Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-6735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What drives daily precipitation over the central Amazon? Differences observed between wet and dry seasons
Meteorological Satellites and Sensors Division, National Institute for Space Research, Cachoeira Paulista, São
Paulo, 12630000, Brazil
Luiz A. T. Machado
Meteorological Satellites and Sensors Division, National Institute for Space Research, Cachoeira Paulista, São
Paulo, 12630000, Brazil
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Scott E. Giangrande
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, NY, USA
Michael P. Jensen
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, NY, USA
Related authors
Camila da Cunha Lopes, Rachel Ifanger Albrecht, Douglas Messias Uba, Thiago Souza Biscaro, and Ivan Saraiva
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-438, https://doi.org/10.5194/essd-2024-438, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study used observations collected during The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment to create a database of storms and thunderstorms characteristics with weather radar and lightning measurements. These storms have different sizes and durations between wet and dry seasons as well as throughout the day, with the most intense ones occurring in the dry-to-wet transition. This database is useful in future studies on Amazonian clouds.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Siddhant Gupta, Dié Wang, Scott E. Giangrande, Thiago S. Biscaro, and Michael P. Jensen
Atmos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-24-4487-2024, https://doi.org/10.5194/acp-24-4487-2024, 2024
Short summary
Short summary
We examine the lifecycle of isolated deep convective clouds (DCCs) in the Amazon rainforest. Weather radar echoes from the DCCs are tracked to evaluate their lifecycle. The DCC size and intensity increase, reach a peak, and then decrease over the DCC lifetime. Vertical profiles of air motion and mass transport from different seasons are examined to understand the transport of energy and momentum within DCC cores and to address the deficiencies in simulating DCCs using weather and climate models.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Dié Wang, Roni Kobrosly, Tao Zhang, Tamanna Subba, Susan van den Heever, Siddhant Gupta, and Michael Jensen
Atmos. Chem. Phys., 25, 9295–9314, https://doi.org/10.5194/acp-25-9295-2025, https://doi.org/10.5194/acp-25-9295-2025, 2025
Short summary
Short summary
We aim to understand how tiny particles in the air, called aerosols, affect rain clouds in the Houston–Galveston area. More aerosols generally do not make these clouds grow much taller, with an average height increase of about 1 km. However, their effects on rainfall strength and cloud expansion are less certain. Clouds influenced by sea breezes show a stronger aerosol impact, possibly due to factors that are unaccounted for like vertical winds in near-surface layers.
Tamanna Subba, Michael P. Jensen, Min Deng, Scott E. Giangrande, Mark C. Harvey, Ashish Singh, Die Wang, Maria Zawadowicz, and Chongai Kuang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2659, https://doi.org/10.5194/egusphere-2025-2659, 2025
Short summary
Short summary
This study highlights how sea breeze circulations influence aerosol concentrations and radiative effects in Southern Texas region. Using TRacking Aerosol Convection Interactions Experiment field campaign observations and model simulations, we show that sea breeze–aerosol interactions significantly impact cloud-relevant aerosols and regional air quality. These findings improve understanding of mesoscale controls on aerosols in complex coastal urban environments.
Andrew M. Sayer, Brian Cairns, Kirk D. Knobelspiesse, Luca Lelli, Chamara Rajapakshe, Scott E. Giangrande, Gareth E. Thomas, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2005, https://doi.org/10.5194/egusphere-2025-2005, 2025
Short summary
Short summary
Satellites can estimate cloud height in several ways: two include a thermal technique (colder clouds being higher up), and another looking at colours of light that oxygen in the atmosphere absorbs (darker clouds being lower down). It can also be measured (from ground or space) by radar and lidar. We compare satellite data we developed using the oxygen method with other estimates to help us refine our technique.
Sreehari Kizhuveettil, Jordi Vila-Guerau de Arellano, Martina Krämer, Armin Afchine, Luiz A. T. Machado, Martin Zöger, and Wiebke Frey
EGUsphere, https://doi.org/10.5194/egusphere-2025-1637, https://doi.org/10.5194/egusphere-2025-1637, 2025
Short summary
Short summary
Aircraft measurements are used to investigate high-altitude downdrafts in tropical deep convective clouds. The cloud water present in the downdrafts and its intensity do not show any correlation. Surprisingly, downdrafts occurred in supersaturated regions, contradicting the classical view of subsaturated downdrafts. Up- and downdrafts of similar strength show similar particle size distributions. These findings shed new light on the interplay between deep convection dynamics and microphysics.
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025, https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation log-linear behavior as a function of rainfall rates in light and moderate rain conditions. This resulting reflectivity offset during the recent field campaign is compared favorably with the traditional disdrometer comparison near the rain onset, while it also demonstrates similar trends with respect to collocated and independently calibrated reference radars.
