsequent impacts on the heterogeneous chemical reactions, atmospheric environment, and human health is of vital importance.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Dandan Liu, Yun Zhang, Shujun Zhong, Shuang Chen, Qiaorong Xie, Donghuan Zhang, Qiang Zhang, Wei Hu, Junjun Deng, Libin Wu, Chao Ma, Haijie Tong, and Pingqing Fu
Atmos. Chem. Phys., 23, 8383–8402, https://doi.org/10.5194/acp-23-8383-2023, https://doi.org/10.5194/acp-23-8383-2023, 2023
Short summary
Short summary
Based on ultra-high-resolution mass spectrometry analysis, we found that β-pinene oxidation-derived highly oxygenated organic molecules (HOMs) exhibit higher yield at high ozone concentration, while limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentration. The distinct molecular response of HOMs and low-volatile species in different biogenic secondary organic aerosols to ozone concentrations provides a new clue for more accurate air quality prediction and management.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys., 23, 6217–6240, https://doi.org/10.5194/acp-23-6217-2023, https://doi.org/10.5194/acp-23-6217-2023, 2023
Short summary
Short summary
A multi-air-pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing by ~40 %. Emissions of other species only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicate that the lockdown only had limited effects on the control of PM2.5 and O3 in China.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Zhichao Dong, Chandra Mouli Pavuluri, Zhanjie Xu, Yu Wang, Peisen Li, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 23, 2119–2143, https://doi.org/10.5194/acp-23-2119-2023, https://doi.org/10.5194/acp-23-2119-2023, 2023
Short summary
Short summary
This study has provided comprehensive baseline data of carbonaceous and inorganic aerosols as well as their isotope ratios in the Tianjin region, North China, found that Tianjin aerosols were derived from coal combustion, biomass burning and photochemical reactions of VOCs, and also implied that the Tianjin aerosols were more aged during long-range atmospheric transport in summer via carbonaceous and isotope data analysis.
Shujun Zhong, Shuang Chen, Junjun Deng, Yanbing Fan, Qiang Zhang, Qiaorong Xie, Yulin Qi, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Jialei Zhu, Xin Wang, Di Liu, Xiaole Pan, Yele Sun, Zifa Wang, Yisheng Xu, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 2061–2077, https://doi.org/10.5194/acp-23-2061-2023, https://doi.org/10.5194/acp-23-2061-2023, 2023
Short summary
Short summary
This study investigated the role of the secondary organic aerosol (SOA) loading on the molecular composition of wintertime urban aerosols by ultrahigh-resolution mass spectrometry. Results demonstrate that the SOA loading is an important factor associated with the oxidation degree, nitrate group content, and chemodiversity of nitrooxy–organosulfates. Our study also found that the hydrolysis of nitrooxy–organosulfates is a possible pathway for the formation of organosulfates.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Zhiqiang Zhang, Yele Sun, Chun Chen, Bo You, Aodong Du, Weiqi Xu, Yan Li, Zhijie Li, Lu Lei, Wei Zhou, Jiaxing Sun, Yanmei Qiu, Lianfang Wei, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 10409–10423, https://doi.org/10.5194/acp-22-10409-2022, https://doi.org/10.5194/acp-22-10409-2022, 2022
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic aerosol and the first mass spectral characterization of water-insoluble organic aerosol in the cold season in Beijing by integrating online and offline aerosol mass spectrometer measurements. WSOA comprised dominantly secondary OA and showed large changes during the transition season from autumn to winter. WIOA was characterized by prominent hydrocarbon ions series, low oxidation states, and significant day–night differences.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Junjun Deng, Hao Ma, Xinfeng Wang, Shujun Zhong, Zhimin Zhang, Jialei Zhu, Yanbing Fan, Wei Hu, Libin Wu, Xiaodong Li, Lujie Ren, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 22, 6449–6470, https://doi.org/10.5194/acp-22-6449-2022, https://doi.org/10.5194/acp-22-6449-2022, 2022
Short summary
Short summary
Light-absorbing brown carbon (BrC) plays an important role in climate change and atmospheric chemistry. Here we investigated the seasonal and diurnal variations in water-soluble BrC in PM2.5 in the megacity Tianjin in coastal China. Results of the source apportionments from the combination with organic molecular compositions and optical properties of water-soluble BrC reveal a large contribution from primary bioaerosol particles to BrC in the urban atmosphere.
