Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-14687-2021
https://doi.org/10.5194/acp-21-14687-2021
Research article
 | 
05 Oct 2021
Research article |  | 05 Oct 2021

Surface deposition of marine fog and its treatment in the Weather Research and Forecasting (WRF) model

Peter A. Taylor, Zheqi Chen, Li Cheng, Soudeh Afsharian, Wensong Weng, George A. Isaac, Terry W. Bullock, and Yongsheng Chen

Related authors

Constant flux layers with gravitational settling: links to aerosols, fog and deposition velocities
Peter A. Taylor
Atmos. Chem. Phys., 21, 18263–18269, https://doi.org/10.5194/acp-21-18263-2021,https://doi.org/10.5194/acp-21-18263-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Assimilation of POLDER observations to estimate aerosol emissions
Athanasios Tsikerdekis, Otto P. Hasekamp, Nick A. J. Schutgens, and Qirui Zhong
Atmos. Chem. Phys., 23, 9495–9524, https://doi.org/10.5194/acp-23-9495-2023,https://doi.org/10.5194/acp-23-9495-2023, 2023
Short summary
Effect of radiation interaction and aerosol processes on ventilation and aerosol concentrations in a real urban neighbourhood in Helsinki
Jani Strömberg, Xiaoyu Li, Mona Kurppa, Heino Kuuluvainen, Liisa Pirjola, and Leena Järvi
Atmos. Chem. Phys., 23, 9347–9364, https://doi.org/10.5194/acp-23-9347-2023,https://doi.org/10.5194/acp-23-9347-2023, 2023
Short summary
Atlantic Multidecadal Oscillation modulates the relationship between El Niño–Southern Oscillation and fire weather in Australia
Guanyu Liu, Jing Li, and Tong Ying
Atmos. Chem. Phys., 23, 9217–9228, https://doi.org/10.5194/acp-23-9217-2023,https://doi.org/10.5194/acp-23-9217-2023, 2023
Short summary
Identifying climate model structural inconsistencies allows for tight constraint of aerosol radiative forcing
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023,https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Impacts of reducing scattering and absorbing aerosols on the temporal extent and intensity of South Asian summer monsoon and East Asian summer monsoon
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023,https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary

Cited articles

Alexander, C., Dowell, D. C., Hu, M., Olson, J., Smirnova, T., Ladwig, T. T., Weygandt, S., Kenyon, J. S., James, E. P., Lin, H., Grell, G. A., Ge, G., Alcott, T., Benjamin, S., Brown, J. M., Toy, M. D., Ahmadov, R., Back, A., Duda, J. D., Smith, M. B., Hamilton, J. A., Jamison, B. D., Jankov, I., and Turner, D. D.: Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) Model Development, slides from AMS 100th Annual Meeting, 15 January 2020, Boston Convention and Exhibition Center, 252A, available at: https://rapidrefresh.noaa.gov/pdf/Alexander_AMS_NWP_2020.pdf (last access: 12 August 2021), 2020. 
Barker, E. H.: A maritime boundary-layer model for the prediction of fog, Bound.-Lay. Meteorol., 11, 267–294, https://doi.org/10.1007/BF02186082, 1977. 
Belair, S., Mailhot, J., Girard, C., and Vaillancourt, P.: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system, Mon. Weather Rev., 133, 1938–1960, https://doi.org/10.1175/MWR2958.1, 2005. 
Bergot, T.: Modélisation du brouillard à l'aide d'un modèle 1D forcé par des champs mésoéchelle: Application à la prévision, PhD thesis, Université Paul Sabatier, Toulouse, France, 192 pp., 1993. 
Bergot, T. and Guedalia, D.: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests, Mon. Weather Rev., 122, 1218–1230, https://doi.org/10.1175/1520-0493(1994)122%3C1218:NFORFP{%}3E2.0.CO;2, 1994. 
Short summary
In marine fog, droplets will impact the water surface, collide and coalesce. This removal process is underestimated or ignored in many fog and weather forecast models. A new atmospheric boundary layer approach is proposed and tested in a standard weather forecast model (Weather Research and Forecasting, WRF). New profile measurements through marine fog layers are suggested.
Altmetrics
Final-revised paper
Preprint