Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-2079-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2079-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone
Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA
Michael J. Prather
Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA
Related authors
Qi Tang, Michael J. Prather, Juno Hsu, Daniel J. Ruiz, Philip J. Cameron-Smith, Shaocheng Xie, and Jean-Christophe Golaz
Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021, https://doi.org/10.5194/gmd-14-1219-2021, 2021
Jinbo Xie, Qi Tang, Michael Prather, Jadwiga Richter, and Shixuan Zhang
Atmos. Chem. Phys., 25, 9315–9333, https://doi.org/10.5194/acp-25-9315-2025, https://doi.org/10.5194/acp-25-9315-2025, 2025
Short summary
Short summary
Analysis of the interaction between the climate and ozone in the stratosphere is complicated by the inability of climate models to simulate the quasi-biennial oscillation (QBO) – an important climate mode in the stratosphere. We use a set of model simulations that realistically simulate QBO and a novel ozone diagnostic tool to separate temperature- and circulation-driven QBO impacts. These are important for diagnosing model–model differences in QBO–ozone responses for climate projections.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Clara Orbe, Alison Ming, Gabriel Chiodo, Michael Prather, Mohamadou Diallo, Qi Tang, Andreas Chrysanthou, Hiroaki Naoe, Xin Zhou, Irina Thaler, Dillon Elsbury, Ewa Bednarz, Jonathon S. Wright, Aaron Match, Shingo Watanabe, James Anstey, Tobias Kerzenmacher, Stefan Versick, Marion Marchand, Feng Li, and James Keeble
EGUsphere, https://doi.org/10.5194/egusphere-2025-2761, https://doi.org/10.5194/egusphere-2025-2761, 2025
Short summary
Short summary
The quasi-biennial oscillation (QBO) is the main source of wind fluctuations in the tropical stratosphere, which can couple to surface climate. However, models do a poor job of simulating the QBO in the lower stratosphere, for reasons that remain unclear. One possibility is that models do not completely represent how ozone influences the QBO-associated wind variations. Here we propose a multi-model framework for assessing how ozone influences the QBO in recent past and future climates.
Calum P. Wilson and Michael J. Prather
Atmos. Meas. Tech., 18, 1757–1769, https://doi.org/10.5194/amt-18-1757-2025, https://doi.org/10.5194/amt-18-1757-2025, 2025
Short summary
Short summary
We evaluated how well we can infer air pollutant levels (ozone, carbon monoxide, and nitrogen oxides) between air quality stations throughout South Korea, finding good representation in most densely measured cities in spite of intense small-scale emission hotspots. Comparing observed air quality with gridded model output is desirable, and so we created gridded datasets over South Korea using air quality station measurements, which agreed with airborne measurements around Seoul.
Maryam Ramezani Ziarani, Miriam Sinnhuber, Thomas Reddmann, Bernd Funke, Stefan Bender, and Michael Prather
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-227, https://doi.org/10.5194/gmd-2024-227, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Our study aims to present a new method for incorporating top-down solar forcing into stratospheric ozone relying on linearized ozone scheme. The addition of geomagnetic forcing led to significant ozone losses in the polar upper stratosphere of both hemispheres due to the catalytic cycles involving NOy. In addition to the particle precipitation effect, accounting for solar UV variability in the ICON-ART model leads to the changes in ozone in the tropical stratosphere.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Hsiang-He Lee, Qi Tang, and Michael Prather
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-203, https://doi.org/10.5194/gmd-2023-203, 2024
Revised manuscript not accepted
Short summary
Short summary
The E3SM Chemistry diagnostics package (ChemDyg) is a software tool, which is designed for the global climate model (E3SM) chemistry development. ChemDyg generates several diagnostic plots and tables for model-to-model and model-to-observation comparison, including 2-dimentional contour mapping plots, diurnal and annual cycle, time-series plots, and comprehensive processing tables. This paper is to introduce the details of each diagnostics set and its required input data formats in ChemDyg.
