Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4779-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4779-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles
Evangelia Kostenidou
CORRESPONDING AUTHOR
Aix-Marseille Univ, CNRS, LCE, Marseille, France
Alvaro Martinez-Valiente
IRCELYON, UMR 5256 CNRS, Université de Lyon, Villeurbanne,
France
Badr R'Mili
Aix-Marseille Univ, CNRS, LCE, Marseille, France
Baptiste Marques
Aix-Marseille Univ, CNRS, LCE, Marseille, France
Brice Temime-Roussel
Aix-Marseille Univ, CNRS, LCE, Marseille, France
Amandine Durand
Aix-Marseille Univ, CNRS, LCE, Marseille, France
Michel André
AME-EASE, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, Lyon, France
Yao Liu
AME-EASE, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, Lyon, France
Cédric Louis
AME-EASE, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, Lyon, France
Boris Vansevenant
AME-EASE, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, Lyon, France
Daniel Ferry
Aix-Marseille Université, CNRS, CINaM, Marseille, France
Carine Laffon
Aix-Marseille Université, CNRS, CINaM, Marseille, France
Philippe Parent
Aix-Marseille Université, CNRS, CINaM, Marseille, France
Aix-Marseille Univ, CNRS, LCE, Marseille, France
Related authors
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Boris Vansevenant, Cédric Louis, Corinne Ferronato, Ludovic Fine, Patrick Tassel, Pascal Perret, Evangelia Kostenidou, Brice Temime-Roussel, Barbara D'Anna, Karine Sartelet, Véronique Cerezo, and Yao Liu
Atmos. Meas. Tech., 14, 7627–7655, https://doi.org/10.5194/amt-14-7627-2021, https://doi.org/10.5194/amt-14-7627-2021, 2021
Short summary
Short summary
A new method was developed to correct wall losses of particles on Teflon walls using a new environmental chamber. It was applied to experiments with six diesel vehicles (Euro 3 to 6), tested on a chassis dynamometer. Emissions of particles and precursors were obtained under urban and motorway conditions. The chamber experiments help understand the role of physical processes in diesel particle evolutions in the dark. These results can be applied to situations such as tunnels or winter rush hours.
Marwa Shahin, Julien Kammer, Brice Temime-Roussel, and Barbara D'Anna
Atmos. Chem. Phys., 25, 10267–10292, https://doi.org/10.5194/acp-25-10267-2025, https://doi.org/10.5194/acp-25-10267-2025, 2025
Short summary
Short summary
Air pollution and climate change are influenced by tiny airborne particles called aerosols. This study explores how pollutants from urban sources, as m-xylene and naphthalene, form new particles in the atmosphere under different conditions. Using advanced techniques, we show how temperature and nitrogen oxides affect the formation and behavior of these particles. Our findings will improve our understanding of secondary organic particle and air quality models.
Camille Noblet, François Lestremau, Adrien Dermigny, Nicolas Karoski, Claudine Chatellier, Jérôme Beaumont, Yao Liu, Boris Vansevenant, Jean-Luc Besombes, and Alexandre Albinet
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-25, https://doi.org/10.5194/ar-2025-25, 2025
Preprint under review for AR
Short summary
Short summary
Vehicle emissions significantly impact air quality, but distinguishing between gasoline and diesel aerosol sources in the air is still difficult. This study used advanced chemical analysis and statistical methods to discover unique aerosol molecular markers from each vehicle type. By simulating real-world driving and atmospheric aging, researchers found specific markers for both primary and secondary particle emissions, offering a promising new approach to improve air pollution source tracking.
Manon Rocco, Julien Kammer, Mathieu Santonja, Brice Temime-Roussel, Cassandra Saignol, Caroline Lecareux, Etienne Quivet, Henri Wortham, and Elena Ormeño
Biogeosciences, 22, 3661–3680, https://doi.org/10.5194/bg-22-3661-2025, https://doi.org/10.5194/bg-22-3661-2025, 2025
Short summary
Short summary
Soil emissions of biogenic volatile organic compounds (BVOCs) play a significant role in ecosystems, yet the impact of litter accumulation on these emissions is often overlooked, particularly in Mediterranean deciduous forests. A study in downy oak forest identified over 135 BVOCs, with many being absorbed by the soil, while others were emitted and increased with litter biomass. This underscores the critical role of litter and microbial activity in shaping soil BVOC dynamics under a changing climate.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D'Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
Atmos. Chem. Phys., 25, 6575–6605, https://doi.org/10.5194/acp-25-6575-2025, https://doi.org/10.5194/acp-25-6575-2025, 2025
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, such as ultra-fine particles, were higher in the port than in the city and offer strong support to improve emission inventories. These findings may also serve as reference to assess the benefits of a sulfur Emission Control Area in the Mediterranean in 2025.
Johannes Heuser, Claudia Di Biagio, Jérôme Yon, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Marco Zanatta, Laura Renzi, Angela Marinoni, Satoshi Inomata, Chenjie Yu, Vera Bernardoni, Servanne Chevaillier, Daniel Ferry, Paolo Laj, Michel Maillé, Dario Massabò, Federico Mazzei, Gael Noyalet, Hiroshi Tanimoto, Brice Temime-Roussel, Roberta Vecchi, Virginia Vernocchi, Paola Formenti, Bénédicte Picquet-Varrault, and Jean-François Doussin
Atmos. Chem. Phys., 25, 6407–6428, https://doi.org/10.5194/acp-25-6407-2025, https://doi.org/10.5194/acp-25-6407-2025, 2025
Short summary
Short summary
The spectral optical properties of combustion soot aerosols with varying black (BC) and brown carbon (BrC) content were studied in an atmospheric simulation chamber. Measurements of the mass spectral absorption cross section (MAC), supplemented by literature data, allowed us to establish a generalised exponential relationship between the spectral absorption and the elemental-to-total-carbon ratio (EC / TC) in soot. This relationship can provide a useful tool for modelling the properties of soot.