Kaiden Sookdar, Scott Edward Giangrande, John Rausch, Lihong Ma, Meng Wang, Dié Wang, Michael Jensen, Ching-Shu Hung, and J. Christine Chiu
EGUsphere, https://doi.org/10.5194/egusphere-2025-694, https://doi.org/10.5194/egusphere-2025-694, 2025
Short summary
Short summary
Photometer observations of stratocumulus cloud properties are evaluated for a multiyear archive. Retrievals for cloud optical depth, cloud droplet effective radius, and liquid water path show solid agreement with collocated references. Continental stratocumulus clouds sorted by cloud thickness indicate double the cloud optical depth and liquid water path of their marine counterparts, while exhibiting similar bulk cloud droplet effective radius.
Camila da Cunha Lopes, Rachel Ifanger Albrecht, Douglas Messias Uba, Thiago Souza Biscaro, and Ivan Saraiva
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-438, https://doi.org/10.5194/essd-2024-438, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study used observations collected during The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment to create a database of storms and thunderstorms characteristics with weather radar and lightning measurements. These storms have different sizes and durations between wet and dry seasons as well as throughout the day, with the most intense ones occurring in the dry-to-wet transition. This database is useful in future studies on Amazonian clouds.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Siddhant Gupta, Dié Wang, Scott E. Giangrande, Thiago S. Biscaro, and Michael P. Jensen
Atmos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-24-4487-2024, https://doi.org/10.5194/acp-24-4487-2024, 2024
Short summary
Short summary
We examine the lifecycle of isolated deep convective clouds (DCCs) in the Amazon rainforest. Weather radar echoes from the DCCs are tracked to evaluate their lifecycle. The DCC size and intensity increase, reach a peak, and then decrease over the DCC lifetime. Vertical profiles of air motion and mass transport from different seasons are examined to understand the transport of energy and momentum within DCC cores and to address the deficiencies in simulating DCCs using weather and climate models.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Florian Ditas, Meinrat O. Andreae, Paulo Artaxo, Micael A. Cecchini, Bruna A. Holanda, Mira L. Pöhlker, Ivan Saraiva, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 21, 18065–18086, https://doi.org/10.5194/acp-21-18065-2021, https://doi.org/10.5194/acp-21-18065-2021, 2021
Short summary
Short summary
Several studies evaluate aerosol–cloud interactions, but only a few attempted to describe how clouds modify aerosol properties. This study evaluates the effect of weather events on the particle size distribution at the ATTO, combining remote sensing and in situ data. Ultrafine, Aitken and accumulation particles modes have different behaviors for the diurnal cycle and for rainfall events. This study opens up new scientific questions that need to be pursued in detail in new field campaigns.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Michael P. Jensen, Virendra P. Ghate, Dié Wang, Diana K. Apoznanski, Mary J. Bartholomew, Scott E. Giangrande, Karen L. Johnson, and Mandana M. Thieman
Atmos. Chem. Phys., 21, 14557–14571, https://doi.org/10.5194/acp-21-14557-2021, https://doi.org/10.5194/acp-21-14557-2021, 2021
Short summary
Short summary
This work compares the large-scale meteorology, cloud, aerosol, precipitation, and thermodynamics of closed- and open-cell cloud organizations using long-term observations from the astern North Atlantic. Open-cell cases are associated with cold-air outbreaks and occur in deeper boundary layers, with stronger winds and higher rain rates compared to closed-cell cases. These results offer important benchmarks for model representation of boundary layer clouds in this climatically important region.
Alice Henkes, Gilberto Fisch, Luiz A. T. Machado, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 21, 13207–13225, https://doi.org/10.5194/acp-21-13207-2021, https://doi.org/10.5194/acp-21-13207-2021, 2021
Short summary
Short summary
The Amazonian boundary layer is investigated during the dry season in order to better understand the processes that occur between night and day until the stage where shallow cumulus clouds become deep. Observations show that shallow to deep clouds are characterized by a shorter morning transition stage (e.g., the time needed to eliminate the stable boundary layer inversion), while higher humidity above the boundary layer favors the evolution from shallow to deep cumulus clouds.
Yang Wang, Guangjie Zheng, Michael P. Jensen, Daniel A. Knopf, Alexander Laskin, Alyssa A. Matthews, David Mechem, Fan Mei, Ryan Moffet, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Amy Sullivan, Jason Tomlinson, Daniel Veghte, Rodney Weber, Robert Wood, Maria A. Zawadowicz, and Jian Wang
Atmos. Chem. Phys., 21, 11079–11098, https://doi.org/10.5194/acp-21-11079-2021, https://doi.org/10.5194/acp-21-11079-2021, 2021
Short summary
Short summary
This paper reports the vertical profiles of trace gas and aerosol properties over the eastern North Atlantic, a region of persistent but diverse subtropical marine boundary layer (MBL) clouds. We examined the key processes that drive the cloud condensation nuclei (CCN) population and how it varies with season and synoptic conditions. This study helps improve the model representation of the aerosol processes in the remote MBL, reducing the simulated aerosol indirect effects.