Michael J. Prather, Hao Guo, and Xin Zhu
Earth Syst. Sci. Data, 15, 3299–3349, https://doi.org/10.5194/essd-15-3299-2023, https://doi.org/10.5194/essd-15-3299-2023, 2023
Short summary
Short summary
The Atmospheric Tomography Mission (ATom) measured the chemical composition in air parcels from 0–12 km altitude on 2 km horizontal by 80 m vertical scales for four seasons, resolving most scales of chemical heterogeneity. ATom is one of the first missions designed to calculate the chemical evolution of each parcel, providing semi-global diurnal budgets for ozone and methane. Observations covered the remote troposphere: Pacific and Atlantic Ocean basins, Southern Ocean, Arctic basin, Antarctica.
Michael J. Prather, Lucien Froidevaux, and Nathaniel J. Livesey
Atmos. Chem. Phys., 23, 843–849, https://doi.org/10.5194/acp-23-843-2023, https://doi.org/10.5194/acp-23-843-2023, 2023
Short summary
Short summary
From satellite data for nitrous oxide (N2O), ozone and temperature, we calculate the monthly loss of N2O and find it is increasing faster than expected, resulting in a shorter lifetime, which reduces the impact of anthropogenic emissions. We identify the cause as enhanced vertical lofting of high-N2O air into the tropical middle stratosphere, where it is destroyed photochemically. Because global warming is due in part to N2O, this finding presents a new negative climate-chemistry feedback.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven C. Wofsy
Atmos. Chem. Phys., 23, 99–117, https://doi.org/10.5194/acp-23-99-2023, https://doi.org/10.5194/acp-23-99-2023, 2023
Short summary
Short summary
We have prepared a unique and unusual result from the recent ATom aircraft mission: a measurement-based derivation of the production and loss rates of ozone and methane over the ocean basins. These are the key products of chemistry models used in assessments but have thus far lacked observational metrics. It also shows the scales of variability of atmospheric chemical rates and provides a major challenge to the atmospheric models.
Michael J. Prather
Earth Syst. Dynam., 13, 703–709, https://doi.org/10.5194/esd-13-703-2022, https://doi.org/10.5194/esd-13-703-2022, 2022
Short summary
Short summary
Atmospheric CO2 fluctuations point to changes in fossil fuel emissions plus natural and perturbed variations in the natural carbon cycle. One unstudied source of variability is the stratosphere, where the influx of aged CO2-depleted air can cause surface fluctuations. Using modeling and, separately, scaling the observed N2O variability, I find that stratosphere-driven surface variability in CO2 is not a significant uncertainty (at most 10 % of the observed interannual variability).
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021, https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
Short summary
The NASA Atmospheric Tomography (ATom) mission built a climatology of the chemical composition of tropospheric air parcels throughout the middle of the Pacific and Atlantic oceans. The level of detail allows us to reconstruct the photochemical budgets of O3 and CH4 over these vast, remote regions. We find that most of the chemical heterogeneity is captured at the resolution used in current global chemistry models and that the majority of reactivity occurs in the
hottest20 % of parcels.
Qi Tang, Michael J. Prather, Juno Hsu, Daniel J. Ruiz, Philip J. Cameron-Smith, Shaocheng Xie, and Jean-Christophe Golaz
Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021, https://doi.org/10.5194/gmd-14-1219-2021, 2021
Cited articles
Appenzeller, C., Holton, J. R., and Rosenlof, K. H.: Seasonal variation of
mass transport across the tropopause, J. Geophys. Res.-Atmos., 101, 15071–15078,
https://doi.org/10.1029/96JD00821, 1996.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
2001.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122,
https://doi.org/10.1098/rstb.2013.0122, 2013.
Dlugokencky, E. J., Crotwell, A. M., Mund, J. W., Crotwell, M. J., and
Thoning, K. W.: Atmospheric Nitrous Oxide Dry Air Mole Fractions from the
NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1997–2018,
Version: 2019-07, https://doi.org/10.15138/53g1-x417, 2019.
Gettelman, A., Holton, J. R., and Rosenlof, K. H.: Mass fluxes of O3, CH4,
N2O and CF2Cl2 in the lower stratosphere calculated from observational data,
J. Geophys. Res.-Atmos., 102, 19149–19159, https://doi.org/10.1029/97jd01014, 1997.
Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N. L., Archibald, A. T., Deushi, M., Emmons, L. K., Galbally, I. E., Hassler, B., Horowitz, L. W., Keeble, J., Liu, J., Moeini, O., Naik, V., O'Connor, F. M., Oshima, N., Tarasick, D., Tilmes, S., Turnock, S. T., Wild, O., Young, P. J., and Zanis, P.: Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, 2021.