Quentin Gunti, Benjamin Chazeau, Brice Temime-Roussel, Irène Xueref-Remy, Alexandre Armengaud, Henri Wortham, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2025-2215, https://doi.org/10.5194/egusphere-2025-2215, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A measurement campaign in Toulon’s port area in September 2021 showed a decrease in sulfur-related emissions in both gaseous and particulate phases, while soot, organics and PAHs, remained at pre-IMO regulation levels. PMF analysis attributed 5.6% and 11.2% of OA mass to road and maritime traffic, respectively, with PAHs mostly emitted by these sectors (31% and 35%), highlighting the need for monitoring shipping emissions as the Mediterranean becomes a Sulfur Emission Control Area in May 2025.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025, https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D'Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
Atmos. Chem. Phys., 25, 3363–3387, https://doi.org/10.5194/acp-25-3363-2025, https://doi.org/10.5194/acp-25-3363-2025, 2025
Short summary
Short summary
To accurately represent the population exposure to outdoor concentrations of pollutants of interest to health (NO2, PM2.5, black carbon, and ultrafine particles), multi-scale modelling down to the street scale is set up and evaluated using measurements from field campaigns. An exposure scaling factor is defined, allowing regional-scale simulations to be corrected to evaluate population exposure. Urban heterogeneities strongly influence NO2, black carbon, and ultrafine particles but less strongly PM2.5.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 25, 3161–3189, https://doi.org/10.5194/acp-25-3161-2025, https://doi.org/10.5194/acp-25-3161-2025, 2025
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed urban emission impact on surrounding areas. CRI full period averages at 520 nm were 1.41 – 0.037i (urban), 1.52 – 0.038i (peri-urban), and 1.50 – 0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22 % of absorption at 370 nm.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy S. Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve R. Arnold, Andrea Baccarini, Maurizio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
Atmos. Meas. Tech., 18, 1163–1184, https://doi.org/10.5194/amt-18-1163-2025, https://doi.org/10.5194/amt-18-1163-2025, 2025
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed on board a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, and NOx) in Fairbanks during winter 2022. Data calibration with reference measurements and machine learning methods enabled us to document pollution at the surface and power plant plumes aloft.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Juan Miguel González-Sánchez, Miquel Huix-Rotllant, Nicolas Brun, Julien Morin, Carine Demelas, Amandine Durand, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 15135–15147, https://doi.org/10.5194/acp-23-15135-2023, https://doi.org/10.5194/acp-23-15135-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are nitrogen oxide (NOx) reservoirs. This work investigated the reaction products and mechanisms of their reactivity with light in the aqueous phase (cloud and fog conditions and wet aerosol). Our findings reveal that this chemistry leads to the formation of atmospheric nitrous acid (HONO).
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022, https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Short summary
This paper presents the latest version of the street-network model MUNICH, v2.0. The description of MUNICH v1.0, which models gas-phase pollutants in a street network, was published in GMD in 2018. Since then, major modifications have been made to MUNICH. The comprehensive aerosol model SSH-aerosol is now coupled to MUNICH to simulate primary and secondary aerosol concentrations. New parameterisations have also been introduced. Test cases are defined to illustrate the new model functionalities.
Junteng Wu, Nicolas Brun, Juan Miguel González-Sánchez, Badr R'Mili, Brice Temime Roussel, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Meas. Tech., 15, 3859–3874, https://doi.org/10.5194/amt-15-3859-2022, https://doi.org/10.5194/amt-15-3859-2022, 2022
Short summary
Short summary
This work quantified and tentatively identified the organic impurities on ammonium sulfate aerosols generated in the laboratory. They are likely low volatile and high mass molecules containing oxygen, nitrogen, and/or sulfur. Our results show that these organic impurities likely originate from the commercial AS crystals. It is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
Boris Vansevenant, Cédric Louis, Corinne Ferronato, Ludovic Fine, Patrick Tassel, Pascal Perret, Evangelia Kostenidou, Brice Temime-Roussel, Barbara D'Anna, Karine Sartelet, Véronique Cerezo, and Yao Liu
Atmos. Meas. Tech., 14, 7627–7655, https://doi.org/10.5194/amt-14-7627-2021, https://doi.org/10.5194/amt-14-7627-2021, 2021
Short summary
Short summary
A new method was developed to correct wall losses of particles on Teflon walls using a new environmental chamber. It was applied to experiments with six diesel vehicles (Euro 3 to 6), tested on a chassis dynamometer. Emissions of particles and precursors were obtained under urban and motorway conditions. The chamber experiments help understand the role of physical processes in diesel particle evolutions in the dark. These results can be applied to situations such as tunnels or winter rush hours.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Benjamin Chazeau, Brice Temime-Roussel, Grégory Gille, Boualem Mesbah, Barbara D'Anna, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 21, 7293–7319, https://doi.org/10.5194/acp-21-7293-2021, https://doi.org/10.5194/acp-21-7293-2021, 2021
Short summary
Short summary
The temporal trends in the chemical composition and particle number of the submicron aerosols in a Mediterranean city, Marseille, are investigated over 14 months. Fifteen days were found to exceed the WHO PM2.5 daily limit (25 µg m−3) only during the cold period, with two distinct origins: local pollution events with an increased fraction of the carbonaceous fraction due to domestic wood burning and long-range pollution events with a high level of oxygenated organic aerosol and ammonium nitrate.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Cited articles
ACEA: European Automobile Manufacturers Association, Pocket Guide 2020–2021, available at: https://www.acea.be/uploads/publications/ACEA_Pocket_Guide_2020-2021.pdf (last access: 12 March 2021), 2020.
Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of
organic species with electron ionization high-resolution mass spectrometry,
Anal. Chem., 79, 8350–8358, 2007.
Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, https://doi.org/10.5194/acp-9-6633-2009, 2009.
Alfarra, M. R.: Insights into atmospheric organic aerosols using an aerosol
mass spectrometer, in: Department of Chemical Engineering, UMIST, Manchester,
UK, 2004.
Alkidas, A. C.: Combustion advancements in gasoline engines, Energy Convers.
Manag., 48, 2751–2761, 2007.
Alkourdi, F., Karabet, F., and Dimashki, M.: Characterization,
concentrations and emission rates of polycyclic aromatic hydrocarbons in the
exhaust emissions from in-service vehicles in Damascus, Atmos. Res.,
120–121, 68–77, 2013.
Alves, C. A., Barbosa, C., Rocha, S., Calvo, A., Nunes, T., Cerqueira, M.,
Pio, C., Karanasiou, A., and Querol, X.: Elements and polycyclic aromatic
hydrocarbons in exhaust particles emitted by light-duty vehicles, Environ.