Christopher R. Williams, Karen L. Johnson, Scott E. Giangrande, Joseph C. Hardin, Ruşen Öktem, and David M. Romps
Atmos. Meas. Tech., 14, 4425–4444, https://doi.org/10.5194/amt-14-4425-2021, https://doi.org/10.5194/amt-14-4425-2021, 2021
Short summary
Short summary
In addition to detecting clouds, vertically pointing cloud radars detect individual insects passing over head. If these insects are not identified and removed from raw observations, then radar-derived cloud properties will be contaminated. This work identifies clouds in radar observations due to their continuous and smooth structure in time, height, and velocity. Cloud masks are produced that identify cloud vertical structure that are free of insect contamination.
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021, https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Short summary
About 4 years of 2D video disdrometer data in Darwin are used to develop and validate rainfall retrievals for tropical convection in C- and X-band radars in Darwin. Using blended techniques previously used for Colorado and Manus and Gan islands, with modified coefficients in each estimator, provided the most optimal results. Using multiple radar observables to develop a rainfall retrieval provided a greater advantage than using a single observable, including using specific attenuation.
Allison B. Marquardt Collow, Mark A. Miller, Lynne C. Trabachino, Michael P. Jensen, and Meng Wang
Atmos. Chem. Phys., 20, 10073–10090, https://doi.org/10.5194/acp-20-10073-2020, https://doi.org/10.5194/acp-20-10073-2020, 2020
Short summary
Short summary
Uncertainties in marine boundary layer clouds arise in the presence of biomass burning aerosol, as is the case over the southeast Atlantic Ocean. Heating due to this aerosol has the potential to alter the thermodynamic profile as the aerosol is transported across the Atlantic Ocean. Radiation transfer experiments indicate local shortwave aerosol heating is ~2–8 K d−1; however uncertainties in this quantity exist due to the single-scattering albedo and back trajectories of the aerosol plume.
Cited articles
Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement
Program, Phys. Today, 56, 38–44, https://doi.org/10.1063/1.1554135, 2003.
Adams, D. K., Gutman, S., Holub, K., and Pereira, D.: GNSS Observations of
Deep Convective timescales in the Amazon, Geophys. Res. Lett., 40, 2818–2823, https://doi.org/10.1002/grl.50573,
2013.
Adams, D. K., Fernandes, R. M. S., Holub, K. L., Gutman, S. I., Barbosa, H.
M. J., Machado, L. A. T., Calheiros, A. J. P., Bennett, R. A., Kursinski, E.
R., Sapucci, L. F., DeMets, C., Chagas, G. F. B., Arellano, A., Filizola,
N., Amorim Rocha, A. A., Silva, R. A., Assunção, L. M. F., Cirino,
G. G., Pauliquevis, T., Portela, B. T. T., Sá, A., de Sousa, J. M., and
Tanaka, L. M. S.: The Amazon Dense GNSS Meteorological Network: A New
Approach for Examining Water Vapor and Deep Convection Interactions in the
Tropics, Bull. Am. Meteorol. Soc. 96, 2151–2165, https://doi.org/10.1175/BAMS-D-13-00171.1,
2015.
Adams, D. K., Barbosa, H. M. J., and Gaitán De Los Ríos, K. P.: A
Spatiotemporal Water Vapor–Deep Convection Correlation Metric Derived from
the Amazon Dense GNSS Meteorological Network, Mon. Weather Rev. 145, 279–288,
https://doi.org/10.1175/MWR-D-16-0140.1, 2017.
Anber, U., Gentine, P., Wang, S. G., and Sobel, A. H.: Fog and rain in the
Amazon, P. Natl. Acad. Sci. USA, 112, 11473–11477, 2015.
Atmospheric Radiation Measurement (ARM): Climate Research Facility:
Balloon-Borne Sounding System (SONDE), 3.21297∘ S 60.5981∘ W: ARM Mobile
Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by:
Holdridge, D., Kyrouac, J., and Coulter, R., Atmospheric Radiation
Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge,
Tennessee, USA, Data set,
https://doi.org/10.5439/1025284 (last access: 1 July 2018), 1993.
Atmospheric Radiation Measurement (ARM) user facility: Ceilometer
(CEILPBLHT), 2014-01-01 to 2015-12-31, ARM Mobile Facility (MAO) Manacapuru,
Amazonas, Brazil; AMF1 (M1), compiled by: Ermold, B. and Morris, V., ARM Data
Center, Data set, https://doi.org/10.5439/1095593 (last access: 1 July 2018),
2013a.