Hamilton, K. and Fan, S. M.: Effects of the stratospheric quasi-biennial
oscillation on long-lived greenhouse gases in the troposphere, J. Geophys. Res.-Atmos., 105, 20581–20587, https://doi.org/10.1029/2000jd900331, 2000.
Hegglin, M. I. and Shepherd, T. G.: O3-N2O correlations from the
Atmospheric Chemistry Experiment: Revisiting a diagnostic of transport and
chemistry in the stratosphere, J. Geophys. Res.-Atmos., 112, D19301,
https://doi.org/10.1029/2006jd008281, 2007.
Hegglin, M. I. and Shepherd, T. G.: Large climate-induced changes in
ultraviolet index and stratosphere-to-troposphere ozone flux, Nat.
Geosci., 2, 687–691, https://doi.org/10.1038/Ngeo604, 2009.
Hess, P., Kinnison, D., and Tang, Q.: Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability, Atmos. Chem. Phys., 15, 2341–2365, https://doi.org/10.5194/acp-15-2341-2015, 2015.
Hirsch, A. I., Michalak, A. M., Bruhwiler, L. M., Peters, W., Dlugokencky,
E. J., and Tans, P. P.: Inverse modeling estimates of the global nitrous
oxide surface flux from 1998–2001, Global Biogeochem. Cy., 20, Gb1008,
https://doi.org/10.1029/2004gb002443, 2006.
Holton, J. R.: On the Global Exchange of Mass between the Stratosphere and
Troposphere, J. Atmos. Sci., 47, 392–395, https://doi.org/10.1175/1520-0469(1990)047<0392:Otgeom>2.0.Co;2, 1990.
Holton, J. R., Haynes, P. H., Mcintyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-Troposphere Exchange, Rev. Geophys.,
33, 403–439, 1995.
Hsu, J. and Prather, M. J.: Stratospheric variability and tropospheric
ozone, J. Geophys. Res.-Atmos., 114, D06102, https://doi.org/10.1029/2008jd010942, 2009.
Hsu, J. and Prather, M. J.: Global long-lived chemical modes excited in a
3-D chemistry transport model: Stratospheric N2O, NOy, O3 and
CH4 chemistry, Geophys. Res. Lett., 37, L07805, L07805,
https://doi.org/10.1029/2009gl042243, 2010.
Hsu, J. N. and Prather, M. J.: Is the residual vertical velocity a good
proxy for stratosphere-troposphere exchange of ozone?, Geophys. Res. Lett., 41,
9024–9032, https://doi.org/10.1002/2014GL061994, 2014.
Hsu, J., Prather, M. J., and Wild, O.: Diagnosing the
stratosphere-to-troposphere flux of ozone in a chemistry transport model, J. Geophys. Res.-Atmos., 110, D19305, https://doi.org/10.1029/2005jd006045, 2005.
Isaksen, I. S. A., Zerefos, C., Wang, W. C., Balis, D., Eleftheratos, K.,
Rognerud, B., Stordal, F., Berntsen, T. K., LaCasce, J. H., Sovde, O. A.,
Olivie, D., Orsolini, Y. J., Zyrichidou, I., Prather, M., and Tuinder, O. N.
E.: Attribution of the Arctic ozone column deficit in March 2011, Geophys.
Res. Lett., 39, L24810, https://doi.org/10.1029/2012gl053876, 2012.
Kinnersley, J. S. and Tung, K. K.: Mechanisms for the extratropical QBO in
circulation and ozone, J Atmos Sci, 56, 1942–1962, https://doi.org/10.1175/1520-0469(1999)056< 1942:Mfteqi>2.0.Co;2, 1999.
Koo, J. H., Walker, K. A., Jones, A., Sheese, P. E., Boone, C. D., Bernath,
P. F., and Manney, G. L.: Global climatology based on the ACE-FTS version
3.5 dataset: Addition of mesospheric levels and carbon-containing species in
the UTLS, J. Quant. Spectrosc. Ra., 186,
52–62, https://doi.org/10.1016/j.jqsrt.2016.07.003, 2017.