Sci. Pollut. Res., 22, 11526–11542, 2015.
Andersson, J., May, J., Favre, C., Bosteels, D., de Vries, S., Heaney, M.,
Keenan, M., and Mansell, J.: On-road and chassis dynamometer evaluations of
emissions from two Euro 6 diesel vehicles, SAE Int. J. Fuels Lubr., 7, 919–934, https://doi.org/10.4271/2014-01-2826, 2014.
André, M.: The ARTEMIS European driving cycles for measuring car
pollutant emissions, Sci. Total Environ., 334–335, 73–84, 2004.
Argyropoulos, G., Samara, C., Voutsa, D., Kouras, A., Manoli, E., Voliotis,
A., Tsakis, A., Chasapidis, L., Konstandopoulos, A., and Eleftheriadis, K.:
Concentration levels and source apportionment of ultrafine particles in road
microenvironments, Environ. Sci. Tech., 129, 68–78, 2016.
Arnold, F., Pirjola, L., Rönkkö, T., Reichl, U., Schlager, H.,
Lähde, T., Heikkil, J., and Keskinen, J.: First online measurements of
sulfuric acid gas in modern heavy-duty diesel engine exhaust: implications
for nanoparticle formation, Environ. Sci. Tech., 46, 11227–11234,
2012.
Bandowe, B. A. M. and Meusel, H.: Nitrated polycyclic aromatic
hydrocarbons (nitro-PAHs) in the environment – A review, Sci. Total
Environ., 581–582, 237–257, 2017.
Barinov, A., Malcioglu, O. B., Fabris, S., Sun, T., Gregoratti, L.,
Dalmiglio, M., and Kiskinova, M.: Initial stages of oxidation on graphitic
surfaces: Photoemission study and density functional theory calculations, J.
Phys. Chem. C, 113, 9009–9013, 2009.
Barone, T. L., Storey, J. M. E., Youngquist, A. D., and Szybist, J. P.: An
analysis of direct-injection spark-ignition (DISI) soot morphology, Atmos.
Environ., 49, 268–274, 2012.
Bergmann, M., Kirchner, U., Vogt, R., and Benter, T.: On-road and laboratory
investigation of low-level PM emissions of a modern diesel particulate
filter equipped diesel passenger car, Atmos. Environ., 43, 1908–1916,
2009.
Bikas, G. and Zervas, E.: Regulated and Non-Regulated Pollutants Emitted
during the Regeneration of a Diesel Particulate Filter, Energ. Fuels,
21, 1543–1547, 2007.
Borbon, A., Gilman, J. B., Kuster, W. C., Grand, N., Chevaillier, S., Colomb,
A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve, R., Holloway, J.,
Stutz, J., Petetin, H., McKeen, S., Beekmann, M., Warneke, C., Parrish, D.
D., and de Gouw, J. A.: Emission ratios of anthropogenic volatile organic
compounds in northern mid-latitude megacities: Observations versus emission
inventories in Los Angeles and Paris, J. Geophys. Res.-Atmos., 118,
2041–2057, 2013.
Bruns, E. A., El Haddad, I., Keller, A., Klein, F., Kumar, N. K., Pieber, S. M., Corbin, J. C., Slowik, J. G., Brune, W. H., Baltensperger, U., and Prévôt, A. S. H.: Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition, Atmos. Meas. Tech., 8, 2315–2332, https://doi.org/10.5194/amt-8-2315-2015, 2015.
Cadrazco, M., Santamaría, A., and Aguledo, J. R.: Chemical and
nanostructural characteristics of the particulate matter produced by
renewable diesel fuel in an automotive diesel engine, Combust. Flame, 203,
130–142, 2019.
Canagaratna, M. R., Jayne, J. T., Ghertner, D. A., Herndon, S., Shi, Q.,
Jimenez, J. L., Silva, P. J., Williams, P., Lanni, T., Drewnick, F.,
Demerjian, K. L., Kolb, C. E., and Worsnop, D. R.: Chase Studies of
Particulate Emissions from in-use New York City Vehicles, Aerosol Sci.
Technol., 38, 555–573, 2004.
Cassee, F. R., Heroux, M. E., Gerlofs-Nijland, M. E., and Kelly, F. J.:
Particulate matter beyond mass: recent health evidence on the role of
fractions, chemical constituents and sources of emission, Inhal. Toxicol.,
25, 802–812, 2013.
Chan, T. W., Meloche, E., Kubsh, J., and Brezny, R.: Black carbon emissions
in gasoline exhaust and a reduction alternative with a gasoline particulate
filter, Environ. Sci. Technol., 48, 6027–6034, 2014.
Chen, L., Liang, Z., Zhang, X., and Shuai, S.: Characterizing particulate
matter emissions from GDI and PFI vehicles under transient and cold start
conditions, Fuel, 189, 131–140, 2017.
Chen, R., Hu. B., Liu, Y., Xu, J. X., Yang, G. S., Xu, D. D., and Chen,
C. Y.: Beyond PM2.5: The role of ultrafine particles on adverse health
effects of air pollution, Biochim. Biophys. Acta., 1860, 2844–2855, 2016.
Cheung, K., Ntziachristos, L., Tzamkiozis, T., Schauer, J., Samaras, Z.,
Moore, K., and Sioutas, C.: Emissions of particulate trace elements, metals
and organic species from gasoline, diesel, and biodiesel passenger vehicles
and their relation to oxidative potential, Aerosol Sci. Technol., 44,
500–513, 2010.
Chikhi, S., Boughedaoui, M., Kerbachi, R., and Joumard, R.: On-board
measurement of emissions from liquefied petroleum gas, gasoline and diesel
powered passenger cars in Algeria, J. Environ. Sci., 26, 1651–1659, 2014.
Chirico, R., Prévôt, A. S. H., DeCarlo, P. F., Heringa, M. F.,
Richter, R., Weingartner, E., and Baltensperger, U.: Aerosol and trace gas
vehicle emission factors measured in a tunnel using an Aerosol Mass
Spectrometer and other online instrumentation, Atmos. Environ., 45,
2182–2192, 2011.
Clairotte, M., Adam, T. W., Zardini, A. A., Manfredi, U., Martini, G.,
Krasenbrink, A., Vicet, A., Tournié, E., and Astorga, C.: Effects of low
temperature on the cold start gaseous emissions from light duty vehicles
fueled by ethanol-blended gasoline, Appl. Energ., 102, 44–54, 2013.