Atmospheric Radiation Measurement (ARM) user facility: Surface Energy
Balance System (SEBS), 2014-01-01 to 2015-12-31, ARM Mobile Facility (MAO)
Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Cook, D. and
Sullivan, R., ARM Data Center, Data set,
https://doi.org/10.5439/1025274 (last access: 1 July 2018), 2013b.
Atmospheric Radiation Measurement (ARM) user facility: Eddy Correlation Flux
Measurement System (30ECOR), 2014-04-03 to 2015-12-01, ARM Mobile Facility
(MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), Compiled by: Sullivan, R.,
Cook, D., Billesbach, D., and Keeler, E., ARM Data Center, Data set, https://doi.org/10.5439/1025039 (last access: 1 July 2018), 2014a.
Atmospheric Radiation Measurement (ARM) user facility: W-band Cloud Radar
Active Remote Sensing of Cloud (ARSCLWACR1KOLLIAS), 2014-01-01 to
2015-12-31, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1
(M1), compiled by: Johnson, K. and Giangrande, S., ARM Data Center, Data set,
https://doi.org/10.5439/1097547 (last access: 1 July 2018), 2014b.
Bechtold, P., Chaboureau, J.-P., Beljaars, A. C. M., Betts, A. K.,
Köhler, M., Miller, M., and Redelsperger, J.-L.: The simulationof the
diurnal cycle of convective precipitation over land in a global model,
Q. J. R. Meteorol. Soc., 130, 3119–3137, https://doi.org/10.1256/qj.03.103, 2004.
Betts, A. K. and Jakob, C.:
Evaluation of the diurnal cycle of precipitation, surface
thermodynamics, and surface fluxes in the ECMWF model using LBA data,
J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2001JD000427, 2002.
Betts, A. K., Fuentes, J. D., Garstang, M., and Ball, J. H.: Surface diurnal
cycle and boundary layer structure over Rondonia during the rainy season, J. Geophys. Res.,
107, 8065, https://doi.org/10.1029/2001JD000356, 2002.
Betts, A. K., Ball, J., Barr, A, Black, T. A., McCaughey, J. H., and
Viterbo, P.: Assessing land-surface-atmosphere coupling in the ERA-40
reanalysis with boreal forest data, Agr. Forest Meteorol., 140, 355–382,
https://doi.org/10.1016/j.agrformet.2006.08.009, 2006.
Betts, A. K., Fisch, G., Von Randow, C., Silva Dias, M. A. F., Cohen, J. C.
P., Da Silva, R., and Fitzjarrald, D. R.: The Amazonian Boundary Layer and
Mesoscale Circulations, Amazonia and Global Change, 163–181, https://doi.org/10.1029/2008GM000720, 2013.
Bryan, G. H. and Fritsch, J. M.: A Benchmark Simulation for Moist
Nonhydrostatic Numerical Models, Mon. Weather Rev., 130, 2917–2928, 2002.
Carneiro, R. G.: Erosão da camada limite noturna e suas
implicações no crescimento da camada limite convectiva na região
central da Amazônia (experimento GOAMAZON 2014/15), Doctoral thesis,
Instituto Nacional de Pesquisas Espaciais, Brazil, 152 pp.,
http://urlib.net/sid.inpe.br/mtc-m21b/2018/01.18.01.59 (last access: 29 April 2021), 2018.
Carneiro, R. G., Fisch, G., Borges, C. K., and Henkes, A.: Erosion of the
nocturnal boundary layer in the central Amazon during the dry season, Acta
Amazon., 50, 80–89, https://doi.org/10.1590/1809-4392201804453, 2020.
Chakraborty, S., Jiang, J. H., Su, H., and Fu, R.: Deep convective evolution
from shallow clouds over the Amazon and Congo rainforests, J. Geophys. Res.-Atmos., 125,
e2019JD030962, https://doi.org/10.1029/2019JD030962, 2020.
Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R.
T., Miller, M. A., and Martner, B. E.: Objective Determination of Cloud
Heights and Radar Reflectivities Using a Combination of Active Remote
Sensors at the ARM CART Sites, J. Appl. Meteorol., 39, 645–665,
2000.
Cohen, J. C. P., Fitzjarrald, D. R., D'Oliveira, F. A. F., Saraiva, I., Barbosa,
I. R. D. S., Gandu, A. W., and Kuhn, P. A.: Radar-observed spatial and temporal
rainfall variability near the Tapajós-Amazon confluence, Revista Brasileira de Meteorologia, 29,
23–30, 2014.