Liang, Y. X., Gillett, N. P., and Monahan, A. H.: Climate Model Projections
of 21st Century Global Warming Constrained Using the Observed Warming Trend,
Geophys. Res. Lett., 47, e2019GL086757, https://doi.org/10.1029/2019GL086757, 2020.
Liu, H., Considine, D. B., Horowitz, L. W., Crawford, J. H., Rodriguez, J. M., Strahan, S. E., Damon, M. R., Steenrod, S. D., Xu, X., Kouatchou, J., Carouge, C., and Yantosca, R. M.: Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, 2016.
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C.,
Veefkind, P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L.,
Poole, L. R., Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V.,
Gernandt, H., Johnson, B., Kivi, R., Kyro, E., Larsen, N., Levelt, P. F.,
Makshtas, A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D.
W., von der Gathen, P., Walker, K. A., and Zinoviev, N. S.: Unprecedented
Arctic ozone loss in 2011, Nature, 478, 469–475, https://doi.org/10.1038/nature10556, 2011.
McLinden, C. A., Olsen, S. C., Hannegan, B., Wild, O., Prather, M. J., and
Sundet, J.: Stratospheric ozone in 3-D models: A simple chemistry and the
cross-tropopause flux, J. Geophys. Res.-Atmos., 105, 14653–14665, https://doi.org/10.1029/2000JD900124, 2000.
Meul, S., Langematz, U., Kröger, P., Oberländer-Hayn, S., and Jöckel, P.: Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery, Atmos. Chem. Phys., 18, 7721–7738, https://doi.org/10.5194/acp-18-7721-2018, 2018.
Montzka, S. A., Dutton, G. S., Yu, P. F., Ray, E., Portmann, R. W., Daniel,
J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, D., Rigby,
M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., and Elkins, J. W.: An
unexpected and persistent increase in global emissions of ozone-depleting
CFC-11, Nature, 557, 413–416, https://doi.org/10.1038/s41586-018-0106-2, 2018.
Murphy, D. M. and Fahey, D. W.: An estimate of the flux of stratospheric
reactive nitrogen and ozone into the troposphere, J. Geophys.
Res., 99, 5325–5332, 1994.
Nevison, C. D., Kinnison, D. E., and Weiss, R. F.: Stratospheric influences
on the tropospheric seasonal cycles of nitrous oxide and
chlorofluorocarbons, Geophys. Res. Lett., 31, L20103, https://doi.org/10.1029/2004gl020398, 2004.
Nevison, C. D., Mahowald, N. M., Weiss, R. F., and Prinn, R. G.: Interannual
and seasonal variability in atmospheric N2O, Global Biogeochem. Cy., 21,
Gb3017, https://doi.org/10.1029/2006gb002755, 2007.
Newman, P.: The quasi-biennial oscillation (QBO), NASA, Goddard Space Flight
Center, available at: https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html, last access: 3 March 2020.
Olsen, M. A., Schoeberl, M. R., and Douglass, A. R.:
Stratosphere-troposphere exchange of mass and ozone, J. Geophys. Res.-Atmos.,
109, D24114, https://doi.org/10.1029/2004jd005186, 2004.
Olsen, M. A., Manney, G. L., and Liu, J. H.: The ENSO and QBO Impact on
Ozone Variability and Stratosphere-Troposphere Exchange Relative to the
Subtropical Jets, J. Geophys. Res.-Atmos., 124, 7379–7392, https://doi.org/10.1029/2019JD030435,
2019.
Olsen, S. C., McLinden, C. A., and Prather, M. J.: Stratospheric
N2O-NOy system: testing uncertainties in a three-dimensional framework,
J. Geophys. Res., 106, 28771–28784, 2001.
Plumb, R. A. and Ko, M. K. W.: Interrelationships between Mixing Ratios of
Long Lived Stratospheric Constituents, J. Geophys. Res.-Atmos., 97, 10145–10156,
1992.