Collier, S., Zhou, S., Kuwayama, T., Forestieri, S., Brady, J., Zhang, M.,
Kleeman, M., Cappa, C., Bertram, T., and Zhang, Q.: Organic PM emissions
from vehicles: composition, O/C ratio, and dependence on PM concentration,
Aerosol Sci. Technol., 49, 86–97, 2015.
Dallmann, T. R. and Harley, R. A.: Evaluation of mobile source emission
trends in the United States, J. Geophys. Res., 115, D14305, https://doi.org/10.1029/2010JD013862, 2010.
Dallmann, T. R., Onasch, T. B., Kirchstetter, T. W., Worton, D. R., Fortner, E. C., Herndon, S. C., Wood, E. C., Franklin, J. P., Worsnop, D. R., Goldstein, A. H., and Harley, R. A.: Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer, Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014, 2014.
de Abrantes, R., Assunção, J. V., and Pesquero, C. R.: Emission of
polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust,
Atmos. Environ., 38, 1631–1640, 2004.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K., Worsnop, D.
R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight
aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, 2006.
de Souza, C. V. and Corrêa, S. M.: Polycyclic aromatic hydrocarbons in
diesel emission, diesel fuel and lubricant oil, Fuel, 185, 925–931, 2016.
di Rattalma, M. F. and Perotti, G.: The dieselgate: a legal perspective,
Springer, Cham, https://doi.org/10.1007/978-3-319-48323-8, 179–218, 2017.
Drewnick, F., Hings, S. S., DeCarlo, P. F., Jayne, J. T., Gonin, M., Fuhrer,
K., Weimer, S., Jimenez, J. L., Demerjian, K. L., Borrmann, S., and Worsnop,
D. R.: A new time-of-flight aerosol mass spectrometer (ToF-AMS) - instrument
description and first field deployment, Aerosol Sci. Technol., 39, 637–658,
2005.
Du, Z., Hu, M., Peng, J., Zhang, W., Zheng, J., Gu, F., Qin, Y., Yang, Y., Li, M., Wu, Y., Shao, M., and Shuai, S.: Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles, Atmos. Chem. Phys., 18, 9011–9023, https://doi.org/10.5194/acp-18-9011-2018, 2018.
Durant, J. L., Busby, W. F., Lafleur, A. L., Penman, B. W., and Crespi,
C. L.: Human cell mutagenicity of oxygenated, nitrated and unsubstituted
polycyclic aromatic hydrocarbons associated with urban aerosols, Mutat.
Res.-Genet. Tox., 371, 123–157, 1996.
Dzepina, K., Arey, J., Marr, L. C., Worsnop, D. R., Salcedo, D., Zhang, Q.,
Onasch, T. B., Molina, L. T., Molina, M. J., and Jimenez, J. L.: Detection
of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an
aerosol mass spectrometer, Int. J. Mass Spectrom., 263, 152–170, 2007.
El Haddad, I.: Primary and secondary fractions of the organic aerosol: Methodologies and application to a Mediterranean urban environment, Marseille, PhD Thesis, Aix-Marseille University, Marseille, France, 2011.
El Haddad, I., Marchand, N., Wortham, H., Piot, C., Besombes, J.-L., Cozic, J., Chauvel, C., Armengaud, A., Robin, D., and Jaffrezo, J.-L.: Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille, Atmos. Chem. Phys., 11, 2039–2058, https://doi.org/10.5194/acp-11-2039-2011, 2011.
Eriksson, A. C., Nordin, E. Z., Nystrom, R., Pettersson, E., Swietlicki, E.,
Bergvall, C., Westerholm, R., Boman, C., and Pagels, J. H.: Particulate PAH
emissions from residential biomass combustion: time-resolved analysis with
aerosol mass spectrometry, Environ. Sci. Technol., 48, 7143–7150, 2014.
Estrade-Szwarckopf, H.: XPS photoemission in carbonaceous materials: A
“defect” peak beside the graphitic asymmetric peak, Carbon 42, 1713–1721,
2014.
Fu, H., Wang, Y., Li, X., and Shuai, S.: Impacts of cold-start and gasoline RON on particulate emission from vehicles powered by GDI and PFI engines, SAE Int. Pow. Fuels & Lubr., United States, https://doi.org/10.4271/2014-01-2836, 2014.
Gaddam, C. K. and Vander Wal, R. L.: Physical and chemical characterization
of SIDI engine particulates, Comb. Flame, 160, 2517-2528, 2013.
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El
Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J.,
Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S., and
Robinson, A. L.: Review of Urban Secondary Organic Aerosol Formation from
Gasoline and Diesel Motor Vehicle Emissions, Environ. Sci. Technol., 51,
1074–1093, 2017.
Gordon, T. D., Tkacik, D. S., Presto, A. A., Zhang, M., Jathar, S., Nguyen,
N., Massetti, J., Truong, T., Cicero-Fernandez, P., Maddox, C., Rieger, P.,
Chattopadhyay, S., Maldonado, H., Maricq, M., M., and Robinson, A. L.:
Primary gas-and particle phase emissions and secondary organic aerosol
production from gasoline and diesel off-road engines, Environ. Sci.
Technol., 47, 14137–14146, 2013.
Grieshop, A. P., Lipsky, E. M., Pekney, N. J., Takahama, S., and Robinson,
A. L.: Fine particle emission factors from vehicles in a highway tunnel:
Effects of fleet composition and season, Atmos. Environ., 40, S287–S298,
2006.
Hartikainen, A., Tiitta, P., Ihalainen, M., Yli-Pirilä, P., Orasche, J., Czech, H., Kortelainen, M., Lamberg, H., Suhonen, H., Koponen, H., Hao, L., Zimmermann, R., Jokiniemi, J., Tissari, J., and Sippula, O.: Photochemical transformation of residential wood combustion emissions: dependence of organic aerosol composition on OH exposure, Atmos. Chem. Phys., 20, 6357–6378, https://doi.org/10.5194/acp-20-6357-2020, 2020.
Heeb, N. V., Forss, J. A.-M., Brühlmann, S., Lüscher, R., Saxer, C.
J., and Hug, P.: Three-way catalyst-induced formation of ammonia–velocity-
and acceleration-dependent emission factors, Atmos. Environ., 40, 5986–5997,
2006.
