

Supplement of

Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles

Evangelia Kostenidou et al.

Correspondence to: Evangelia Kostenidou (vkostenidou@gmail.com) and Barbara D'Anna (barbara.danna@univ-amu.fr)

The copyright of individual parts of the supplement might differ from the article licence.

		Artemis			WLTC		
		Cold Urban	Hot Urban	Motorway	Cold Start	Hot Start	
GDI1	CO_2	221±11	197±5	151±5			
	CO	104±47	5±0.5	326±207			
	NO _x	110±44	102±6	30±23			
	THC	45±20	0.8±0.3	2.1±0.9			
GDI2	CO_2				150±31	129±17	
	CO				694±821	308±329	
	NO _x				1217±498	1387±526	
	THC				112±116	73±112	
GDI3	CO_2	191±5	173±7	130±2			
	CO	714±228	557±561	586±206			
	NO _x	153±60	30±12	9±3			
	THC	219±0.4	25±14	8±2			
PFI	CO_2	155±2		112±2			
	CO	106±16		112±2			
	NO _x	69±13		7±1			
	THC	5.5±0.4		2.0±0.3			
D1	CO_2	168±18	147±7	144±14			
	CO	453±208	95±44	3±1.6			
	NO _x	697±120	741±112	890±233			
	THC	57±20	30±3	1.7±2			
D2	CO_2				120±1.5	116±1.8	
	CO				54±11	27±7.5	
	NO _x				240±25	232±32	
	THC				14.7±3	12.4±2.5	
D3	CO_2	210±4		142±0.1			
	CO	601±45		9±0.2			
	NO _x	396±8		510±160			
	THC	91±28		10±1			

Table S1. EF of regulated gas phase species: CO_2 in g km⁻¹, CO, THC and NO_x in mg km⁻¹.

Table S2. PAHs identified in diesel and gasoline Euro 5 vehicles emissions. They have been classified as unsubstituted PAHs (UnSubPAHs), methylated PAHs (MPAHs), oxygenated PAHs (OPAHs), nitro-substituted derivatives (NPAHs) and amino PAHs (APAHs).

Group	Compound	Molecular	m/z
		formula	
UnSubPAH	Naphthalene	C10H8	128
	Acenaphthylene	C12H8	152
	Acenaphthene	C12H10	154
	Fluorene	C13H10	166
	Paracyclene	$C_{14}H_8$	176
	Anthracene/	$C_{14}H_{10}$	178
	Phenanthrene		
	Benzo[def]fluorene	C15H10	190
	Pyrene/	C16H10	202
	Fluoranthene/		
	Acephenanthrylene		
	Benzofluorene	C17H12	216
	Benz[a]anthracene/	C18H12	228
	Triphenylene/		
	Chrysene	a	• • •
	Corannulene/	$C_{20}H_{10}$	250
	Dicyclopenta[cd,mn]pyrene	C II	050
	Benzo[b]fluoranthene/	C20H12	252
	Benzo[[]]Iluoranthene/		
	Benzo[a]pyrepe/		
	Benzo[e]pyrene		
	Indio[1 2 3-cd]pyrene/	$C_{22}H_{12}$	276
	Benzolghilpervlene	0221112	210
	Dibenzanthracene/	C22H14	278
	Pentacene		
	1 <i>H</i> -	C23H12	288
	Benzo[ghi]cyclopenta[pqr]perylene		
MPAH	Methyl-naphthalene	$C_{11}H_{10}$	142
	Dimethyl-naphthalene	C12H12	156
	Methyl-acenaphthene	C13H12	168
	Methyl-fluorene	C14H12	180
	Methyl-phenanthrene	C15H12	192
	Dimethyl-fluorene	C15H14	194
	Ethyl-phenanthrene	$C_{16}H_{14}$	206
	Trimethyl-phenanthrene	C17H16	220
	Retene/	C18H18	234
	Tetramethyl phenanthrene		
	Methylbenzo[ghi]fluoranthene	C19H12	240
	Methylbenz[a]anthracene/	C19H14	242
	methyl chrysene		
	Di-methylbenz(a)anthracene	C20H16	256
	Methyl cholanthrene	C21H16	268
OPAH	Indanone	C9H8O	132
	Benzocycloheptenone	$C_{11}H_8O$	156
	Naphthoquinone	$C_{10}H_6O_2$	158
	Dibenzofuran	C12H8O	168
	Fluorenone	C13H8O	180
	Dibenzopyran	C13H10O	182
	Hydroxydibenzofuran	$C_{12}H_8O_2$	184

Table S2. PAHS identified in diesel and gasoline Euro 5 vehicles emissions. They have been classified as unsubstituted PAHs (UnSubPAHs), methylated PAHs (MPAHs), oxygenated PAHs (OPAHs), nitrogen-substituted derivatives (NPAHs) and amino PAHs (APAHs) (*continued*).