Costa, S. M. S., Negri, R. G., Ferreira, N. J., Schmit, T. J., Arai, N.,
Flauber, W., Ceballos, J., Vila, D., Rodrigues, J., Machado, L. A., Pereira,
S., Bottino, M. J., Sismanoglu, R. A., and Langden, P.: A Successful
Practical Experience with Dedicated Geostationary Operational Environmental
Satellites GOES-10 and -12 Supporting Brazil, Bull. Am. Meteorol. Soc., 99, 33–47,
https://doi.org/10.1175/BAMS-D-16-0029.1, 2018.
Couvreux, F., Roehrig, R., Rio, C., Lefebvre, M.-P., Caian, M., Komori, T.,
Derbyshire, S., Guichard, F., Favot, F., D'Andrea, F., Bechtold, P., and
Gentine, P.: Representation of daytime moist convection over the semi-arid
Tropics by parametrizations used in climate and meteorological models,
Q. J. R. Meteorol. Soc., 141, 2220-2236, https://doi.org/10.1002/qj.2517, 2015.
Dai, A.: Precipitation characteristics in eighteen coupled climate models,
J. Clim., 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1, 2006.
D'Almeida, C., Vörösmarty, C. J., Hurtt, G. C., Marengo, J. A.,
Dingman, S. L., and Keim, B. D.: The effects of deforestation on the
hydrological cycle in Amazonia: a review on scale and resolution.
Int. J. Climatol., 27, 633–647, https://doi.org/10.1002/joc.1475, 2007.
D'Andrea, F., Gentine, P., Betts, A. K., and Lintner, B. R.: Triggering deep
convection with a probabilistic plume model, J. Atmos. Sci., 71, 3881–3901,
https://doi.org/10.1175/JAS-D-13-0340.1, 2014.
de Oliveira, A. P. and Fitzjarrald, D. R.: The Amazon river breeze and the
local boundary layer: I. Observations, Bound.-Lay. Meteorol., 63,
141–162, https://doi.org/10.1007/BF00705380, 1993.
Fisch, G., Tota, J., Machado, L. A. T., Dias, M. S., Lyra, R. D. F., Nobre, C.A.,
Dolman, A. J., and Gash, J. H. C.: The convective boundary layer over pasture
and forest in Amazonia, Theor. Appl. Climatol., 78,
47–59, 2004.
Fitzjarrald, D. R., Sakai, R. K., Moraes, O. L. L., Cosme de Oliveira, R.,
Acevedo, O. C., Czikowsky, M. J., and Beldini, T.: Spatial and temporal
rainfall variability near the Amazon-Tapajós confluence, J. Geophys.
Res., 113, G00B11, https://doi.org/10.1029/2007JG000596, 2008.
Garstang, M., Ulanski, S., Greco, S., Scala, J., Swap, R., Fitzjarrald, D.,
Martin, D., Browell, E., Shipman, M., Connors, V., and Harriss, R.: The
Amazon boundary-layer experiment (ABLE 2B): A meteorological perspective,
Bull. Am. Meteorol. Soc., 71, 19–32, 1990.
Gentine, P., Betts, A. K., Lintner, B. R., Findell, K. L., van Heerwaarden,
C. C., and D'Andrea, F.: A Probabilistic Bulk Model of Coupled Mixed Layer
and Convection. Part II: Shallow Convection Case, J. Atmos. Sci., 70, 1557–1576,
https://doi.org/10.1175/JAS-D-12-0146.1, 2013.
Ghate, V. P. and Kollias, P.: On the Controls of Daytime Precipitation in
the Amazonian Dry Season, J. Hydrometeorol., 17, 3079–3097, https://doi.org/10.1175/JHM-D-16-0101.1,
2016.
Giangrande, S. E., Feng, Z., Jensen, M. P., Comstock, J. M., Johnson, K. L.,
Toto, T., Wang, M., Burleyson, C., Bharadwaj, N., Mei, F., Machado, L. A.
T., Manzi, A. O., Xie, S., Tang, S., Silva Dias, M. A. F., de Souza, R. A.
F., Schumacher, C., and Martin, S. T.: Cloud characteristics, thermodynamic
controls and radiative impacts during the Observations and Modeling of the
Green Ocean Amazon (GoAmazon 2014/2015) experiment, Atmos. Chem. Phys., 17, 14519–14541,
https://doi.org/10.5194/acp-17-14519-2017, 2017.
Giangrande, S. E., Wang, D., and Mechem, D. B.: Cloud regimes over the Amazon Basin: perspectives from the GoAmazon2014/5 campaign, Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp-20-7489-2020, 2020.