Prather, M. J., Zhu, X., Tang, Q., Hsu, J., and Neu, J. L.: An atmospheric
chemist in search of the tropopause, J. Geophys. Res., 116, D04306, https://doi.org/10.1029/2010jd014939, 2011.
Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D.,
Douglass, A. R., Fleming, E. L., Strahan, S. E., Steenrod, S. D., Sovde, O.
A., Isaksen, I. S. A., Froidevaux, L., and Funke, B.: Measuring and modeling
the lifetime of nitrous oxide including its variability, J. Geophys. Res.-Atmos., 120, 5693–5705, https://doi.org/10.1002/2015JD023267, 2015.
Ray, E. A., Portmann, R. W., Yu, P. F., Daniel, J., Montzka, S. A., Dutton,
G. S., Hall, B. D., Moore, F. L., and Rosenlof, K. H.: The influence of the
stratospheric Quasi-Biennial Oscillation on trace gas levels at the Earth's
surface, Nat. Geosci., 13, 22–24, https://doi.org/10.1038/s41561-019-0507-3, 2020.
Ruiz, D.: Data and code from: How atmospheric chemistry and transport drive surface variability of N2O and CFC-11, Dryad [data set], https://doi.org/10.7280/D1JX0K, 2021.
Ruiz, D. J., Prather, M. J., Strahan, S. E., Thompson, R. L., Froidevaux,
L., and Steenrod, S. D.: How Atmospheric Chemistry and Transport Drive
Surface Variability of N2O and CFC-11, J. Geophys. Res.-Atmos., 126,
e2020JD033979, https://doi.org/10.1029/2020JD033979, 2021.
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J.,
Frank, A., Forster, C., Gerasopoulos, E., Gaggeler, H., James, P.,
Kentarchos, T., Kromp-Kolb, H., Kruger, B., Land, C., Meloen, J.,
Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J.,
Scheel, H. E., Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli,
H., Wirth, V., Zanis, P., and Zerefos, C.: Stratosphere-troposphere
exchange: A review, and what we have learned from STACCATO, J. Geophys. Res.-Atmos., 108, 8516, https://doi.org/10.1029/2002jd002490, 2003.
Strahan, S. E., Douglass, A. R., Stolarski, R. S., Akiyoshi, H., Bekki, S.,
Braesicke, P., Butchart, N., Chipperfield, M. P., Cugnet, D., Dhomse, S.,
Frith, S. M., Gettelman, A., Hardiman, S. C., Kinnison, D. E., Lamarque, J.
F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T.,
Olivie, D., Pawson, S., Pitari, G., Plummer, D. A., Pyle, J. A., Scinocca,
J. F., Shepherd, T. G., Shibata, K., Smale, D., Teyssedre, H., Tian, W., and
Yamashita, Y.: Using transport diagnostics to understand chemistry climate
model ozone simulations, J. Geophys. Res.-Atmos., 116, D17302, https://doi.org/10.1029/2010jd015360, 2011.
Strahan, S. E., Oman, L. D., Douglass, A. R., and Coy, L.: Modulation of Antarctic vortex composition by the quasi-biennial oscillation, Geophys. Res. Lett., 42, 4216–4223, https://doi.org/10.1002/2015GL063759, 2015.
Tang, Q. and Prather, M. J.: Correlating tropospheric column ozone with tropopause folds: the Aura-OMI satellite data, Atmos. Chem. Phys., 10, 9681–9688, https://doi.org/10.5194/acp-10-9681-2010, 2010.
Tang, Q., Hess, P. G., Brown-Steiner, B., and Kinnison, D. E.: Tropospheric
ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric
influx, Geophys. Res. Lett., 40, 5553–5558, https://doi.org/10.1002/2013GL056563, 2013.
Tang, Q., Prather, M. J., Hsu, J., Ruiz, D. J., Cameron-Smith, P. J., Xie, S., and Golaz, J.-C.: Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model, Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021, 2021.
Thompson, R. L., Patra, P. K., Ishijima, K., Saikawa, E., Corazza, M., Karstens, U., Wilson, C., Bergamaschi, P., Dlugokencky, E., Sweeney, C., Prinn, R. G., Weiss, R. F., O'Doherty, S., Fraser, P. J., Steele, L. P., Krummel, P. B., Saunois, M., Chipperfield, M., and Bousquet, P.: TransCom N2O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N2O variability, Atmos. Chem. Phys., 14, 4349–4368, https://doi.org/10.5194/acp-14-4349-2014, 2014.