Clarissa Baldo, Akinori Ito, Michael D. Krom, Weijun Li, Tim Jones, Nick Drake, Konstantin Ignatyev, Nicholas Davidson, and Zongbo Shi
Atmos. Chem. Phys., 22, 6045–6066, https://doi.org/10.5194/acp-22-6045-2022, https://doi.org/10.5194/acp-22-6045-2022, 2022
Short summary
Short summary
High ionic strength relevant to the aerosol-water enhanced proton-promoted dissolution of iron in coal fly ash (up to 7 times) but suppressed oxalate-promoted dissolution at low pH (< 3). Fe in coal fly ash dissolved up to 7 times faster than in Saharan dust at low pH. A global model with the updated dissolution rates of iron in coal fly ash suggested a larger contribution of pyrogenic dissolved Fe over regions with a strong impact from fossil fuel combustions.
Ülkü Alver Şahin, Roy M. Harrison, Mohammed S. Alam, David C. S. Beddows, Dimitrios Bousiotis, Zongbo Shi, Leigh R. Crilley, William Bloss, James Brean, Isha Khanna, and Rulan Verma
Atmos. Chem. Phys., 22, 5415–5433, https://doi.org/10.5194/acp-22-5415-2022, https://doi.org/10.5194/acp-22-5415-2022, 2022
Short summary
Short summary
Wide-range particle size spectra have been measured in three seasons in Delhi and are interpreted in terms of sources and processes. Condensational growth is a major feature of the fine fraction, and a coarse fraction contributes substantially – but only in summer.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Yingze Tian, Xiaoning Wang, Peng Zhao, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1007, https://doi.org/10.5194/acp-2021-1007, 2022
Revised manuscript not accepted
Short summary
Short summary
Chemical mass balance (CMB) is a widely used method to apportion the sources of PM2.5. We explore the sensitivity of CMB results to input data of organic markers only (OM-CMB) with a combination of organic and inorganic markers (IOM-CMB), as well as using different chemical profiles for sources. Our results indicate the superiority of combining inorganic and organic tracers and using locally-relevant source profiles in source apportionment of PM.
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, https://doi.org/10.5194/acp-22-561-2022, 2022
Short summary
Short summary
We analyzed 9-year measurements of BC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in BC and light extinction coefficient due to the Clean Air Action Plan. As a response, both SSA and mass extinction efficiency (MEE) showed considerable increases, demonstrating a future challenge in visibility improvement. The primary and secondary BrC was also separated and quantified, and the changes in radiative forcing of BC and BrC were estimated.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Liang Xu, Xiaohuan Liu, Huiwang Gao, Xiaohong Yao, Daizhou Zhang, Lei Bi, Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Qi Yuan, and Weijun Li
Atmos. Chem. Phys., 21, 17715–17726, https://doi.org/10.5194/acp-21-17715-2021, https://doi.org/10.5194/acp-21-17715-2021, 2021
Short summary
Short summary
We quantified different types of marine aerosols and explored the Cl depletion of sea salt aerosol (SSA) in the eastern China seas and the northwestern Pacific Ocean. We found that anthropogenic acidic gases in the troposphere were transported longer distances compared to the anthropogenic aerosols and could significantly impact remote marine aerosols. Meanwhile, variations of chloride depletion in SSA can serve as a potential indicator for anthropogenic gaseous pollutants in remote marine air.
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary
Short summary
This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) at urban and rural sites in Beijing. These factors are interpreted as traffic emissions, biomass burning, road and soil dust, coal and oil combustion, and secondary inorganics. PMF failed to resolve some sources identified by CMB and AMS and appears to overestimate the dust sources. Comparison with earlier PMF studies from the Beijing area highlights inconsistent findings using this method.