Grabowski, W.W., Bechtold, P., Cheng, A., Forbes, R., Halliwell, C.,
Khairoutdinov, M., Lang, S., Nasuno, T., Petch, J., Tao, W.-K., Wong, R.,
Wu, X., and Xu, K.-M.: Daytime convective development over land: A model
intercomparison based on LBA observations, Q. J. R. Meteorol. Soc., 132, 317–344,
https://doi.org/10.1256/qj.04.147, 2006
Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau,
J.-P., Cheinet, S., Grabowski, W., Grenier, H., Jones, C. G., Köhler, M.,
Piriou, J.-M., Tailleux, R., and Tomasini, M.: Modelling the diurnal cycle of
deep precipitating convection over land with cloud-resolving models and
single-column models, Q. J. R. Meteorol. Soc., 130, 3139–3172, https://doi.org/10.1256/qj.03.145,
2004.
Harriss, R. C., Wofsy, S. C., Garstang, M., Browell, E. V., Molion, L. C. B.,
McNeal, R. J., Hoell, J. M., Bendura, R. J., Beck, S. M., Navarro, R. L., and
Riley, J. T.: The Amazon boundary layer experiment (ABLE 2A): Dry season
1985, J. Geophys. Res.-Atmos., 93, 1351–1360,
1988.
Henkes, A., Fisch, G., Toledo Machado, L. A., and Chaboureau, J.-P.: Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-87, in review, 2021.
Houze, R. A.: 100 years of research on mesoscale convective systems,
Meteorol. Monogr., 59, 17.1–17.54. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1, 2018.
Huntingford, C., Harris, P. P., Gedney, N., Cox, P. M., Betts, R. A.,
Marengo, J. A., and Gash, J. H. C.: Using a GCM analogue model to
investigate the potential for Amazonian forest dieback, Theor. Appl. Climatol., 78,
177–185, https://doi.org/10.1007/s00704-004-0051-x, 2004.
Hwang, Y.-T. and Frierson, D. M. W.: Link between the double-Intertropical
Convergence Zone problem and cloud biases over the Southern Ocean,
P. Natl. Acad. Sci. USA, 110, 4935–4940, https://doi.org/10.1073/pnas.1213302110, 2013.
Itterly, K. F., Taylor, P. C., Dodson, J. B., and Tawfik, A. B.: On the
sensitivity of the diurnal cycle in the Amazon to convective intensity,
J. Geophys. Res.-Atmospheres, 121, 8186–8208, https://doi.org/10.1002/2016JD025039, 2016.
Jacobson, M. Z.: Fundamentals of Atmospheric Modelling, 2nd Edn.,
Cambridge University Press, Cambridge, UK, 2015.
Jensen, M. P., Toto, T., Troyan, D., Ciesielski, P. E., Holdridge, D.,
Kyrouac, J., Schatz, J., Zhang, Y., and Xie, S.: The Mid-latitude
Continental Convective Clouds Experiment (MC3E) sounding network:
operations, processing and analysis, Atmos. Meas. Tech., 8, 421–434,
https://doi.org/10.5194/amt-8-421-2015, 2015.
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J.,
Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A.,
and Schrier, G. V. D.: Record-breaking warming and extreme drought in the Amazon
rainforest during the course of El Niño 2015–2016, Sci. Rep., 6, 33130, https://doi.org/10.1038/srep33130, 2016.
Jones, A. R. and Brunsell, N. A.: Energy balance partitioning and net radiation
controls on soil moisture-precipitation feedbacks, Earth Interact, 13, 1–25, 2009.
Khairoutdinov, M. and Randall, D.: High-Resolution Simulation of
Shallow-to-Deep Convection Transition over Land, J. Atmos. Sci., 63, 3421–3436,
https://doi.org/10.1175/JAS3810.1, 2006.
Khanna, J., Medvigy, D., Fisch, G., and de Araújo Tiburtino Neves, T.
T.: Regional Hydroclimatic Variability Due To Contemporary Deforestation in
Southern Amazonia and Associated Boundary Layer Characteristics, J. Geophys. Res.-Atmos., 123,
3993–4014. https://doi.org/10.1002/2017jd027888, 2018.
Klingaman, N. P., Jiang, X., Xavier, P. K., Petch, J., Waliser, D., and
Woolnough, S. J.: Vertical structure and physical processes of the
Madden-Julian oscillation: Synthesis and summary, J. Geophys. Res.-Atmos., 120, 4671–4689,
https://doi.org/10.1002/2015JD023196, 2015.
Lawrence, D. and Vandecar, K.: Effects of tropical deforestation on
climate and agriculture, Nat. Clim. Change, 5, 27–36,
https://doi.org/10.1038/nclimate2430, 2014.
Lintner, B. R., Adams, D. K., Schiro, K. A., Stansfield, A. M., Amorim
Rocha, A. A., and Neelin, J. D.: Relationships among climatological vertical
moisture structure, column water vapor, and precipitation over the central
Amazon in observations and CMIP5 models, Geophys. Res. Lett., 44, 1981–1989,
https://doi.org/10.1002/2016GL071923, 2017.
