Supplement of Atmos. Chem. Phys., 22, 2191–2202, 2022 https://doi.org/10.5194/acp-22-2191-2022-supplement © Author(s) 2022. CC BY 4.0 License.

Supplement of

Sources and processes of iron aerosols in a megacity in Eastern China

Yanhong Zhu et al.

Correspondence to: Weijun Li (liweijun@zju.edu.cn) and Zongbo Shi (z.shi@bham.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Sampling periods and sample numbers.

	Sampling periods	Sample number	
Haze	December 2018-January 2019, December 2019-January 2020	34	
Fog	November 2018-April 2019, December 2019-January 2020	17	
Dust	October 2019-November 2019	12	
Clear	September 2019, December 2019-January 2020	37	
Rain	December 2019-January 2020	9	

35

Table S2. Definitions of haze, fog, dust, clear, and rain weather conditions.

	Definition
Haze	The meteorological definition of haze is a kind of weather phenomenon in which a large number of tiny
	dust particles, smoke particles or salt particles suspended in the atmosphere, the relative humidity is less
	than 80%, and the horizontal visibility drops below 10 km.
Fog	The meteorological definition of fog is tiny water droplets suspended in the air, and horizontal visibility is
	less than 1 km, the relative humidity is higher than 90%.
Dust	Dust is a kind of natural meteorological phenomenon associated with strong cold front from Northwest
	China. The FLEXible PARTicle (FLEXPART) Lagrangian particle dispersion model shows that air mass
	backward trajectories of typical dust events crossed East Asia (Fig. S1).
Clear	Clear weather samples were collected when $PM_{2.5}$ concentration was less than 75 μg m ⁻³ , and visibility
	was greater than 10 km.
Rain	Rain refers to the liquid droplets falling to the ground from the above cloud. We collected $PM_{2.5}$ samples
	as rain samples when precipitation intensity $< 10 \text{ mm d}^{-1}$.

45 Table S3. Results obtained from the analysis of NIST standard reference sample and field blanks using EDXRF (in μg cm⁻²).

Elements	Certified values	EDXRF values	Field blanks	
Na	0.074	0.081	0.009 ± 0.002	
Mg	1.412	1.417	0.004 ± 0.000	
Al	2.519	2.321	0.139 ± 0.002	
K	0.644	0.615	0.033 ± 0.005	
Ca	1.426	1.417	0.015 ± 0.003	
Ti	0.163	0.151	0.008 ± 0.002	
V	0.003	0.003	BDL	
Cr	0.023	0.021	0	
Mn	0.037	0.036	0.001 ± 0.000	
Fe	2.772	2.743	0.029 ± 0.004	
Co	0.008	0.008	0	
Ni	0.024	0.022	0	
Cu	0.052	0.048	0.002 ± 0.000	
Zn	0.177	0.174	0.003 ± 0.000	
Ga	0	0	BDL	
Sr	0.007	0.006	0	
Ba	0.068	0.062	0.003 ± 0.000	
Pb	0.041	0.038	0.002 ± 0.000	
P	0.061	0.061	0.003 ± 0.000	
S	0.165	0.151	0.011 ± 0.001	
Cl	0.135	0.122	0.008 ± 0.000	
As	0	0	BDL	
Se	0	0	0	

BDL: below detection limit.

Table S4. Significance T test matrix of PM_{2.5}, total Fe, dissolved Fe and Fe solubility levels between different weather conditions.

		Haze	Fog	Dust	Clear	Rain
PM _{2.5}	Haze		0.000**	0.000**	0.000**	0.000**
	Fog	0.000^{**}		0.000^{**}	0.000^{**}	0.000^{**}
	Dust	0.000^{**}	0.000^{**}		0.000^{**}	0.000^{**}
	Clear	0.000^{**}	0.000^{**}	0.000^{**}		0.000^{**}
	Rain	0.000^{**}	0.000^{**}	0.000^{**}	0.000^{**}	
Total Fe	Haze		0.040^{*}	0.002**	0.113	0.031*
	Fog	0.040^{*}		0.001**	0.581	0.045^{*}
	Dust	0.002^{**}	0.001^{**}		0.000^{**}	0.001**
	Clear	0.113	0.581	0.000^{**}		0.036^{*}
	Rain	0.031^{*}	0.045^{*}	0.001^{**}	0.036^{*}	
Dissolved Fe	Haze		0.007**	0.003**	0.000**	0.000^{**}
	Fog	0.007^{**}		0.025^{*}	0.000^{**}	0.010^*
	Dust	0.003**	0.025^{*}		0.000^{**}	0.000^{**}
	Clear	0.000^{**}	0.000^{**}	0.000^{**}		0.008^{**}
	Rain	0.000^{**}	0.010^{*}	0.000^{**}	0.008^{**}	
Fe solubility	Haze		0.004**	0.007**	0.000**	0.001**
	Fog	0.004**		0.000^{**}	0.000^{**}	0.000^{**}
	Dust	0.007^{**}	0.000^{**}		0.008^{**}	0.022^{*}
	Clear	0.000^{**}	0.000^{**}	0.008^{**}		0.026^{*}
	Rain	0.001**	0.000**	0.022^{*}	0.026^{*}	

^{*} represents a significant difference between the two groups at the 0.05 level (2-tailed).

^{**} represents a significant difference between the two groups at the 0.01 level (2-tailed).

Figure S1. Backward trajectories of air masses in dust weather condition (duration: 72 h; height: 500 m above ground level).

Figure S2. Source profiles deduced from PMF analysis (5 factors).

Figure S3. Source profiles deduced from PMF analysis (7 factors).

Figure S4. Time series of factor 5 and 6 contributions (conc.units). Since the sampling time of different weathers is intermittent, the date is replaced by sequential numbers.

Figure S5. The correlation between factor 5 and 6 contributions (conc.units).

85