Articles | Volume 21, issue 7
https://doi.org/10.5194/acp-21-5289-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5289-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Indicators of Antarctic ozone depletion: 1979 to 2019
Greg E. Bodeker
CORRESPONDING AUTHOR
Bodeker Scientific, 42 Russell Street, Alexandra, 9320, New Zealand
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
Stefanie Kremser
Bodeker Scientific, 42 Russell Street, Alexandra, 9320, New Zealand
Related authors
Owyn Aitken, Antoni Moore, Ivan Diaz-Rainey, Quyen Nguyen, Simon Cox, and Greg Bodeker
Abstr. Int. Cartogr. Assoc., 7, 4, https://doi.org/10.5194/ica-abs-7-4-2024, https://doi.org/10.5194/ica-abs-7-4-2024, 2024
Antoni Moore, Quyen Nguyen, Ivan Diaz-Rainey, Greg Bodeker, Simon Cox, and Owyn Aitken
Abstr. Int. Cartogr. Assoc., 7, 107, https://doi.org/10.5194/ica-abs-7-107-2024, https://doi.org/10.5194/ica-abs-7-107-2024, 2024
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Quyen Nguyen, Antoni Moore, Ivan Diaz-Rainey, Greg Bodeker, Simon C. Cox, Murray Cadzow, and Paul Thorsnes
Abstr. Int. Cartogr. Assoc., 6, 187, https://doi.org/10.5194/ica-abs-6-187-2023, https://doi.org/10.5194/ica-abs-6-187-2023, 2023
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021, https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
Short summary
The MAPM project showcases a method to improve estimates of PM2.5 emissions through an advanced statistical technique that is still new to the aerosol community. Using Christchurch, NZ, as a test bed, measurements from a field campaign in winter 2019 are incorporated into this new approach. An overestimation from local inventory estimates is identified. This technique may be exported to other urban areas in need.
Greg E. Bodeker, Jan Nitzbon, Jordis S. Tradowsky, Stefanie Kremser, Alexander Schwertheim, and Jared Lewis
Earth Syst. Sci. Data, 13, 3885–3906, https://doi.org/10.5194/essd-13-3885-2021, https://doi.org/10.5194/essd-13-3885-2021, 2021
Short summary
Short summary
Ozone in Earth's atmosphere has undergone significant changes since first measured systematically from space in the late 1970s. The purpose of the paper is to present a new, spatially filled, global total column ozone climate data record spanning from October 1978 to December 2016. The database is compiled from measurements from 17 different satellite-based instruments where offsets and drifts between the instruments have been corrected using ground-based measurements.
Ethan R. Dale, Stefanie Kremser, Jordis S. Tradowsky, Greg E. Bodeker, Leroy J. Bird, Gustavo Olivares, Guy Coulson, Elizabeth Somervell, Woodrow Pattinson, Jonathan Barte, Jan-Niklas Schmidt, Nariefa Abrahim, Adrian J. McDonald, and Peter Kuma
Earth Syst. Sci. Data, 13, 2053–2075, https://doi.org/10.5194/essd-13-2053-2021, https://doi.org/10.5194/essd-13-2053-2021, 2021
Short summary
Short summary
MAPM is a project whose goal is to develop a method to infer particulate matter (PM) emissions maps from PM concentration measurements. In support of MAPM, we conducted a winter field campaign in New Zealand. In addition to two types of instruments measuring PM, an array of other meteorological sensors were deployed, measuring temperature and wind speed as well as probing the vertical structure of the lower atmosphere. In this article, we present the measurements taken during this campaign.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Owyn Aitken, Antoni Moore, Ivan Diaz-Rainey, Quyen Nguyen, Simon Cox, and Greg Bodeker
Abstr. Int. Cartogr. Assoc., 7, 4, https://doi.org/10.5194/ica-abs-7-4-2024, https://doi.org/10.5194/ica-abs-7-4-2024, 2024
Antoni Moore, Quyen Nguyen, Ivan Diaz-Rainey, Greg Bodeker, Simon Cox, and Owyn Aitken
Abstr. Int. Cartogr. Assoc., 7, 107, https://doi.org/10.5194/ica-abs-7-107-2024, https://doi.org/10.5194/ica-abs-7-107-2024, 2024
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Quyen Nguyen, Antoni Moore, Ivan Diaz-Rainey, Greg Bodeker, Simon C. Cox, Murray Cadzow, and Paul Thorsnes
Abstr. Int. Cartogr. Assoc., 6, 187, https://doi.org/10.5194/ica-abs-6-187-2023, https://doi.org/10.5194/ica-abs-6-187-2023, 2023
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021, https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
Short summary
The MAPM project showcases a method to improve estimates of PM2.5 emissions through an advanced statistical technique that is still new to the aerosol community. Using Christchurch, NZ, as a test bed, measurements from a field campaign in winter 2019 are incorporated into this new approach. An overestimation from local inventory estimates is identified. This technique may be exported to other urban areas in need.