Peixin Zhang, Jing Lu, Minfang Yang, Longyi Shao, Ziwei Wang, and Jason Hilton
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-108, https://doi.org/10.5194/cp-2021-108, 2021
Manuscript not accepted for further review
Short summary
Short summary
Earth experienced frequent high-latitude glaciations from 360–260 million years ago but impacts on low latitude climates are poorly known. We use multiple proxies including clay mineral analysis on low latitude sediments in China to unveil past climates and correlate cool and humid climates with glacials and warm and humid climates to interglacials. Our results track high latitude glacial rhythms and show glacial cycles drove plant evolution and terrestrial environment change in low latitudes.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Hong Ren, Wei Hu, Lianfang Wei, Siyao Yue, Jian Zhao, Linjie Li, Libin Wu, Wanyu Zhao, Lujie Ren, Mingjie Kang, Qiaorong Xie, Sihui Su, Xiaole Pan, Zifa Wang, Yele Sun, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 21, 12949–12963, https://doi.org/10.5194/acp-21-12949-2021, https://doi.org/10.5194/acp-21-12949-2021, 2021
Short summary
Short summary
This study presents vertical profiles of biogenic and anthropogenic secondary organic aerosols (SOAs) in the urban boundary layer based on a 325 m tower in Beijing in late summer. The increases in the isoprene and toluene SOAs with height were found to be more related to regional transport, whereas the decrease in those from monoterpenes and sesquiterpene were more subject to local emissions. Such complicated vertical distributions of SOA should be considered in future modeling work.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Jingsha Xu, Di Liu, Xuefang Wu, Tuan V. Vu, Yanli Zhang, Pingqing Fu, Yele Sun, Weiqi Xu, Bo Zheng, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021, https://doi.org/10.5194/acp-21-7321-2021, 2021
Short summary
Short summary
Source apportionment of fine aerosols in an urban site of Beijing used a chemical mass balance (CMB) model. Seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. CMB was found to resolve more primary OA sources than AMS-PMF, but the latter apportioned more secondary OA sources.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Santosh Kumar Verma, Kimitaka Kawamura, Fei Yang, Pingqing Fu, Yugo Kanaya, and Zifa Wang
Atmos. Chem. Phys., 21, 4959–4978, https://doi.org/10.5194/acp-21-4959-2021, https://doi.org/10.5194/acp-21-4959-2021, 2021
Short summary
Short summary
We studied aerosol samples collected in autumn 2007 with day and night intervals in a rural site of Mangshan, north of Beijing, for sugar compounds (SCs) that are abundant organic aerosol components and can influence the air quality and climate. We found higher concentrations of biomass burning (BB) products at nighttime than daytime, whereas pollen tracers and other SCs showed an opposite diurnal trend, because this site is meteorologically characterized by a mountain/valley breeze.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Eloise J. Slater, Lisa K. Whalley, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Leigh R. Crilley, Louisa Kramer, William Bloss, Tuan Vu, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, https://doi.org/10.5194/acp-20-14847-2020, 2020
Short summary
Short summary
The paper details atmospheric chemistry in a megacity (Beijing), focussing on radicals which mediate the formation of secondary pollutants such as ozone and particles. Highly polluted conditions were experienced, including the highest ever levels of nitric oxide (NO), with simultaneous radical measurements. Radical concentrations were large during "haze" events, demonstrating active photochemistry. Modelling showed that our understanding of the chemistry at high NOx levels is incomplete.
Junjun Deng, Hao Guo, Hongliang Zhang, Jialei Zhu, Xin Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 14419–14435, https://doi.org/10.5194/acp-20-14419-2020, https://doi.org/10.5194/acp-20-14419-2020, 2020
Short summary
Short summary
One-year source apportionment of BC aerosols in a coastal city in China was conducted with the light-absorption observation-based method and source-oriented model. Source contributions identified by the two source apportionment methods were compared. Temporal variability, potential sources and transport pathways of BC from fossil fuel and biomass burning were characterized. Significant influence of biomass burning in North and East–Central China on BC in the region was highlighted.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Liang Xu, Satoshi Fukushima, Sophie Sobanska, Kotaro Murata, Ayumi Naganuma, Lei Liu, Yuanyuan Wang, Hongya Niu, Zongbo Shi, Tomoko Kojima, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 20, 14321–14332, https://doi.org/10.5194/acp-20-14321-2020, https://doi.org/10.5194/acp-20-14321-2020, 2020
Short summary
Short summary
We quantified the mixing structures of soot particles and found that the dominant mixing structure changed from fresh to partially embedded to fully embedded along the pathway of an Asian dust storm from eastern China to Japan. Soot particles became more compact following transport. Our findings not only provide direct evidence for soot aging during regional transport but also help us understand how their morphology changes in different air environments.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Sarah S. Steimer, Daniel J. Patton, Tuan V. Vu, Marios Panagi, Paul S. Monks, Roy M. Harrison, Zoë L. Fleming, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 20, 13303–13318, https://doi.org/10.5194/acp-20-13303-2020, https://doi.org/10.5194/acp-20-13303-2020, 2020
Short summary
Short summary
Air pollution is of growing concern due to its negative effect on public health, especially in low- and middle-income countries. This study investigates how the chemical composition of particles in Beijing changes under different measurement conditions (pollution levels, season) to get a better understanding of the sources of this form of air pollution.
Jiawei Li, Zhiwei Han, Pingqing Fu, and Xiaohong Yao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1016, https://doi.org/10.5194/acp-2020-1016, 2020
Revised manuscript not accepted
Short summary
Short summary
Organic aerosols of marine origin are so far poorly understood. An on-line coupled regional chemistry-climate model is developed to firstly explore and characterize the seasonality and annual feature of emission, distribution and radiative effects of marine organic aerosols specifically for the western Pacific over East Asia. This study reveals an important role of marine organic aerosols in radiation and cloud and would be valuable for climate research at both regional and global scales.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Short summary
Our observations provide detailed information on the abundance and vertical distribution of dicarboxylic acids, oxoacids and α-dicarbonyls in PM2.5 collected at three heights based on a 325 m meteorological tower in Beijing in summer. Our results demonstrate that organic acids at the ground surface are largely associated with local traffic emissions, while long-range atmospheric transport followed by photochemical ageing contributes more in the urban boundary layer than the ground surface.