Tian, H. Q., Xu, R. T., Canadell, J. G., Thompson, R. L., Winiwarter, W.,
Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B.,
Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N. Q., Pan, S. F.,
Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A.,
Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T.,
Chang, J. F., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E.,
Elkins, J. W., Eyre, B. D., Fu, B. J., Hall, B., Ito, A., Joos, F., Krummel,
P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S.,
Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R.
G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J.
J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y. Z.: A
comprehensive quantification of global nitrous oxide sources and sinks,
Nature, 586, 248–252, https://doi.org/10.1038/s41586-020-2780-0, 2020.
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J.,
Lehner, F., and Knutti, R.: Past warming trend constrains future warming in
CMIP6 models, Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549, 2020.
Tung, K. K. and Yang, H.: Global QBO in Circulation and Ozone 2. A Simple
Mechanistic Model, J. Atmos. Sci., 51, 2708–2721, https://doi.org/10.1175/1520-0469(1994)051<2708:Gqicao>2.0.Co;2, 1994a.
Tung, K. K. and Yang, H.: Global QBO in Circulation and Ozone 1.
Reexamination of Observational Evidence, J. Atmos. Sci., 51, 2699–2707, https://doi.org/10.1175/1520-0469(1994)051<2699:Gqicao>2.0.Co;2, 1994b.
Williams, R. S., Hegglin, M. I., Kerridge, B. J., Jöckel, P., Latter, B. G., and Plummer, D. A.: Characterising the seasonal and geographical variability in tropospheric ozone, stratospheric influence and recent changes, Atmos. Chem. Phys., 19, 3589–3620, https://doi.org/10.5194/acp-19-3589-2019, 2019.
WMO: Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research
and Monitoring Project – Report No. 58, World Meteorological Organization,
Geneva, Switzerland, 588 pp., available at: https://csl.noaa.gov/assessments/ozone/2018/ (last access: January 2021), 2018.
Yang, H., Chen, G., Tang, Q., and Hess, P.: Quantifying isentropic
stratosphere-troposphere exchange of ozone, J. Geophys. Res.-Atmos., 121,
3372–3387, https://doi.org/10.1002/2015JD024180, 2016.
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013.
Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu,
J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S., Wild, O.,
Zhang, L., Ziemke, J., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C.,
Hegglin, M. I., Hu, L., Im, U., Kumar, R., Luhar, A., Murray, L., Plummer,
D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T., and
Zeng, G.: Tropospheric Ozone Assessment Report: Assessment of global-scale
model performance for global and regional ozone distributions, variability,
and trends, Elementa-Science of the Anthropocene, 6, 10, https://doi.org/10.1525/elementa.265, 2018.
Zeng, G., Morgenstern, O., Braesicke, P., and Pyle, J. A.: Impact of
stratospheric ozone recovery on tropospheric ozone and its budget, Geophys.
Res. Lett., 37, L09805, https://doi.org/10.1029/2010gl042812, 2010.
Ziemke, J. R., Oman, L. D., Strode, S. A., Douglass, A. R., Olsen, M. A., McPeters, R. D., Bhartia, P. K., Froidevaux, L., Labow, G. J., Witte, J. C., Thompson, A. M., Haffner, D. P., Kramarova, N. A., Frith, S. M., Huang, L.-K., Jaross, G. R., Seftor, C. J., Deland, M. T., and Taylor, S. L.: Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation, Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019, 2019.
Short summary
The stratosphere is an important source of tropospheric ozone, which affects climate, chemistry, and air quality, but is extremely difficult to quantify given the large production and loss terms in the troposphere. Here, we use other gases that are well observed and quantified as a reference to test our simulations of ozone transport in the atmosphere. This allows us to better constrain the stratospheric source of ozone and also offers guidance to improve future simulations of ozone transport.
The stratosphere is an important source of tropospheric ozone, which affects climate, chemistry,...
Altmetrics
Final-revised paper
Preprint