Herring, C. H., Faiola, C. L., Massoli, P., Sueper, D., Erickson, M. H.,
McDonald, J. D., Simpson, C. D., Yost, M. G., Jobson B. T., and VanReken, M.
T.: New methodology for quantifying polycyclic aromatic hydrocarbons (PAHs)
using high- resolution aerosol mass spectrometry, Aerosol Sci. Technol., 49,
1131–1148, 2015.
Hime, N. J., Marks, G. B., and Cowie, C. T.: A comparison of the health
effects of ambient particulate matter air pollution from five emission
sources, Int. J. Env. Res. Pub. He., 15, E1206, https://doi.org/10.3390/ijerph15061206, 2018.
Hoffman, J., Staelens, J., Cordell, R., Stroobants, C., Zikova, N., Hama, S.
M. L., Wyche, K. P., Kos, G. P. A., Van Der Zee, S., Smallbone, K. L.,
Weijers, E. P. Monks, P. S., and Roekens, E.: Ultrafine particles in four
European urban environments: Results from a new continuous long-term
monitoring network, Atmos. Environ., 136, 68–81, 2016.
Huang, L., Bohac, S. V., Chernyak, S. M., and Batterman, S. A.: Composition and integrity of PAHs, nitro-PAHs, hopanes, and steranes in diesel exhaust particulate matter, Water Air Soil Pollut., 224, 1630, https://doi.org/10.1007/s11270-013-1630-1, 2012.
Hudda, N., Fruin, S., Delfino, R. J., and Sioutas, C.: Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710, Atmos. Chem. Phys., 13, 347–357, https://doi.org/10.5194/acp-13-347-2013, 2013.
Huo, H., Yao, Z., Zhang, Y., Shen, X., Zhang, Q., and He, K.: On-board
measurements of emissions from diesel trucks in five cities in China, Atmos.
Environ., 54, 159–167, 2012.
Hyvärinen, A.-P., Vakkari, V., Laakso, L., Hooda, R. K., Sharma, V. P., Panwar, T. S., Beukes, J. P., van Zyl, P. G., Josipovic, M., Garland, R. M., Andreae, M. O., Pöschl, U., and Petzold, A.: Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP) at high black carbon mass concentration levels, Atmos. Meas. Tech., 6, 81–90, https://doi.org/10.5194/amt-6-81-2013, 2013.
IARC: International Agency for Research on Cancer, Monographs on the
Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 92, Some
Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related
Exposures, IARC, Lyon, France, 2010.
IARC: A Review of human carcinogens: some chemicals in industrial and consumer products, food and drinking-water, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 101, IARC, Lyon, France, 2013.
IARC: Diesel and Gasoline Engine Exhausts and Some Nitroarenes, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 105, Lyon, France, 2014.
Isaacman, G., Chan, A. W. H., Nah, T., Worton, D. R., Ruehl, C. R., Wilson, K. R., and Goldstein, A. H.: Heterogeneous OH Oxidation of Motor Oil Particles Causes Selective Depletion of Branched and Less Cyclic Hydrocarbons, Environ. Sci. Technol., 46, 10632–10640, 2012.
Jaworski, A., Kuszewski, H., Ustrzycki, A., Balawender, K., Lejda, K., and
Woś, P.: Analysis of the repeatability of the exhaust pollutants
emission research results for cold and hot starts under controlled driving
cycle conditions, Environ. Sci. Pollut. Res., 25, 17862–17877, 2018.
Jimenez, J. L., McManus, J. B., Shorter, J. H., Nelson, D. D., Zahniser, M.
S., Koplow, M., McRae, G. J., and Kolb C. E.: Cross road and mobile tunable
infrared laser measurements of nitrous oxide emissions from motor vehicles,
Chemos., Glob. Change Sci., 2, 397–412, 2000.
Kaltsonoudis, C., Kostenidou, E., Louvaris, E., Psichoudaki, M., Tsiligiannis, E., Florou, K., Liangou, A., and Pandis, S. N.: Characterization of fresh and aged organic aerosol emissions from meat charbroiling, Atmos. Chem. Phys., 17, 7143–7155, https://doi.org/10.5194/acp-17-7143-2017, 2017.
Karavalakis, G., Boutsika V., Stournas, S., and Bakeas, E.: Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions, Sci. Total Environ., 409, 738–747, 2011.
Karjalainen, P., Pirjola, L., Heikkilä, J.,
Lähde, T., Tzamkiozis, T., Ntziachristos, L., Keskinen,
J., and Rönkkö, T.: Exhaust particles
of modern gasoline vehicles: a laboratory and an on-road study, Atmos.
Environ., 97, 262–270, 2014.
Karjalainen, P., Timonen, H., Saukko, E., Kuuluvainen, H., Saarikoski, S., Aakko-Saksa, P., Murtonen, T., Bloss, M., Dal Maso, M., Simonen, P., Ahlberg, E., Svenningsson, B., Brune, W. H., Hillamo, R., Keskinen, J., and Rönkkö, T.: Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car, Atmos. Chem. Phys., 16, 8559–8570, https://doi.org/10.5194/acp-16-8559-2016, 2016.
Keyte, I. J., Albinet, A., and Harrison R. M.: On-road traffic emissions of
polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative
compounds measured in road tunnel environments, Sci. Total Environ.,
566–567, 1131–1142, 2016.
Kostenidou, E., Lee, B. H., Engelhart, G. J., Pierce, J. R., and Pandis, S.
N.: Mass spectra deconvolution of low, medium and high volatility biogenic
secondary organic aerosol, Environ. Sci. Technol., 43, 4884–4889, 2009.
Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S., Eleftheriadis, K., and Pandis, S. N.: Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean, Atmos. Chem. Phys., 15, 11355–11371, https://doi.org/10.5194/acp-15-11355-2015, 2015.
Kürten, A.: New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions, Atmos. Chem. Phys., 19, 5033–5050, https://doi.org/10.5194/acp-19-5033-2019, 2019.
Lamma, L.: Mise au point d'une méthode de mesure des siloxanes
méthyliques volatils dans le biogaz et dans l'air ambiant et étude
de leur impact sur les systèmes photocatalytiques, PhD Thesis, Univ.
Lyon, France, 2017.