Greg E. Bodeker, Jan Nitzbon, Jordis S. Tradowsky, Stefanie Kremser, Alexander Schwertheim, and Jared Lewis
Earth Syst. Sci. Data, 13, 3885–3906, https://doi.org/10.5194/essd-13-3885-2021, https://doi.org/10.5194/essd-13-3885-2021, 2021
Short summary
Short summary
Ozone in Earth's atmosphere has undergone significant changes since first measured systematically from space in the late 1970s. The purpose of the paper is to present a new, spatially filled, global total column ozone climate data record spanning from October 1978 to December 2016. The database is compiled from measurements from 17 different satellite-based instruments where offsets and drifts between the instruments have been corrected using ground-based measurements.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Ethan R. Dale, Stefanie Kremser, Jordis S. Tradowsky, Greg E. Bodeker, Leroy J. Bird, Gustavo Olivares, Guy Coulson, Elizabeth Somervell, Woodrow Pattinson, Jonathan Barte, Jan-Niklas Schmidt, Nariefa Abrahim, Adrian J. McDonald, and Peter Kuma
Earth Syst. Sci. Data, 13, 2053–2075, https://doi.org/10.5194/essd-13-2053-2021, https://doi.org/10.5194/essd-13-2053-2021, 2021
Short summary
Short summary
MAPM is a project whose goal is to develop a method to infer particulate matter (PM) emissions maps from PM concentration measurements. In support of MAPM, we conducted a winter field campaign in New Zealand. In addition to two types of instruments measuring PM, an array of other meteorological sensors were deployed, measuring temperature and wind speed as well as probing the vertical structure of the lower atmosphere. In this article, we present the measurements taken during this campaign.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Cited articles
Allen, D. R., Bevilacqua, R. M., Nedoluha, G. E., Randall, C. E., and Manney, G. L.: Unusual stratospheric transport and mixing during the 2002 Antarctic winter, Geophys. Res. Lett., 30, 1599, https://doi.org/10.1029/2003GL017117, 2003. a
Amos, M., Young, P. J., Hosking, J. S., Lamarque, J.-F., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Deushi, M., Jöckel, P., Kinnison, D., Kirner, O., Kunze, M., Marchand, M., Plummer, D. A., Saint-Martin, D., Sudo, K., Tilmes, S., and Yamashita, Y.: Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence, Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, 2020. a
Bodeker, G. E. and Scourfield, M. W. J.: Planetary waves in total ozone and their relation to Antarctic ozone depletion, Geophys. Res. Lett., 22, 2949–2952, 1995. a
Bodeker, G. E., Connor, B. J., Liley, J. B., and Matthews, W. A.: The global mass of ozone: 1978–1998, Geophys. Res. Lett., 28, 2819–2822, 2001a. a
Bodeker, G. E., Scott, J. C., Kreher, K., and McKenzie, R. L.: Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978–1998, J. Geophys. Res., 106, 23029–23042, 2001b. a
Bodeker, G. E., Struthers, H., and Connor, B. J.: Dynamical containment of Antarctic ozone depletion, Geophys. Res. Lett., 29, 2-1–2-4, https://doi.org/10.1029/2001GL014206, 2002. a, b
Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615, https://doi.org/10.5194/acp-5-2603-2005, 2005. a, b, c, d
Bodeker, G. E., Nitzbon, J., Lewis, J., Schwertheim, A., Tradowsky, J. S., and Kremser, S.: NIWA–BS Total Column Ozone Database [Data Set], Zenodo, https://doi.org/10.5281/zenodo.1346424, 2018. a
Bodeker, G. E., Nitzbon, J., Tradowsky, J. S., Kremser, S., Schwertheim, A., and Lewis, J.: A Global Total Column Ozone Climate Data Record, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-218, in review, 2020a. a, b, c, d
Bodeker, G. E., Kremser, S., and Tradowsky, J. S.: BS Filled Total Column Ozone Database [Data Set], Zenodo, https://doi.org/10.5281/zenodo.3908787, 2020b. a
