Articles | Volume 21, issue 11
https://doi.org/10.5194/acp-21-8593-2021
https://doi.org/10.5194/acp-21-8593-2021
Research article
 | 
08 Jun 2021
Research article |  | 08 Jun 2021

Restoring the top-of-atmosphere reflectance during solar eclipses: a proof of concept with the UV absorbing aerosol index measured by TROPOMI

Victor Trees, Ping Wang, and Piet Stammes

Related authors

Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-40,https://doi.org/10.5194/amt-2024-40, 2024
Revised manuscript accepted for AMT
Short summary
A directional surface reflectance climatology determined from TROPOMI observations
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024,https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
DARCLOS: a cloud shadow detection algorithm for TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 15, 3121–3140, https://doi.org/10.5194/amt-15-3121-2022,https://doi.org/10.5194/amt-15-3121-2022, 2022
Short summary
Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020,https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The role of refractive indices in measuring mineral dust with high-spectral-resolution infrared satellite sounders: application to the Gobi Desert
Perla Alalam, Fabrice Ducos, and Hervé Herbin
Atmos. Chem. Phys., 24, 12277–12294, https://doi.org/10.5194/acp-24-12277-2024,https://doi.org/10.5194/acp-24-12277-2024, 2024
Short summary
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over the Indo-Gangetic Plain
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024,https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024,https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
The emission, transport, and impacts of the extreme Saharan dust storm of 2015
Brian Harr, Bing Pu, and Qinjian Jin
Atmos. Chem. Phys., 24, 8625–8651, https://doi.org/10.5194/acp-24-8625-2024,https://doi.org/10.5194/acp-24-8625-2024, 2024
Short summary
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024,https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary

Cited articles

Adams, C., McLinden, C. A., Strong, K., and Umlenski, V.: Ozone and NO2 variations measured during the 1 August 2008 solar eclipse above Eureka, Canada with a UV-visible spectrometer, J. Geophys. Res.-Atmos., 115, D19310, https://doi.org/10.1029/2010JD014424, 2010. a
Bernhard, G. and Petkov, B.: Measurements of spectral irradiance during the solar eclipse of 21 August 2017: reassessment of the effect of solar limb darkening and of changes in total ozone, Atmos. Chem. Phys., 19, 4703–4719, https://doi.org/10.5194/acp-19-4703-2019, 2019. a, b
Bojkov, R. D.: The ozone variations during the solar eclipse of 20 May 1966, Tellus, 20, 417–421, https://doi.org/10.3402/tellusa.v20i3.10020, 1968. a
Chakrabarty, D., Peshin, S., Srivastav, S., Shah, N., and Pandya, K.: Further evidence of total ozone variation during the solar eclipse of 1995, J. Geophys. Res., 106, 3213–3218, https://doi.org/10.1029/2000JD900522, 2001. a
Chakrabarty, D. K., Shah, N. C., and Pandya, K. V.: Fluctuation in ozone column over Ahmedabad during the solar eclipse of 24 October 1995, Geophys. Res. Lett., 24, 3001–3003, https://doi.org/10.1029/97GL03016, 1997. a
Download
Short summary
Given the time and location of a point on the Earth's surface, we explain how to compute the wavelength-dependent obscuration during solar eclipses. We restore the top-of-atmosphere reflectances and the absorbing aerosol index in the partial Moon shadow during the solar eclipses on 26 December 2019 and 21 June 2020 measured by TROPOMI. This correction method resolves eclipse anomalies and allows for study of the effect of solar eclipses on the composition of the Earth's atmosphere from space.
Altmetrics
Final-revised paper
Preprint