Supplement of Atmos. Chem. Phys., 22, 2191–2202, 2022 https://doi.org/10.5194/acp-22-2191-2022-supplement © Author(s) 2022. CC BY 4.0 License. ## Supplement of ## Sources and processes of iron aerosols in a megacity in Eastern China Yanhong Zhu et al. Correspondence to: Weijun Li (liweijun@zju.edu.cn) and Zongbo Shi (z.shi@bham.ac.uk) The copyright of individual parts of the supplement might differ from the article licence. Table S1. Sampling periods and sample numbers. | | Sampling periods | Sample number | | |-------|--|---------------|--| | Haze | December 2018-January 2019, December 2019-January 2020 | 34 | | | Fog | November 2018-April 2019, December 2019-January 2020 | 17 | | | Dust | October 2019-November 2019 | 12 | | | Clear | September 2019, December 2019-January 2020 | 37 | | | Rain | December 2019-January 2020 | 9 | | 35 Table S2. Definitions of haze, fog, dust, clear, and rain weather conditions. | | Definition | |-------|--| | Haze | The meteorological definition of haze is a kind of weather phenomenon in which a large number of tiny | | | dust particles, smoke particles or salt particles suspended in the atmosphere, the relative humidity is less | | | than 80%, and the horizontal visibility drops below 10 km. | | Fog | The meteorological definition of fog is tiny water droplets suspended in the air, and horizontal visibility is | | | less than 1 km, the relative humidity is higher than 90%. | | Dust | Dust is a kind of natural meteorological phenomenon associated with strong cold front from Northwest | | | China. The FLEXible PARTicle (FLEXPART) Lagrangian particle dispersion model shows that air mass | | | backward trajectories of typical dust events crossed East Asia (Fig. S1). | | Clear | Clear weather samples were collected when $PM_{2.5}$ concentration was less than 75 μg m ⁻³ , and visibility | | | was greater than 10 km. | | Rain | Rain refers to the liquid droplets falling to the ground from the above cloud. We collected $PM_{2.5}$ samples | | | as rain samples when precipitation intensity $< 10 \text{ mm d}^{-1}$. | 45 Table S3. Results obtained from the analysis of NIST standard reference sample and field blanks using EDXRF (in μg cm⁻²). | Elements | Certified values | EDXRF values | Field blanks | | |----------|------------------|---------------------|-------------------|--| | Na | 0.074 | 0.081 | 0.009 ± 0.002 | | | Mg | 1.412 | 1.417 | 0.004 ± 0.000 | | | Al | 2.519 | 2.321 | 0.139 ± 0.002 | | | K | 0.644 | 0.615 | 0.033 ± 0.005 | | | Ca | 1.426 | 1.417 | 0.015 ± 0.003 | | | Ti | 0.163 | 0.151 | 0.008 ± 0.002 | | | V | 0.003 | 0.003 | BDL | | | Cr | 0.023 | 0.021 | 0 | | | Mn | 0.037 | 0.036 | 0.001 ± 0.000 | | | Fe | 2.772 | 2.743 | 0.029 ± 0.004 | | | Co | 0.008 | 0.008 | 0 | | | Ni | 0.024 | 0.022 | 0 | | | Cu | 0.052 | 0.048 | 0.002 ± 0.000 | | | Zn | 0.177 | 0.174 | 0.003 ± 0.000 | | | Ga | 0 | 0 | BDL | | | Sr | 0.007 | 0.006 | 0 | | | Ba | 0.068 | 0.062 | 0.003 ± 0.000 | | | Pb | 0.041 | 0.038 | 0.002 ± 0.000 | | | P | 0.061 | 0.061 | 0.003 ± 0.000 | | | S | 0.165 | 0.151 | 0.011 ± 0.001 | | | Cl | 0.135 | 0.122 | 0.008 ± 0.000 | | | As | 0 | 0 | BDL | | | Se | 0 | 0 | 0 | | BDL: below detection limit. Table S4. Significance T test matrix of PM_{2.5}, total Fe, dissolved Fe and Fe solubility levels between different weather conditions. | | | Haze | Fog | Dust | Clear | Rain | |-------------------|-------|--------------|--------------|--------------|--------------|--------------| | PM _{2.5} | Haze | | 0.000** | 0.000** | 0.000** | 0.000** | | | Fog | 0.000^{**} | | 0.000^{**} | 0.000^{**} | 0.000^{**} | | | Dust | 0.000^{**} | 0.000^{**} | | 0.000^{**} | 0.000^{**} | | | Clear | 0.000^{**} | 0.000^{**} | 0.000^{**} | | 0.000^{**} | | | Rain | 0.000^{**} | 0.000^{**} | 0.000^{**} | 0.000^{**} | | | Total Fe | Haze | | 0.040^{*} | 0.002** | 0.113 | 0.031* | | | Fog | 0.040^{*} | | 0.001** | 0.581 | 0.045^{*} | | | Dust | 0.002^{**} | 0.001^{**} | | 0.000^{**} | 0.001** | | | Clear | 0.113 | 0.581 | 0.000^{**} | | 0.036^{*} | | | Rain | 0.031^{*} | 0.045^{*} | 0.001^{**} | 0.036^{*} | | | Dissolved Fe | Haze | | 0.007** | 0.003** | 0.000** | 0.000^{**} | | | Fog | 0.007^{**} | | 0.025^{*} | 0.000^{**} | 0.010^* | | | Dust | 0.003** | 0.025^{*} | | 0.000^{**} | 0.000^{**} | | | Clear | 0.000^{**} | 0.000^{**} | 0.000^{**} | | 0.008^{**} | | | Rain | 0.000^{**} | 0.010^{*} | 0.000^{**} | 0.008^{**} | | | Fe solubility | Haze | | 0.004** | 0.007** | 0.000** | 0.001** | | | Fog | 0.004** | | 0.000^{**} | 0.000^{**} | 0.000^{**} | | | Dust | 0.007^{**} | 0.000^{**} | | 0.008^{**} | 0.022^{*} | | | Clear | 0.000^{**} | 0.000^{**} | 0.008^{**} | | 0.026^{*} | | | Rain | 0.001** | 0.000** | 0.022^{*} | 0.026^{*} | | ^{*} represents a significant difference between the two groups at the 0.05 level (2-tailed). ^{**} represents a significant difference between the two groups at the 0.01 level (2-tailed). Figure S1. Backward trajectories of air masses in dust weather condition (duration: 72 h; height: 500 m above ground level). Figure S2. Source profiles deduced from PMF analysis (5 factors). Figure S3. Source profiles deduced from PMF analysis (7 factors). Figure S4. Time series of factor 5 and 6 contributions (conc.units). Since the sampling time of different weathers is intermittent, the date is replaced by sequential numbers. Figure S5. The correlation between factor 5 and 6 contributions (conc.units). 85