Family	Compound	Molecular	m/z
		formula	
OPAH	Anthrone	$C_{14}H_{10}O$	194
	Xanthone	C13H8O2	196
	Cyclcopenta-phenanthrene-one	C15H8O	204
	Aceanthraquinone	$C_{16}H_8O_2$	232
	Benzo[cd]pyrenone	C19H10O	254
NPAH	Nitro-anthracene/	C14H9NO2	223
	Nitro-phenanthrene		
	Dinitrofluorene	C13H8N2O4	256
APAH	Aminopyrene/	$C_{16}H_{11}N$	217
	Carbazole		
	Aminobenzanthrone	C18H13NO	259
	Dibenzocarbazole	C20H13N	267
	Amino benzopyrene		

Table S3. Intercomparison of PAHs mass concentration (ng m⁻³) measured from the extract of one quartz filter (GC-MS analysis) and on-line AMS measurements for the emission of the GDI3 vehicle.

Molecular weight	Compound	Concentration (ng m ⁻³) 3 cycle (1 urban hot + 2 motorway)	
		GC-MS	HR-ToF-MS
128	Naphthalene	45	245
178	Phenanthrene*/Anthracene	100	453
202	Pyrene/Fluoranthene*/Acephenanthrylene	111	480
228	Benzo[a]anthracène/Chrysène	25	69
252	Benzo[b]fluoranthene/Benzo[j]fluoranthene / Benzo[k]fluoranthene*/Benzo[a]pyrene/* Benzo[e]pyrene/Perylene	77	34
276	Indéno[123cd]pyrène/Benzo[ghi]perylène	31	25
142	Methyl-naphthalene*	27	80
180	Methyl-fluorene	24	53
168	Dibenzofuran	26	28
180	Fluorenone	76	75
208	Anthraquinone*	26	28

* compounds used for PAHs calibration and quantification during GC-MS analysis.

Compound	GDI3		PFI		D3	
-	CU	MW	CU	MW	CU	MW
<u>UnsPAHs</u>						
Naphthalene	10.3	9.6	14.3	13.6	16.9	19.1
Acenaphthylene	4.3	7.8	4.5	5.4	8.3	9.7
Acenaphthene	2.4	3.6	2.0	2.6	4.2	5.2
Fluorene	1.9	2.5	2.2	3.2	5.0	4.3
Anthracene/Phenanthrene	5.3	15.9	4.1	8.9	6.9	8.2
Pyrene/Fluoranthene/Acephenanthrylene	5.9	13.7	3.3	5.8	2.1	1.9
Benz[a]anthracene/Triphenylene/Chrysene	2.2	1.6	1.7	1.0	1.3	0.7
Paracylene	1.7	3.5	1.0	1.2	2.1	2.8
Benzo[def]fluorene	1.4	1.5	1.1	1.9	3.4	2.1
Benzo[a, e]pyrene/Benzo[b,j,k]fluoranthene	2.3	1.1	3.8	0.6	0.7	0.4
Cyclopenta[cd]pyrene/Benzo[ghi]fluoranthene	3.3	2.0	2.5	1.2	1.6	1.0
Dibenzoanthracene/Pentacene	0.5	0.2	1.5	0.8	0.2	0.1
Indio[1,2,3-cd]pyrene/Benzo[ghi]perylene	3.0	0.6	6.6	0.7	0.4	0.3
Coronene	1.9	0.3	5.3	0.6	0.1	0.1
<u>MPAHs</u>						
Methyl-naphthalene	3.4	2.9	4.6	4.4	7.6	8.2
Dimethyl-naphthalene	1.9	1.9	2.6	2.9	5.4	5.5
Methyl-acenaphthene	1.3	1.7	1.3	2.4	3.3	3.3
Methyl-fluorene	1.1	2.1	1.0	2.1	3.4	2.9
Methyl-phenanthrene	0.7	2.3	1.1	1.7	4.7	3.1
Ethyl-phenanthrene	1.3	1.3	1.0	2.2	3.8	2.3
<u>OPAHs</u>						
Indanone	2.4	1.8	0.9	1.2	0.4	0.9
Anthraquinone	2.2	0.9	3.9	8.7	2.6	3.9
Dibenzofuran	1.0	1.0	0.7	1.3	0.5	1.6
Fluorenone	1.6	2.7	1.1	2.0	0.3	3.1
Dibenzopyran	1.5	1.1	1.3	2.4	0.3	0.4
Benzo[cd]pyrenone	1.4	0.6	0.8	0.5	0.1	0.1
<u>NPAHs</u>						
Nitro-fluorene	0.9	0.1	0.8	0.4	0.5	0.2
Nitro-anthracene/Nitro-phenanthrene	8.1	8.6	0.9	1.2	0.1	0.1
Nitro-pyrene	0.5	0.1	0.8	0.2	0.1	0.03
Nitrochrysene	0.4	0.03	0.7	0.2	0.06	0.04
A D A Ha						
<u>An Anis</u> Aminopyrene/Carbazole	0.8	0.6	0.5	0.6	15	0.5
Dibenzocarbazole/Amino benzopyrene	53	0.0	2.4	3.5	0.3	0.3
Dibenz[a,j]acridine	0.1	0.03	1.1	1.2	0.2	0.2