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The concept of essential climate variables in support of climate research, applications, and policy, B. Am. Meteorol. Soc., 95, 1432–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014. a
Chemke, R. and Polvani, L. M.: Linking midlatitudes eddy heat flux trends and polar amplification, npj Clim. Atmos. Sci., 3, 8, https://doi.org/10.1038/s41612-020-0111-7, 2020. a
de Laat, A. T. J., van Weele, M., and van der A, R. J.: Onset of stratospheric ozone recovery in the Antarctic ozone hole in assimilated daily total ozone columns, J. Geophys. Res.-Atmos., 122, 11880–11899, https://doi.org/10.1002/2016JD025723, 2017. a, b
Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bednarz, E. M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S. C., Hassler, B., Horowitz, L. W., Hu, R.-M., Jöckel, P., Josse, B., Kirner, O., Kremser, S., Langematz, U., Lewis, J., Marchand, M., Lin, M., Mancini, E., Marécal, V., Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L., Pitari, G., Plummer, D. A., Pyle, J. A., Revell, L. E., Rozanov, E., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tilmes, S., Visioni, D., Yamashita, Y., and Zeng, G.: Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, 2018. a
Douglass, A., Fioletov, V., Godin-Beekmann, S., Müller, R., Sto-larski, R. S., Webb, A., Arola, A., Burkholder, J. B., Burrows, J. P., Chipperfield, M. P., Cordero, R., David, C., den Outer, P. N., Diaz, S. B., Flynn, L. E., Hegglin, M., Herman, J. R., Huck, P., Janjai, S., Jánosi, I. M., Krzyścin, J. W., Liu, Y., Logan, J., Matthes, K., McKenzie, R. L., Muthama, N. J., Petropavlovskikh, I., Pitts, M., Ramachandran, S., Rex, M., Salawitch, R. J., Sinnhuber, B.-M., Staehelin, J., Strahan, S., Tourpali, K., Valverde-Canossa, J., and Vigouroux, C.: Stratospheric ozone and surface ultravioletradiation, Chapter 2, in: Scientific Assessment of Ozone Depletion: 2010, Global Ozone Res. Mon. Proj., Report No. 52, World Meteorological Organization, Geneva, Switzerland, 76 pp., available at: https://www.esrl.noaa.gov/csl/assessments/ozone/2010/chapters/chapter2.pdf (last access: 15 October 2020), 2011. a
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal interaction, Nature, 315, 207–210, 1985. a
GCOS-138: Implementation plan for the global observing system
for climate in support of the UNFCCC, GOOS-184, GTOS-76,
WMO-TD/No. 1523, available at: https://library.wmo.int/doc_num.php?explnum_id=3851 (last access: 30 March 2021), World Meteorological Organization (WMO), 2010. a
Glatthor, N., Von Clarmann, T., Fischer, H., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Milz, M., Steck, T., Stiller, G. P., Tsidu, G. M., and Wang, D.-Y.: Spaceborne ClO observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) before and during the Antarctic major warming in September/October 2002, J. Geophys. Res.-Atmos., 109, D11307, https://doi.org/10.1029/2003JD004440, 2004. a
Gonzalez, M., Taddonio, K. N., and Sherman, N. J.: The Montreal Protocol: how today's successes offer a pathway to the future,
J. Environ. Stud. Sci., 5, 122–129, https://doi.org/10.1007/s13412-014-0208-6, 2015. a
Hassler, B., Kremser, S., Bodeker, G. E., Lewis, J., Nesbit, K., Davis, S. M., Chipperfield, M. P., Dhomse, S. S., and Dameris, M.: An updated version of a gap-free monthly mean zonal mean ozone database, Earth Syst. Sci. Data, 10, 1473–1490, https://doi.org/10.5194/essd-10-1473-2018, 2018a. a, b
Hassler, B., Kremser, S., Bodeker, G., Lewis, J., Nesbit, K., Davis, S., Chipperfield, M., Dohmse, S., and Dameris, M.: BSVerticalOzone database (Version v1.0) [Data set], Zenodo, https://doi.org/10.5281/zenodo.1217184, 2018b. a
Hofmann, D. J., Harder, J. W., Rolf, S. R., and Rosen, J. M.: Baloon-borne observations of the development and vertical structure of the Antarctic ozone hole in 1986, Nature, 326, 59–62, 1987. a