Cited articles
Abbaspour, N., Hurrell, R., and Kelishadi, R.: Review on iron and its importance for human health, J. Res. Med. Sci., 19, 164–174, 2014.
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition
metal-catalyzed oxidation of atmospheric sulfur: global implications for the
sulfur budget, J. Geophys. Res.-Atmos., 114, D02309, https://doi.org/10.1029/2008JD010486, 2009.
Baker, A., Kanakidou, M., Nenes, A., Myriokefalitakis, S., Croot, P. L., Duce, R. A., Gao, Y., Guieu, C., Ito, A., Jickells, T., Mahowald, N. M., Middag, R., Perron, M. M. G., Sarin, M. M., Shelley, R., and Turner, D. R.: Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry, Sci. Adv., 7, eabd8800, https://doi.org/10.1126/sciadv.abd8800, 2021.
Cai, J., Wang, J., Zhang, Y., Tian, H., Zhu, C., Gross, D. S., Hu, M., Hao,
J., He, K., Wang, S., and Zheng, M.: Source apportionment of Pb-containing
particles in Beijing during January 2013, Environ. Pollut., 226, 30–40,
https://doi.org/10.1016/j.envpol.2017.04.004, 2017.
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology and their
use in assessing ozone trends, Atmos. Environ., 41, 7127–7137, 2007.
Chang, Y., Huang, K., Xie, M., Deng, C., Zou, Z., Liu, S., and Zhang, Y.: First long-term and near real-time measurement of trace elements in China's urban atmosphere: temporal variability, source apportionment and precipitation effect, Atmos. Chem. Phys., 18, 11793–11812, https://doi.org/10.5194/acp-18-11793-2018, 2018.
Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., and
Grassian, V. H.: Coal Fly Ash as a Source of Iron in Atmospheric Dust,
Environ. Sci. Technol., 46, 2112–2120, https://doi.org/10.1021/es204102f, 2012.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of
the system H+-NH -SO -NO -H2O at tropospheric temperatures, J. Phys. Chem. A, 102, 2137–2154, https://doi.org/10.1021/jp973042r,
1998.
Conway, T. M., Hamilton, D. S., Shelley, R. U., Aguilar-Islas, A. M.,
Landing, W. M., Mahowald, N. M., and John, S. G.: Tracing and constraining
anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron
isotopes, Nat. Commun., 10, 1–10, https://doi.org/10.1038/s41467-019-10457-w, 2019.
Cui, Y., Ji, D., Chen, H., Gao, M., Maenhaut, W., He, J., and Wang, Y.:
Characteristics and Sources of Hourly Trace Elements in Airborne Fine
Particles in Urban Beijing, China, J. Geophys. Res.-Atmos., 124, 11595–11613, https://doi.org/10.1029/2019jd030881, 2019.
Du, Z., Hu, M., Peng, J., Zhang, W., Zheng, J., Gu, F., Qin, Y., Yang, Y., Li, M., Wu, Y., Shao, M., and Shuai, S.: Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles, Atmos. Chem. Phys., 18, 9011–9023, https://doi.org/10.5194/acp-18-9011-2018, 2018.
Guo, K., Li, H., and Yu, Z.: In-situ heavy and extra-heavy oil recovery: A
review, Fuel, 185, 886–902, https://doi.org/10.1016/j.fuel.2016.08.047, 2016.
Hao, Y., Gao, C., Deng, S., Yuan, M., Song, W., Lu, Z., and Qiu, Z.:
Chemical characterisation of PM2.5 emitted from motor vehicles powered by diesel, gasoline, natural gas and methanol fuel, Sci. Total Environ., 674, 128–139, https://doi.org/10.1016/j.scitotenv.2019.03.410, 2019.
Hou, L., Wang, S., Dou, C., Zhang, X., Yu, Y., Zheng, Y., Avula, U., Hoxha,
M., Díaz, A., McCracken, J., Barretta, F., Marinelli, B., Bertazzi, P.
A., Schwartz, J., and Baccarelli, A. A.: Air pollution exposure and telomere
length in highly exposed subjects in Beijing, China: A repeated-measure
study, Environ. Int., 48, 71–77, https://doi.org/10.1016/j.envint.2012.06.020, 2012.