Table S4. Fraction (%) of major PAHs emitted from the GDI3, PFI and D3 vehicles during Artemis driving cycles: Cold Urban (CU) and Motorway (MW).

Table S5. Major inorganic species found in fresh and used lubricant oil, TAE diesel and gasoline fuels (analysis by ICP-MS). Other elements such as Cr, Ni, Al and Mg were found in concentration below 3 ppm.

		Fresh lubricant oil	Old lubricant oil (Diesel)	Old lubricant oil (Gasoline)	Diesel TAE 85 Fuel	Gasoline Fuel
Sulphur		0.14wt %	0.14wt%	0.12wt%	16 ppm	34 ppm
Calcium	(ppm)	1630	1441	1829	≤ 3	≤ 5
Phosphor	(ppm)	638	614	709	≤ 3	≤ 5
Zinc	(ppm)	849	728	857	≤ 3	≤ 5
Iron	(ppm)	≤ 3	66	75	≤ 2	≤ 5
Silicium	(ppm)	5	15	11	31	138
Molybdenum	(ppm)	≤ 3	94	≤ 5	≤ 3	<u>≤</u> 5
Copper	(ppm)	≤ 3	16	7	≤ 3	≤ 5

Vehicle	Species	eies Artemis			WLTC		
	1	Cold Urban	Hot	Motorway	Cold Start	Hot Start	
			Urban	-			
GDI1	BC	7140±500	960±190	1990±810			
GDI2	BC				5700 ± 800	230±60	
	Organics				103.5 ± 52.23	41.23±8.38	
	Sulphate				BDL	BDL	
	Ammonium				BDL	BDL	
	Nitrate				7.12 ± 3.98	5.08 ± 2.96	
GDI3	BC	3180± 1 37	200 ± 160	767±330			
	Organics	66.3±64.8	5.34 ± 4.42	25.3±13.5			
	PAHs	$1.54{\pm}0.81$	0.13 ± 0.01	1.10 ± 0.73			
	Sulphate	$0.34{\pm}0.07$	0.06 ± 0.03	0.06 ± 0.04			
	Ammonium	0.28 ± 0.04	0.02 ± 0.01	$0.09{\pm}0.08$			
	Nitrate	1.31 ± 0.41	0.12 ± 0.09	0.48 ± 0.43			
PFI	BC	135.25±8.15	NA	22.27±11.23			
	Organics	8.40 ± 3.70	NA	$1.00{\pm}0.26$			
	PAHs	0.43 ± 0.16	NA	$0.04{\pm}0.05$			
	Sulphate	0.28 ± 0.11	NA	$0.04{\pm}0.03$			
	Ammonium	$0.24{\pm}0.14$	NA	$0.03{\pm}0.01$			
	Nitrate	0.88 ± 0.45	NA	$0.03{\pm}0.01$			
D1	BC	76.0 ± 55.0	8.0 ± 4.0	$9.0{\pm}3.9$			
	Organics	11.0 ± 0.81	0.15 ± 0.05	1.91 ± 1.32			
	Sulphate	BDL	BDL	1.34 ± 1.26			
	Ammonium	BDL	BDL	0.38 ± 0.21			
	Nitrate	0.28 ± 0.02	0.18 ± 0.06	0.18 ± 0.09			
D2	BC				$8.0{\pm}4.0$	$3.0{\pm}1.0$	
	Organics				0.74 ± 0.25	0.28 ± 0.01	
	Sulphate				4.19 ± 3.20	0.28 ± 0.05	
	Ammonium				0.68 ± 0.53	0.06 ± 0.02	
	Nitrate				0.14 ± 0.09	0.03 ± 0.01	
D3	BC	378.38±136.59	NA	927.72±139.16			
	Organics	61.0±38.2	NA	65.7±36.4			
	PAHs	2.04±0.19	NA	1.73 ± 0.95			
	Sulphate	0.18 ± 0.06	NA	0.22±0.13			
	Ammonium	0.15 ± 0.01	NA	0.15 ± 0.06			
	Nitrate	0.25 ± 0.05	NA	0.82±0.53			