Lapuerta, M., Rodríguez-Fernández, J., and
Sánchez-Valdepeñas, J.: Soot reactivity analysis and its
implications on diesel filter regeneration, Prog. Energy Combust. Sci., 78,
100833, https://doi.org/10.1016/j.pecs.2020.100833, 2020.
Lawrence, S., Sokhi, R., Ravindra, K., Mao, H., Prain, H. D., and Bull, I.
D.: Source apportionment of traffic emissions of particulate matter using
tunnel measurements, Atmos. Environ., 77, 548–557, 2013.
Lea-Langton, A., Li, H., and Andrews, G.: Comparison of particulate PAH
emissions for diesel, biodiesel and cooking oil using a heavy duty DI diesel
engine, SAE Int. Pow. Fuels & Lubr., United States, https://doi.org/10.4271/2008-01-1811, 2008.
Lelieveld, J., Klingmüllera, K., Pozzer, A., Burnett, R. T., Haines A.,
and Ramanathan, V.: Effects of fossil fuel and total anthropogenic emission
removal on public health and climate, P. Natl. Acad. Sci. USA, 116, 7192–7197, 2019.
Levi, G., Senneca, O., Causà, M., Salatino, P., Lacovig, P., and Lizzit,
S.: Probing the chemical nature of surface oxides during coal char oxidation
by high-resolution XPS, Carbon, 90, 181–196, 2015.
Liang, B., Ge, Y., Tan, J., Han, X., Gao, L., Hao, L., Ye, W., and Dai, P.:
Comparison of PM emissions from a gasoline direct injected (GDI) vehicle and
a port fuel injected (PFI) vehicle measured by electrical low pressure
impactor (ELPI) with two fuels: gasoline and M15 methanol gasoline, J.
Aerosol Sci., 57, 22–31, 2013.
Liati, A., Schreiber, D., Arroyo Rojas Dasilva, Y., and Dimopoulos
Eggenschwiler, P.: Ultrafine particle emissions from modern Gasoline and
Diesel vehicles: An electron microscopic perspective, Environ. Pollut. 239,
661–669, 2018.
Louis, C., Liu, Y., Tassel, P., Perret, P., Chaumond, A. and André, M.:
PAH, BTEX carbonyl compound, black-carbon, NO2 and ultrafine particle
dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline
passenger cars, Atmos. Environ., 141, 80–95, 2016.
Majewski, W. A. and Khair, M. K.: Diesel emissions and their control, SAE
Technical Paper, SAE, Warrendale, PA, USA, 2006.
Maricq, M. M.: Chemical characterization of particulate emissions from
diesel engines: A review, J. Aerosol Sci., 38, 1079–1118, 2007.
Marques, B., Kostenidou, E., Temime-Roussel, B., Ferronato C.,
Martinez-Valiente, A., Michel, A., Liu, Y., Vansevenant, B., Fine L.,
Ferronato, C., and D'Anna B.: Chemical characterization of fresh volatile
organic compound emissions from diesel and gasoline EURO 5 light vehicles, in preparation, 2021.
Marr, L., Kirchstetter, T., Harley, R., Miguel, A., Hering, S., and Hammond,
S.: Characterization of polycyclic aromatic hydrocarbons in motor vehicle
fuels and exhaust emissions, Environ. Sci. Technol., 33, 3091–3099,
1999.
Mathis, U., Kaegi, R., Mohr, M., and Zenobi, R.: TEM analysis of volatile
nanoparticles from particle trap equipped diesel and direct-injection
spark-ignition vehicles, Atmos. Environ., 38, 4347–4355, 2004.
McLafferty, F. W. and Turecek, F.: Interpretation of Mass Spectra,
University Science Books, Mill Valley, CA, USA, 1993.
Mills, N. L., Miller, M. R., Lucking, A. J., Beveridge, J., Flint, L., Boere,
A. J., Fokkens, P. H., Boon, N. A., Sandstrom, T., Blomberg, A., Duffin, R.,
Donaldson, K., Hadoke, P. W. F., Cassee, F. R., and Newby, D. E.:
Combustion-derived nanoparticulate induces the adverse vascular effects of
diesel exhaust inhalation, Eur. Heart J., 32, 2660–2671, 2011.
Mohr, C., Huffman, J. A., Cubison, M. J., Aiken, A. C., Docherty, K. S.,
Kimmel, J. R., Ulbrich, I. M., Hannigan, M., and Jimenez, J. L.:
Characterization of primary organic aerosol emissions from meat cooking,
trash burning, and motor vehicles with high-resolution aerosol mass
spectrometry and comparison with ambient and chamber observations, Environ.
Sci. Technol., 43, 2443–2449, 2009.
Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R., Peñuelas, J., Jiménez, J. L., Crippa, M., Zimmermann, R., Baltensperger, U., and Prévôt, A. S. H.: Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data, Atmos. Chem. Phys., 12, 1649–1665, https://doi.org/10.5194/acp-12-1649-2012, 2012.
Morawska, L., Ristovski, Z. D., Johnson, G. R., Jayaratne, E. R., and
Mengersen, K.: Novel method for on-road emission factor measurements using a
plume capture trailer, Environ. Sci. Technol., 41, 574–579, 2007.
Muñoz, M., Haag, R., Honegger, P., Zeyer, K., Mohn, J., Comte, P.,
Czerwinski, J., Heeb, N. V.: Co-formation and co-release of genotoxic PAHs,
alkyl-PAHs and soot nanoparticles from gasoline direct injection vehicles,
Atmos. Environ., 178, 242–254, 2018.
Myung, C. L., Choi, K., Kim, J., Lim, Y., Lee, J., and Park, S.: Comparative
study of regulated and unregulated toxic emissions characteristics from a
spark Ignition direct injection light-duty vehicle fueled with gasoline and
liquid phase LPG (Liquefied Petroleum Gas), Energy, 44, 189–196, 2012.
Ni, M. and Ratner, B. D.: Differentiating calcium carbonate polymorphs by
surface analysis techniques – An XPS and TOF-SIMS study, Surf. Interface
Anal., 40, 1356–1361, 2008.
Ntziachristos, L., Samaras, Z., Zervas, E., and DorlheÌne, P.: Effects of a
catalysed and an additized particle filter on the emissions of a diesel
passenger car operating on low sulphur fuels, Atmos. Environ., 39,
4925–4936, 2005.