Ito, A. and Shi, Z.: Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean, Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, 2016.
Ito, A., Perron, M. M., Proemse, B. C., Strzelec, M., Gault-Ringold, M.,
Boyd, P. W., and Bowie, A. R.: Evaluation of aerosol iron solubility over
Australian coastal regions based on inverse modeling: implications of
bushfires on bioaccessible iron concentrations in the Southern Hemisphere,
Prog. Earth Planet. Sc., 7, 1–17, https://doi.org/10.1186/s40645-020-00357-9, 2020.
Ito, A., Ye, Y., Baldo, C., and Shi, Z. B.: Ocean fertilization by pyrogenic
aerosol iron, npj Clim. Atmos. Sci., 4, 30, https://doi.org/10.1038/s41612-021-00185-8, 2021.
Jickells, T., An, Z., Andersen, K. K., Baker, A., Bergametti, G., Brooks,
N., Cao, J., Boyd, P., Duce, R., and Hunter, K.: Global iron connections
between desert dust, ocean biogeochemistry, and climate, Science, 308,
67–71, https://doi.org/10.1126/science.1105959, 2005.
Lei, C., Sun, Y., Tsang, D. C. W., and Lin, D.: Environmental
transformations and ecological effects of iron-based nanoparticles, Environ.
Pollut., 232, 10–30, https://doi.org/10.1016/j.envpol.2017.09.052, 2018.
Leibensperger, E. M., Mickley, L. J., and Jacob, D. J.: Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change, Atmos. Chem. Phys., 8, 7075–7086, https://doi.org/10.5194/acp-8-7075-2008, 2008.
Li, W., Sun, J., Xu, L., Shi, Z., Riemer, N., Sun, Y., Fu, P., Zhang, J.,
Lin, Y., and Wang, X.: A conceptual framework for mixing structures in
individual aerosol particles, J. Geophys. Res.-Atmos., 121, 13784–13798,
https://doi.org/10.1002/2016JD025252, 2016.
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D.,
Chen, J., and Wang, W.: Air pollution–aerosol interactions produce more
bioavailable iron for ocean ecosystems, Sci. Adv., 3, e1601749, https://doi.org/10.1126/sciadv.1601749, 2017.
Li, W., Teng, X., Chen, X., Liu, L., Xu, L., Zhang, J., Wang, Y., Zhang, Y.,
and Shi, Z.: Organic Coating Reduces Hygroscopic Growth of Phase-Separated
Aerosol Particles, Environ. Sci. Technol., 55, 16339–16346, https://doi.org/10.1021/acs.est.1c05901, 2021.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., and Hsu, S.-C.: Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio, Atmos. Chem. Phys., 15, 4117–4130, https://doi.org/10.5194/acp-15-4117-2015, 2015.
Liu, L., Lin, Q. H., Liang, Z., Du, R. G., Zhang, G. Z., Zhu, Y. H., Qi, B.;
Zhou, S. Z., and Li, W. J.: Variations in concentration and solubility of
iron in atmospheric fine particles during the COVID-19 pandemic: An example
from China, Gondwana Res., 97, 138–144, https://doi.org/10.1016/j.gr.2021.05.022, 2021a.
Liu, L., Zhang, J., Du, R., Teng, X., Hu, R., Yuan, Q., Tang, S., Ren, C.,
Huang, X., Xu, L., Zhang, Y., Zhang, X., Song, C., Liu, B., Lu, G., Shi, Z.,
and Li, W.: Chemistry of Atmospheric Fine Particles During the COVID-19
Pandemic in a Megacity of Eastern China, Geophys. Res. Lett., 48,
2020GL091611, https://doi.org/10.1029/2020GL091611, 2021b.
Liu, S., Zhu, C., Tian, H., Wang, Y., Zhang, K., Wu, B., Liu, X., Hao, Y.,
Liu, W., Bai, X., Lin, S., Wu, Y., Shao, P., and Liu, H.: Spatiotemporal
Variations of Ambient Concentrations of Trace Elements in a Highly Polluted
Region of China, J. Geophys. Res.-Atmos., 124, 4186–4202, https://doi.org/10.1029/2018jd029562, 2019.
Liu, Y., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D.,
Wu, Y., Zeng, L., Hu, M., Bateman, A. P., and Martin, S. T.: Submicrometer
particles are in the liquid state during heavy haze episodes in the urban
atmosphere of Beijing, China, Environ. Sci. Technol. Lett., 4, 427–432,
https://doi.org/10.1021/acs.estlett.7b00352, 2017.