Table S6. EF for all gasoline and diesel vehicles and for all tested conditions. All values are expressed in μ g km⁻¹. BDL stands for Below Detection Limit.

Vehicle	Fuel Consum	Fuel density	
CDI1	Cold Urban	Motorway	0.733
ODII	0.096	0.063	0.755
CD12	Cold start WLTC	Hot start WLTC	0.733
OD12	0.064	0.059	0.755
CDI3	Cold Urban	Motorway	0.733
OD15	0.085	0.077	0.755
DEI	Cold Urban	Motorway	0.733
111	0.068	0.048	0.755
D1	Cold Urban	Motorway	0.840
	0.063	0.051	0.040
D2	Cold start WLTC	Hot start WLTC	0.840
02	0.044	0.047	0.040
D3	Cold Urban	Motorway	0.840
D 5	0.077	0.051	0.040

Table S7. Fuel consumption (l km⁻¹) and fuel densities (kg l⁻¹).

Figure S1. Examples of HR-AMS fitting for (a) naphthalene ($C_{10}H_8$) at m/z 128, (b) methyl-naphthalene ($C_{11}H_{10}$) at m/z 142, (c) anthracene/phenanthrene ($C_{14}H_{10}$) at m/z 178 and (d) Nitro-anthracene ($C_{14}H_9NO_2$) at m/z 223.

Figure S2. Time series of organics, nitrate and BC for WLTC cycle cold start (upper plot) and hot start (lower plot) for the GDI2 vehicle.

Figure S3. Time series of organics, sulphate, nitrate and ammonium for Artemis cold urban (upper) and motorway cycles (lower) for the PFI vehicle. BC measurements are not available for this vehicle.

Figure S4. Time series of organics, sulphate and ammonium for WLTC cold start (upper) and hot start (lower) for the D2 vehicle.

Figure S5. Time series of organics, sulphate, nitrate and ammonium for Artemis cold urban cycle (upper) and a motorway (lower) for the D3 vehicle.

Figure S6. AMS HR spectra speciation for organic fragments for the PFI vehicle (ARTEMIS cycle).

Figure S7. AMS UMR spectra for organic fragments for the GDI2 vehicle (WLTC).

Figure S8. UMR mass spectrum for taken at the beginning of a motorway cycle (2 first minutes) for the D1 vehicle.

Figure S9. TEM images of samples collected during hot cycles: (a-c) GDI1 sampling the first 120 sec of the motorway cycle, dilution ratio 40; (d-f) GDI2 sampling the last 120 sec of a WLTC cycle, dilution ratio 46; (g-i) D1 vehicle sampling first 300 sec of the motorway cycle, dilution ratio 40.

Figure S10. XPS spectra of particles collected from the PFI vehicle: (a) survey spectrum and elemental composition (table in insert); (b) deconvolution of the C1s spectrum; (c) deconvolution of the O1s spectrum.