Ortega, I. K., Kurtén, T., Vehkamäki, H., and Kulmala, M.: The role of ammonia in sulfuric acid ion induced nucleation, Atmos. Chem. Phys., 8, 2859–2867, https://doi.org/10.5194/acp-8-2859-2008, 2008.
Peitzmeier, C., Loschke, C., Wiedenhaus, H., and Klemm, O.: Real-world
vehicle emissions as measured by in situ analysis of exhaust plumes,
Environ. Sci. Pollut. Res., 24, 23279–23289, https://doi.org/10.1007/s11356-017-9941-1, 2017.
Pieber, S. M., Kumar, N. K., Klein, F., Comte, P., Bhattu, D., Dommen, J., Bruns, E. A., Kılıç, D., El Haddad, I., Keller, A., Czerwinski, J., Heeb, N., Baltensperger, U., Slowik, J. G., and Prévôt, A. S. H.: Gas-phase composition and secondary organic aerosol formation from standard and particle filter-retrofitted gasoline direct injection vehicles investigated in a batch and flow reactor, Atmos. Chem. Phys., 18, 9929–9954, https://doi.org/10.5194/acp-18-9929-2018, 2018.
Pikridas, M., Riipinen, I., Hildebrandt, L., Kostenidou, E., Manninen, H.,
Mihalopoulos, N., Kalivitis, N., Burkhart, J. F., Stohl, A., Kulmala, M., and Pandis, S. N.: New particle formation at a remote site in the eastern Mediterranean, J. Geophys. Res., 117, D12205,
https://doi.org/10.1029/2012JD017570, 2012.
Platt, S. M., El Haddad, I., Zardini, A. A., Clairotte, M., Astorga, C., Wolf, R., Slowik, J. G., Temime-Roussel, B., Marchand, N., Ježek, I., Drinovec, L., Močnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi, F., Baltensperger, U., and Prévôt, A. S. H.: Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, 2013.
Platt, S. M., El Haddad, I., Pieber, S. M., Huang, R.-J. Zardini, A. A.,
Clairotte, M., Suarez-Bertoa, R., Barmet, P., Pfaffenberger, L., Wolf, R.,
Slowik, J. G., Fuller, S. J, Kalberer, M., Chirico, R., Dommen, J., Astorga,
C., Zimmermann, R., Marchand, N., Hellebust, S., Temime-Roussel, B.,
Baltensperger, U., and Prévôt, A. S. H.: Two-stroke scooters are a
dominant source of air pollution in many cities, Nat. Commun., https://doi.org/10.1038/ncomms4749, 2014.
Platt, S. M., El Haddad, I., Pieber, S. M., Zardini, A. A., Suarez-Bertoa, R., Clairotte, M., Daellenbach, K. R., Huang, R.-J., Slowik, J. G., Hellebust, S., Temime-Roussel, B., Marchand, N., de Gouw, J., Jimenez, J. L., Hayes, P. L., Robinson, A. L., Baltensperger, U., Astorga, C., and Prévôt, A. S. H.: Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars, Sci. Rep.-UK, 7, 1–9, 2017.
Ravindra, K., Sokhi, R., and Van Grieken, R.: Atmospheric polycyclic
aromatic hydrocarbons: Source attribution, emission factors and regulation,
Atmos. Environ., 42, 2895–2921, 2008.
R'Mili, B., Le Bihan, O. L. C., Dutouquet, C., Aguerre-Charriol, O., and
Frejafon, E.: Particle sampling by TEM grid filtration, Aerosol Sci.
Technol., 47, 767–775, 2013.
R'Mili, B., Boréave, A., Meme, A., Vernoux, P., Leblanc, M., Noël,
L., Raux, S., and D'Anna, B.: Physico-chemical characterization of fine and
ultrafine particles emitted during diesel particulate filter active
regeneration of Euro5 diesel vehicles, Environ. Sci. Tech., 52,
3312–3319, 2018.
Rönkkö, T., Pirjola, L., Ntziachristos, L., Heikkilä, J.,
Karjalainen, P., Hillamo, R., and Keskinen, J.: Vehicle Engines Produce
Exhaust Nanoparticles Even When Not Fueled, Environ. Sci. Tech., 48,
2043–2050, 2014.
Ropkins, K., DeFries, T. H., Pope, F., Green, D. C., Kemper, J., Kishan, S.,
Fuller, G. W., Li, H., Sidebottom, J., Crilley, L. R., Kramer, L., Bloss, W.
J., and Hager, J. S.: Evaluation of EDAR vehicle emissions remote sensing
technology, Sci. Total Environ., 609, 1464–1474, 2017.
Saliba, G., Saleh, R., Zhao, Y., Presto, A. A., Lambe, A. T., Frodin, B.,
Sardar, S., Maldonado, H., Maddox, C., May, A. A., Drozd, G. T., Goldstein,
A. H., Russell, L. M., Hagen, F., and Robinson, A. L.: Comparison of
gasoline direct-injection (GDI) and port fuel injection (PFI) vehicle
emissions: emission certification standards, cold-start, secondary organic
aerosol formation potential, and potential climate impacts, Environ. Sci.
Tech., 51, 6542–6552, 2017.
Samburova, V., Zielinska, B., and Khlystov, A.: Do 16 polycyclic aromatic
hydrocarbons represent PAH air toxicity?, Toxics, 5, 17, https://doi.org/10.3390/toxics5030017, 2017.
Schuster, M. E., Hävecker, M., Arrigo, R., Blume, R., Knauer, M.,
Ivleva, N. P., Su, D. S., Niessner, R., and Schlögl, R.: Surface
sensitive study to determine the reactivity of soot with the focus on the
European emission standards IV and VI, J. Phys. Chem. A, 115, 2568–258,
2011.
Short, D. Z., Vu, D., Durbin, T. D., Karavalakis, G., and Asa-Awuku, A.:
Components of particle emissions from light-duty spark-ignition vehicles
with varying aromatic content and octane rating in gasoline, Environ. Sci.
Technol., 49, 10682–10691, 2015.
Slowik, J. G., Stainken, K., Davidovits, P., Williams, L. R., Jayne, J. T.,
Kolb, C. E., Worsnop, D. R., Rudich, Y., DeCarlo, P. F., and Jimenez, J. L.:
Particle morphology and density characterization by combined mobility and
aerodynamic diameter measurements. Part 2: application to
combustion-generated soot aerosols as a function of fuel equivalence ratio,
Aerosol Sci. Technol., 38, 1206–1222, 2004.