Lu, D., Luo, Q., Chen, R., Zhuansun, Y., Jiang, J., Wang, W., Yang, X.,
Zhang, L., Liu, X., Li, F., Liu, Q., and Jiang, G.: Chemical
multi-fingerprinting of exogenous ultrafine particles in human serum and
pleural effusion, Nat. Commun., 11, 2567, https://doi.org/10.1038/s41467-020-16427-x, 2020.
Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P.
G., Allsop, D., Mann, D. M. A., Torres-Jardón, R., and Calderon-Garciduenas, L.: Magnetite pollution nanoparticles in the human brain, P. Natl. Acad. Sci. USA, 113, 10797–10801, https://doi.org/10.1073/pnas.1605941113, 2016.
Majestic, B. J., Schauer, J. J., Shafer, M. M., Turner, J. R., Fine, P. M.,
Singh, M., and Sioutas, C.: Development of a wet-chemical method for the
speciation of iron in atmospheric aerosols, Environ. Sci. Technol., 40,
2346–2351, https://doi.org/10.1021/es052023p, 2006.
Marsden, N. A., Ullrich, R., Möhler, O., Eriksen Hammer, S., Kandler, K., Cui, Z., Williams, P. I., Flynn, M. J., Liu, D., Allan, J. D., and Coe, H.: Mineralogy and mixing state of north African mineral dust by online single-particle mass spectrometry, Atmos. Chem. Phys., 19, 2259–2281, https://doi.org/10.5194/acp-19-2259-2019, 2019.
Maters, E. C., Delmelle, P., and Gunnlaugsson, H. P.: Controls on iron
mobilisation from volcanic ash at low pH: Insights from dissolution
experiments and Mössbauer spectroscopy, Chem. Geol., 449, 73–81,
https://doi.org/10.1016/j.chemgeo.2016.11.036, 2017.
Matsui, H., Mahowald, N. M., Moteki, N., Hamilton, D. S., Ohata, S.,
Yoshida, A., Koike, M., Scanza, R. A., and Flanner, M. G.: Anthropogenic
combustion iron as a complex climate forcer, Nat. Commun., 9, 1–10,
https://doi.org/10.1038/s41467-018-03997-0, 2018.
Mulholland, D. S., Flament, P., de Jong, J., Mattielli, N., Deboudt, K.,
Dhont, G., and Bychkov, E.: In-cloud processing as a possible source of
isotopically light iron from anthropogenic aerosols: New insights from a
laboratory study, Atmos. Environ., 259, 118505, https://doi.org/10.1016/j.atmosenv.2021.118505, 2021.
Myriokefalitakis, S., Daskalakis, N., Mihalopoulos, N., Baker, A. R., Nenes, A., and Kanakidou, M.: Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study, Biogeosciences, 12, 3973–3992, https://doi.org/10.5194/bg-12-3973-2015, 2015.
Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide, US Environmental Protection Agency, 1-136, EPA/600/R-14/108, 2014.
Oakes, M., Ingall, E., Lai, B., Shafer, M., Hays, M., Liu, Z., Russell, A.,
and Weber, R.: Iron solubility related to particle sulfur content in source
emission and ambient fine particles, Environ. Sci. Technol., 46, 6637–6644,
https://doi.org/10.1021/es300701c, 2012.
Okuda, T., Kato, J., Mori, J., Tenmoku, M., Suda, Y., Tanaka, S., He, K.,
Ma, Y., Yang, F., Yu, X., Duan, F., and Lei, Y.: Daily concentrations of
trace metals in aerosols in Beijing, China, determined by using inductively
coupled plasma mass spectrometry equipped with laser ablation analysis, and
source identification of aerosols, Sci. Total Environ., 330, 145–158,
https://doi.org/10.1016/j.scitotenv.2004.04.010, 2004.
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Makela, T.,
Hillamo, R. E., Aarnio, P., Koskentalo, T., Kousa, A., and Maenhaut, W.:
Sources and chemical composition of atmospheric fine and coarse particles in
the Helsinki area, Atmos. Environ., 35, 5381–5391,
https://doi.org/10.1016/S1352-2310(01)00307-7, 2001.
Pant, P., Baker, S. J., Shukla, A., Maikawa, C., Pollitt, K. J. G., and
Harrison, R. M.: The PM10 fraction of road dust in the UK and India:
Characterization, source profiles and oxidative potential, Sci. Total
Environ., 530-531, 445–452, https://doi.org/10.1016/j.scitotenv.2015.05.084, 2015.
Pinedo-González, P., Hawco, N. J., Bundy, R. M., Armbrust, E. V.,
Follows, M. J., Cael, B., White, A. E., Ferrón, S., Karl, D. M., and
John, S. G.: Anthropogenic Asian aerosols provide Fe to the North Pacific
Ocean, P. Natl. Acad. Sci. USA, 117, 27862–27868, https://doi.org/10.1073/pnas.2010315117, 2020.
Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., and Sisler, J. F.:
Atmospheric aerosol over Alaska: 2. Elemental composition and sources, J.
Geophys. Res.-Atmos., 103, 19045–19057, https://doi.org/10.1029/98JD01212, 1998.
Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., Minguillón, M. C., Petterson, K., Baltensperger, U., and Prévôt, A. S. H.: Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland, Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, 2020.
Rao, B. P. S., Chauhan, C., Mhaisalkar, V. A., Kumar, A., Devotta, S., and
Wate, S. R.: Factor Analysis for Estimating Source Contribution to Ambient
Airborne Particles in and Around a Petroleum Refinery in India, Indian Chem.
Eng., 54, 12–21, https://doi.org/10.1080/00194506.2012.714138, 2012.
Rathod, S. D., Hamilton, D., Mahowald, N., Klimont, Z., Corbett, J., and
Bond, T.: A Mineralogy-Based Anthropogenic Combustion-Iron Emission
Inventory, J. Geophys. Res.-Atmos., 125, e2019JD032114, https://doi.org/10.1029/2019JD032114, 2020.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat. Geosci.,
2, 337–340, https://doi.org/10.1038/ngeo501, 2009.
Shi, J., Guan, Y., Ito, A., Gao, H., Yao, X., Baker, A. R., and Zhang, D.:
High production of soluble iron promoted by aerosol acidification in fog,
Geophys. Res. Lett., 47, e2019GL086124, https://doi.org/10.1029/2019GL086124, 2020.
Shi, Z., Krom, M. D., Bonneville, S., Baker, A. R., Bristow, C., Drake, N.,
Mann, G., Carslaw, K., McQuaid, J. B., Jickells, T., and Benning, L. G.:
Influence of chemical weathering and aging of iron oxides on the potential
iron solubility of Saharan dust during simulated atmospheric processing,
Global Biogeochem. Cy., 25, GB2010, https://doi.org/10.1029/2010GB003837, 2011.
Shi, Z., Krom, M. D., Jickells, T. D., Bonneville, S., Carslaw, K. S.,
Mihalopoulos, N., Baker, A. R., and Benning, L. G.: Impacts on iron
solubility in the mineral dust by processes in the source region and the
atmosphere: A review, Aeolian Res., 5, 21–42, https://doi.org/10.1029/2010GB003837, 2012.
Sun, J., Liu, L., Xu, L., Wang, Y., Wu, Z., Hu, M., Shi, Z., Li, Y., Zhang,
X., Chen, J., and Li, W.: Key role of nitrate in phase transitions of urban
particles: implications of important reactive surfaces for secondary aerosol
formation, J. Geophys. Res.-Atmos., 123, 1234–1243, https://doi.org/10.1002/2017JD027264, 2018.
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and
Saito, M. A.: The integral role of iron in ocean biogeochemistry, Nature,
543, 51–59, https://doi.org/10.1038/nature21058, 2017.
Vedantham, R., Landis, M. S., Olson, D., and Pancras, J. P.: Source
Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for
Highly Time-Resolved Data, Environ. Sci. Technol., 48, 1718–1726,
https://doi.org/10.1021/es402704n, 2014.
Viollier, E., Inglett, P., Hunter, K., Roychoudhury, A., and Van Cappellen,
P.: The ferrozine method revisited: Fe (II)/Fe (III) determination in
natural waters, Appl. Geochem., 15, 785–790, https://doi.org/10.1016/S0883-2927(99)00097-9, 2000.
Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V. H., and Chen, J.: Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing, Atmos. Chem. Phys., 19, 12569–12585, https://doi.org/10.5194/acp-19-12569-2019, 2019.
Whiteaker, J. R., Suess, D. T., and Prather, K. A.: Effects of
Meteorological Conditions on Aerosol Composition and Mixing State in
Bakersfield, CA, Environ. Sci. Technol., 36, 2345–2353,
https://doi.org/10.1021/es011381z, 2002.
Winton, V. H. L., Bowie, A. R., Edwards, R., Keywood, M., Townsend, A. T.,
van der Merwe, P., and Bollhöfer, A.: Fractional iron solubility of
atmospheric iron inputs to the Southern Ocean, Mar. Chem., 177, 20—32,
https://doi.org/10.1016/j.marchem.2015.06.006, 2015.