Huck, P. E., Tilmes, S., Bodeker, G. E., Randel, W. J., McDonald, A. J., and Nakajima, H.: An improved measure of ozone depletion in the Antarctic stratosphere, J. Geophys. Res., 112, D11104, https://doi.org/10.1029/2006JD007860, 2007. a
Johnson, B. J., Deshler, T., and Thompson, R. A.: Vertical profiles of ozone at McMurdo station, Antarctica, spring 1991, Geophys. Res. Lett., 19, 1105–1108, 1992. a
Keeble, J., Brown, H., Abraham, N. L., Harris, N. R. P., and Pyle, J. A.: On ozone trend detection: using coupled chemistry–climate simulations to investigate early signs of total column ozone recovery, Atmos. Chem. Phys., 18, 7625–7637, https://doi.org/10.5194/acp-18-7625-2018, 2018. a
Konopka, P., Grooß, J.-U., Hoppel, K. W., Steinhorst, H.-M., and Müller, R.: Mixing and Chemical Ozone Loss during and after the Antarctic Polar Vortex Major Warming in September 2002, J. Atmos. Sci., 62, 848–859, 2005. a
Krueger, A. J., Stolarski, R. S., and Schoeberl, M. R.: Formation of the 1988 Antarctic ozone hole, Geophys. Res. Lett., 16, 381–384, 1989. a
Krzyścin, J. W., Jaroslawski, J., and Rajewska-Więch, B.: Beginning of the ozone recovery over Europe? − Analysis of the total ozone data from the ground-based observations, 1964−2004, Ann. Geophys., 23, 1685–1695, https://doi.org/10.5194/angeo-23-1685-2005, 2005. a
Kuttippurath, J., Lefèvre, F., Pommereau, J.-P., Roscoe, H. K., Goutail, F., Pazmiño, A., and Shanklin, J. D.: Antarctic ozone loss in 1979–2010: first sign of ozone recovery, Atmos. Chem. Phys., 13, 1625–1635, https://doi.org/10.5194/acp-13-1625-2013, 2013. a
Manney, G. L., Sabutis, J. L., Allen, D. R., Lahoz, W. A., Scaife, A. A., Randall, C. E., Pawson, S., Naujokat, B., and Swinbank, R.: Simulations of Dynamics and Transport during the September 2002 Antarctic Major Warming, J. Atmos. Sci., 62, 690–707, 2005. a
McKenzie, R., Bernhard, G., Liley, B., Disterhoft, P., Rhodes, S., Bais, A., Morgenstern, O., Newman, P., Oman, L., Brogniez, C., and Simic, S.: Success of Montreal Protocol Demonstrated by Comparing High-Quality UV Measurements with “World Avoided” Calculations from Two Chemistry-Climate
Models, Sci. Rep.-UK, 9, 12332, https://doi.org/10.1038/s41598-019-48625-z, 2019. a
Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251–264, https://doi.org/10.5194/acp-8-251-2008, 2008. a, b, c
Newman, P. A. and Nash, E. R.: Quantifying the wave driving of the stratosphere, J. Geophys. Res., 105, 12485–12497, 2000. a
Newman, P. A. and Nash, E. R.: The Unusual Southern Hemisphere Stratosphere Winter of 2002, J. Atmos. Sci., 62, 614–628, https://doi.org/10.1175/JAS-3323.1, 2005. a
Newman, P. A., Kawa, S. R., and Nash, E. R.: On the size of the Antarctic ozone hole, Geophys. Res. Lett., 31, L21104, https://doi.org/10.1029/2004GL020596, 2004. a
Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., and Schauffler, S. M.: When will the Antarctic ozone hole recover?, Geophys. Res. Lett., 33, L12814, https://doi.org/10.1029/2005GL025232, 2006. a, b
Newman, P. A., Oman, L. D., Douglass, A. R., Fleming, E. L., Frith, S. M., Hurwitz, M. M., Kawa, S. R., Jackman, C. H., Krotkov, N. A., Nash, E. R., Nielsen, J. E., Pawson, S., Stolarski, R. S., and Velders, G. J. M.: What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113–2128, https://doi.org/10.5194/acp-9-2113-2009, 2009. a