Machado, L. A. T.: The Amazon Energy Budget Using the ABLE-2B and FluAmazon
Data, J. Atmos. Sci., 57, 3131–3144, 2000.
Machado, L. A. T., Laurent, H., and Lima, A. A.: Diurnal march of the
convection observed during TRMM-WETAMC/LBA, J. Geophys. Res., 107, 8064,
https://doi.org/10.1029/2001JD000338, 2002.
Machado, L. A. T., Silva Dias, M. A. F., Morales, C., Fisch, G., Vila, D.,
Albrecht, R., Goodman, S. J., Calheiros, A. J. P., Biscaro, T., Kummerow,
C., Cohen, J., Fitzjarrald, D., Nascimento, E. L., Sakamoto, M. S.,
Cunningham, C., Chaboureau, J.-P., Petersen, W. A., Adams, D. K., Baldini,
L., Angelis, C. F., Sapucci, L. F., Salio, P., Barbosa, H. M. J., Landulfo,
E., Souza, R. A. F., Blakeslee, R. J., Bailey, J., Freitas, S., Lima, W. F.
A., Tokay, A., Machado, L. A. T., Dias, M. A. F. S., Morales, C., Fisch, G.,
Vila, D., Albrecht, R., Goodman, S. J., Calheiros, A. J. P., Biscaro, T.,
Kummerow, C., Cohen, J., Fitzjarrald, D., Nascimento, E. L., Sakamoto, M.
S., Cunningham, C., Chaboureau, J.-P., Petersen, W. A., Adams, D. K.,
Baldini, L., Angelis, C. F., Sapucci, L. F., Salio, P., Barbosa, H. M. J.,
Landulfo, E., Souza, R. A. F., Blakeslee, R. J., Bailey, J., Freitas, S.,
Lima, W. F. A., and Tokay, A.: The CHUVA Project: How Does Convection
Vary across Brazil?, Bull. Am. Meteorol. Soc., 95, 1365–1380, https://doi.org/10.1175/BAMS-D-13-00084.1,
2014.
Machado, L. A. T., Calheiros, A. J. P., Biscaro, T., Giangrande, S., Silva
Dias, M. A. F., Cecchini, M. A., Albrecht, R., Andreae, M. O., Araujo, W.
F., Artaxo, P., Borrmann, S., Braga, R., Burleyson, C., Eichholz, C. W.,
Fan, J., Feng, Z., Fisch, G. F., Jensen, M. P., Martin, S. T., Pöschl,
U., Pöhlker, C., Pöhlker, M. L., Ribaud, J.-F., Rosenfeld, D.,
Saraiva, J. M. B., Schumacher, C., Thalman, R., Walter, D., and Wendisch,
M.: Overview: Precipitation characteristics and sensitivities to
environmental conditions during GoAmazon 2014/2015 and ACRIDICON-CHUVA,
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, 2018.
Martin, C. L., Fitzjarrald, D., Garstang, M., Oliveira, A. P., Greco, S., and
Browell, E.: Structure and growth of the mixing layer over the Amazonian
rain forest, J. Geophys. Res.-Atmos., 93,
1361–1375, 1988.
Martin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Biscaro, T., Brito, J., Calheiros, A., Jardine, K., Medeiros, A., Portela, B., de Sá, S. S., Adachi, K., Aiken, A. C., Albrecht, R., Alexander, L., Andreae, M. O., Barbosa, H. M. J., Buseck, P., Chand, D., Comstock, J. M., Day, D. A., Dubey, M., Fan, J., Fast, J., Fisch, G., Fortner, E., Giangrande, S., Gilles, M., Goldstein, A. H., Guenther, A., Hubbe, J., Jensen, M., Jimenez, J. L., Keutsch, F. N., Kim, S., Kuang, C., Laskin, A., McKinney, K., Mei, F., Miller, M., Nascimento, R., Pauliquevis, T., Pekour, M., Peres, J., Petäjä, T., Pöhlker, C., Pöschl, U., Rizzo, L., Schmid, B., Shilling, J. E., Silva Dias, M. A., Smith, J. N., Tomlinson, J. M., Tóta, J., and Wendisch, M.: The Green Ocean Amazon Experiment (GoAmazon 2014/2015)
Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the
Rain Forest, Bull. Am. Meteorol. Soc., BAMS-D-15-00221.1, 98, 981–997, https://doi.org/10.1175/BAMS-D-15-00221.1, 2016.
Mather, J. H. and Voyles, J. W.: The AM Climate Resarch Facility: A Reviw of
Sructire and Capabilities, Bull. Am. Meteorol. Soc., 94, 377–392,
2013.