Smit, R., Kingston, P., Wainwright, D. H., and Tooker, R.: A tunnel study to
validate motor vehicle emission prediction software in Australia, Atmos.
Environ., 151, 188–199, 2017.
Song, J., Wang, J., and Boehman, A. L.: The role of fuel-borne catalyst in
diesel particulate oxidation behavior, Combust. Flame, 146, 73–84,
2006.
Suarez-Bertoa, R., Zardini, A. A., and Astorga, C.: Ammonia exhaust
emissions from spark ignition vehicles over the New European Driving Cycle,
Atmos. Environ., 97, 43–53, 2014.
Timko, M. T., Yu, Z. H., Kroll, J., Jayne, J. T., Worsnop, D. R., Miake-Lye,
R. C., Onasch, T. B., Liscinsky, D., Kirchstetter, T. W., Destaillats, H.,
Holder, A. L., Smith, J. D., and Wilson, K. R.: Sampling Artifacts from
Conductive Silicone Tubing, Aerosol Sci. Technol., 43, 855–865, 2009.
Timko, M. T., Albo, S. E., Onasch, T. B., Fortner, E. C., Yu, Z., Miake-Lye,
R. C., Canagaratna, M. R., Ng, N. L., and Worsnop, D. R.: Composition and
sources of the organic particle emissions from aircraft engines, Aerosol
Sci. Technol., 48, 61–73, 2014.
Tobias, H., Beving, D. E., and Ziemann, P. J.: Chemical analysis of diesel engine nanoparticles using a nano-DMA thermal desorption particle beam mass spectrometer, Environ. Sci. Technol., 35, 2233–2243, 2001.
Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., Marotta, A.,
Pavlovic, J., and Steven, H.: Development of the World-wide harmonized Light
duty Test Cycle (WLTC) and a possible pathway for its introduction in the
European legislation, Transp. Res. Part D, 40, 61–75, 2015.
Tyler, C. R., Zychowski, K. E., Sanchez, B. N., Rivero, V., Lucas, S.,
Herbert, G., Liu, J., Irshad, H., McDonald, J. D., Bleske, B. E., and
Campen, M. J.: Surface area-dependence of gas-particle interactions
influences pulmonary and neuroinflammatory outcomes, Part Fibre Toxicol.,
13, 64, https://doi.org/10.1186/s12989-016-0177-x, 2016.
Tzamkiozis, T., Ntziachristos, L., and Samaras Z.: Diesel passenger car PM
emissions: From Euro 1 to Euro 4 with particle filter, Atmos. Environ.,
44, 909–916, 2010.
Vouitsis, E., Ntziachristos, L., Pistikopoulos, P., Samaras, Z., Chrysikou,
L., Samara, C., Papadimitriou, C., Samaras, P., and Sakellaropoulos, G.: An
investigation on the physical, chemical and ecotoxicological characteristics
of particulate matter emitted from light-duty vehicles, Environ. Pollut.,
157, 2320–2327, 2009.
Wang, T., Jerrett, M., Sinsheimer, P., and Zhu, Y.: Estimating
PM2.5-associated mortality increase in California due to the Volkswagen
emission control defeat device, Atmos. Environ., 144, 168–174, 2016.
Weilenmann, M., Favez, J.-Y., and Alvarez, R.: Cold-start emissions of
modern passenger cars at different low ambient temperatures and their
evolution over vehicle legislation categories, Atmos. Environ., 43,
2419–2429, 2009.
Xu, Z., Li, X., Guan, C., and Huang, Z.: Effect of injection timing on
exhaust particle size and nanostructure on a diesel engine at different
loads, J. Aerosol Sci., 76, 28–38, 2014.
Yang, D., Fan, T., Zhou, H., Ding, J., and Zhang, D.: Biogenic Hierarchical
TiO2/SiO2 Derived from Rice Husk and Enhanced Photocatalytic Properties for
Dye Degradation, Plos One, 6, e24788, https://doi.org/10.1111/php.12873,
2011.
Yang, J., Roth, P., Durbin, T. D., Johnson, K. C., Cocker, D. R., Asa-Awuku,
A., Brezny, R., Geller, M., and Karavalakis, G.: Gasoline particulate
filters as an effective tool to reduce particulate and polycyclic aromatic
hydrocarbon emissions from gasoline direct injection (GDI) vehicles: A case
study with two GDI ehicles, Environ. Sci. Technol., 52, 3275–3284, 2018.
Ye, P., Sun, C., Lapuerta, M., Aguledo, J., Vander Wal, R., Boehman, A. L.,
Toops, T. J., and Daw, S.: Impact of rail pressure and biodiesel fueling on
the particulate morphology and soot nanostructures from a common-rail
turbocharged direct injection diesel engine, Int. J. Engine Res., 17,
193–208, 2014.
Zhu, R., Hu, J., Bao, X., He, L., Lai, Y., Zu, L., Li, Y., and Su, S.:
Tailpipe emissions from gasoline direct injection (GDI) and port fuel
injection (PFI) vehicles at both low and high ambient temperatures, Environ.
Pollut., 216, 223–234, 2016.
Zielinska, B., Sagebiel, J., McDonald, J. D., Whitney, K., and Lawson, D.
R.: Emission rates and comparative chemical composition from selected in-use
diesel and gasoline-fueled vehicles, JAPCA J. Air Waste Ma., 54,
1138–1150, 2004.
Zimmerman, N., Wang, J. M., Jeong, C. H., Wallace, J. S., and Evans, G. J.:
Assessing the climate trade-offs of gasoline direct injection engines,
Environ. Sci. Technol., 50, 8385–8392, 2016.
Short summary
Passenger vehicle emissions can be a significant source of particulate matter in urban areas. In this study the particle-phase emissions of seven Euro 5 passenger vehicles were characterized. Changes in engine technologies and after-treatment devices can alter the chemical composition and the size of the emitted particulate matter. The condition of the diesel particle filter (DPF) plays an important role in the emitted pollutants.
Passenger vehicle emissions can be a significant source of particulate matter in urban areas. In...
Altmetrics
Final-revised paper
Preprint