Ricaud, P., Lefèvre, F., Berthet, G., Murtagh, D., Llewellyn, E. J., Mégie, G., Kyrölä, E., Leppelmeier, G. W., Auvinen, H., Boonne, C., Brohede, S., Degenstein, D. A., de La Noë, J., Dupuy, E., El Amraoui, L., Eriksson, P., Evans, W. F. J., Frisk, U., Gattinger, R. L., Girod, F., Haley, C. S., Hassinen, S., Hauchecorne, A., Jimenez, C., Kyrö, E., Lautié, N., Le Flochmoën, E., Lloyd, N. D., McConnell, J. C., McDade, I. C., Nordh, L., Olberg, M., Pazmino, A., Petelina, S. V., Sandqvist, A., Seppälä, A., Sioris, C. E., Solheim, B. H., Stegman, J., Strong, K., Taalas, P., Urban, J., von Savigny, C., von Scheele, F., and Witt, G.: Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite, J. Geophys. Res., 110, D05302, https://doi.org/10.1029/2004JD005018, 2005. a
Safieddine, S., Bouillon, M., Paracho, A. C., Jumelet, J., Tencé, F., Pazmino, A., Goutail, F., Wespes, C., Bekki, S., Boynard, A., Hadji-Lazaro, J., Coheur, P. F., Hurtmans, D., and Clerbaux, C.: Antarctic Ozone Enhancement During the 2019 Sudden Stratospheric Warming Event, Geophys. Res. Lett., 47, e2020GL087810, https://doi.org/10.1029/2020gl087810, 2020. a, b
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/jcli-d-12-00823.1, 2014. a
Schoeberl, M. R., Stolarski, R. S., and Krueger, A. J.: The 1988 Antarctic ozone depletion: comparison with previous year depletions, Geophys. Res. Lett., 16, 377–380, 1989. a
Schoeberl, M. R., Douglass, A. R., Randolph, S., Dessler, A. E., Newman, P. A., Stolarski, R. S., Roche, A. E., Waters, J. W., and Russell, J. M.: Development of the Antarctic ozone hole, J. Geophys. Res., 101, 20909–20924, 1996. a
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., and Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science, 353, 269–274, , https://doi.org/10.1126/science.aae0061, 2016. a
Struthers, H., Bodeker, G. E., Austin, J., Bekki, S., Cionni, I., Dameris, M., Giorgetta, M. A., Grewe, V., Lefèvre, F., Lott, F., Manzini, E., Peter, T., Rozanov, E., and Schraner, M.: The simulation of the Antarctic ozone hole by chemistry-climate models, Atmos. Chem. Phys., 9, 6363–6376, https://doi.org/10.5194/acp-9-6363-2009, 2009. a
Tully, M. B., Krummel, P. B., and Klekociuk, A. R.: Trends in Antarctic ozone hole metrics 2001–2017,
Journal of Southern Hemisphere Earth Systems Science, 69, 52–56, https://doi.org/10.1071/es19020, 2019. a, b
Uchino, O., Bojkov, R., Balis, D. S., Akagi, K., Hayashi, M., and Kajihara, R.: Essential characteristics of the Antarctic-spring ozone decline: update to 1998, Geophys. Res. Lett., 26, 1377–1380, 1999. a
Wargan, K., Weir, B., Manney, G. L., Cohn, S. E., and Livesey, N. J.: The anomalous 2019 Antarctic ozone hole in the GEOS Constituent Data Assimilation System with MLS observations, J. Geophys. Res.-Atmos., 125, e2020JD033335, https://doi.org/10.1029/2020JD033335, 2020. a, b, c, d
Weber, M., Dikty, S., Burrows, J. P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., and Langematz, U.: The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales, Atmos. Chem. Phys., 11, 11221–11235, https://doi.org/10.5194/acp-11-11221-2011, 2011. a
Xia, Y., Xu, W., Hu, Y., and Xie, F.: Southern-Hemisphere high-latitude stratospheric warming revisit, Clim. Dyn., 54, 1671–1682, https://doi.org/10.1007/s00382-019-05083-7, 2020. a
Yang, E.-S., Cunnold, D. M., Newchurch, M. J., Salawitch, R. J., McCormick, M. P., Russell, J. M., Zawodny, J. M., and Oltmans, S. J.: First stage of Antarctic ozone recovery, J. Geophys. Res.-Atmos., 113, D20308, https://doi.org/10.1029/2007JD009675, 2008. a
Short summary
This paper presents measures of the severity of the Antarctic ozone hole covering the period 1979 to 2019. The paper shows that while the severity of Antarctic ozone depletion grew rapidly through the last two decades of the 20th century, the severity declined thereafter and faster than expected from declines in stratospheric concentrations of the chlorine- and bromine-containing chemical compounds that destroy ozone.
This paper presents measures of the severity of the Antarctic ozone hole covering the period...
Altmetrics
Final-revised paper
Preprint