Meyer, B. and Haerter, J. O.: Mechanical forcing of convection by cold
pools: Collisions and energy scaling, J. Adv. Model. Earth Sys., 12, e2020MS002281,
https://doi.org/10.1029/2020MS002281, 2020.
Miller, M. A., Nitschke, K., Ackerman, T. P., Ferell, W. R., Hickmon, N., and
Ivery, M.: The ARM Mobile Facilities, Meteorological Monographs, Am. Meteorol. Soc., 57, 9.1–9.15,
https://doi.org/10.1175/AMSMONOGPHS-D-15-0051.1, 2016.
Oliveira, R., Maggioni, V., Vila, D., and Morales, C.: Characteristics and
diurnal cycle of GPM rainfall estimates over the Central Amazon region,
Remote Sens., 8, 544, https://doi.org/10.3390/rs8070544, 2016.
Orlanski, I.: A Rational Subdivision of Scales for Atmospheric Processes,
Bull. Am. Meteorol. Soc., 56, 527–530, 1975.
Rickenbach, T. M., Ferreira, R. N., Halverson, J. B., Herdies, D. L., and
Silva Dias, M. A. F.: Modulation of convection in the southwestern Amazon
basin by extratropical stationary fronts, J. Geophys. Res., 107, 8040,
https://doi.org/10.1029/2000JD000263, 2002.
Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., and Wang, Y.: Diurnal cycle
of precipitation in the tropics simulated in a global cloud-resolving model,
J. Clim., 22, 4809–4826, https://doi.org/10.1175/2009JCLI2890.1, 2009.
Schiro, K. A. and Neelin, J. D.: Tropical continental downdraft
characteristics: mesoscale systems versus unorganized convection,
Atmos. Chem. Phys., 18, 1997–2010, https://doi.org/10.5194/acp-18-1997-2018, 2018.
Serra, Y. L., Rowe, A., Adams, D. K., and Kiladis, G. N.: Kelvin Waves
during GOAmazon and Their Relationship to Deep Convection, J. Atmos. Sci. 77,
3533–3550, https://doi.org/10.1175/JAS-D-20-0008.1, 2020.
Silva Dias, M. A. F., Rutledge, S., Kabat, P., Silva Dias, P. L., Nobre, C.,
Fisch, G., Dolman, A. J., Zipser, E., Garstang, M., Manzi, A. O., Fuentes,
J. D., Rocha, H. R., Marengo, J., Plana-Fattori, A., Sá, L. D. A.,
Alvalá, R., C. S., Andreae, M. O., Artaxo, P., Gielow, R., and Gatti,
L.: Cloud and rain processes in a biosphere-atmosphere interaction context
in the Amazon Region, J. Geophys. Res., 107, 8072, https://doi.org/10.1029/2001JD000335, 2002.
Stratton, R. A. and Stirling, A. J.: Improving the diurnal cycle of
convection in GCMs, Q. J. R. Meteorol. Soc., 138, 1121–1134,
https://doi.org/10.1002/qj.991, 2012.
Tanaka, L. M. D. S., Satyamurty, P., and Machado, L. A. T.: Diurnal variation
of precipitation in central Amazon Basin, Int. J. Climatol., 34, 3574–3584,
https://doi.org/10.1002/joc.3929, 2014.
Thomas, L., Malap, N., Grabowski, W. W., Dani, K., and Prabha, T. V.:
Convective environment in pre-monsoon and monsoon conditions over the Indian
subcontinent: the impact of surface forcing, Atmos. Chem. Phys., 18, 7473–7488,
https://doi.org/10.5194/acp-18-7473-2018, 2018.
Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T., Abdelmonem, A., Afchine, A., Araùjo, A., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann, S., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G., Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S., Kästner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kölling, T., Krämer, M., Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Münch, S., Nillius, B., Pfeilsticker, K., Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter, M., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M.: The ACRIDICON-CHUVA campaign: Studying
tropical deep convective clouds and precipitation over Amazonia using the
new German research aircraft HALO, Bull. Am. Meteorol. Soc., BAMS-D-14-00255.1, 97, 1885–1908,
https://doi.org/10.1175/BAMS-D-14-00255.1, 2016.
Short summary
This study suggests that there are two distinct modes driving diurnal precipitating convective clouds over the central Amazon. In the wet season, local factors such as turbulence and nighttime cloud coverage are the main controls of daily precipitation, while dry-season daily precipitation is modulated primarily by the mesoscale convective pattern. The results imply that models and parameterizations must consider different formulations based on the seasonal cycle to correctly resolve convection.
This study suggests that there are two distinct modes driving diurnal precipitating convective...
Altmetrics
Final-revised paper
Preprint