Wong, J. P. S., Yang, Y., Fang, T., Mulholland, J. A., Russell, A. G.,
Ebelt, S., Nenes, A., and Weber, R. J.: Fine Particle Iron in Soils and Road
Dust Is Modulated by Coal-Fired Power Plant Sulfur, Environ. Sci. Technol.,
54, 7088–7096, https://doi.org/10.1021/acs.est.0c00483,
2020.
Xu, L., Zhang, J., Sun, X., Xu, S., Shan, M., Yuan, Q., Liu, L., Du, Z.,
Liu, D., Xu, D., Song, C., Liu, B., Lu, G., Shi, Z., and Li, W.: Variation
in Concentration and Sources of Black Carbon in a Megacity of China During
the COVID-19 Pandemic, Geophys. Res. Lett., 47, e2020GL090444, https://doi.org/10.1029/2020GL090444, 2020.
Yang, T., Chen, Y., Zhou, S., Li, H., Wang, F., and Zhu, Y.: Solubilities
and deposition fluxes of atmospheric Fe and Cu over the Northwest Pacific
and its marginal seas, Atmos. Environ., 239, 117763, https://doi.org/10.1016/j.atmosenv.2020.117763, 2020.
Yao, L., Yang, L. X., Yuan, Q., Yan, C., Dong, C., Meng, C. P., Sui, X.,
Yang, F., Lu, Y. L., and Wang, W. X.: Sources apportionment of PM2.5 in a background site in the North China Plain, Sci. Total Environ., 541, 590–598, https://doi.org/10.1016/j.scitotenv.2015.09.123, 2016.
Yeletsky, P. M., Zaikina, O. O., Sosnin, G. A., and Kukushkin, R. G.: Heavy
oil cracking in the presence of steam and nanodispersed catalysts based on
different metals, Fuel Process. Technol., 199, 106239, https://doi.org/10.1016/j.fuproc.2019.106239, 2020.
Yoshida, A., Ohata, S., Moteki, N., Adachi, K., Mori, T., Koike, M., and Takami, A.: Abundance and Emission Flux of the Anthropogenic Iron Oxide Aerosols From the East Asian Continental Outflow, J. Geophys. Res.-Atmos., 123, 11194–11209, https://doi.org/10.1029/2018JD028665, 2018.
Zhang, G., Lin, Q., Peng, L., Yang, Y., Jiang, F., Liu, F., Song, W., Chen,
D., Cai, Z., and Bi, X.: Oxalate formation enhanced by Fe-containing
particles and environmental implications, Environ. Sci. Technol., 53,
1269–1277, https://doi.org/10.1021/acs.est.8b05280, 2019.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu. X., Wang.
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, S., Liu, D., Deng, W., and Que, G.: A Review of Slurry-Phase
Hydrocracking Heavy Oil Technology, Energ. Fuel., 21, 6, 3057–3062,
https://doi.org/10.1021/ef700253f, 2007.
Zhang, X., Zhong, J., Wang, J., Wang, Y., and Liu, Y.: The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming, Atmos. Chem. Phys., 18, 5991–5999, https://doi.org/10.5194/acp-18-5991-2018, 2018.
Zhou, Y., Zhang, Y., Griffith, S. M., Wu, G., Li, L., Zhao, Y., Li, M.,
Zhou, Z., and Yu, J. Z.: Field Evidence of Fe-Mediated Photochemical
Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single
Particle Mass Spectrometry, Environ. Sci. Technol., 54, 6562–6574,
https://doi.org/10.1021/acs.est.0c00443, 2020.
Zhu, Y., Yang, L., Meng, C., Yuan, Q., Yan, C., Dong, C., Sui, X., Yao, L.,
Yang, F., and Lu, Y.: Indoor/outdoor relationships and diurnal/nocturnal
variations in water-soluble ion and PAH concentrations in the atmospheric
PM2.5 of a business office area in Jinan, a heavily polluted city in China, Atmos. Res., 153, 276–285, https://doi.org/10.1016/j.atmosres.2014.08.014, 2015.
Zhu, Y., Yang, L., Kawamura, K., Chen, J., Ono, K., Wang, X., Xue, L., and
Wang, W.: Contributions and source identification of biogenic and
anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014,
Environ. Pollut., 220, 863–872, https://doi.org/10.1016/j.envpol.2016.10.070, 2017.
Zhu, Y., Li, W., Lin, Q., Yuan, Q., Liu, L., Zhang, J., Zhang, Y., Shao, L.,
Niu, H., and Yang, S.: Iron solubility in fine particles associated with
secondary acidic aerosols in east China, Environ. Pollut., 264, 114769,
https://doi.org/10.1016/j.envpol.2020.114769, 2020.
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
The solubilities of iron in fine particles in a megacity in Eastern China were studied under...
Altmetrics
Final-revised paper
Preprint