Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14457-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14457-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Amplification of South Asian haze by water vapour–aerosol interactions
Vijayakumar Sivadasan Nair
CORRESPONDING AUTHOR
Space Physics Laboratory, Vikram Sarabhai Space Centre,
Thiruvananthapuram, Kerala, India
Filippo Giorgi
Earth System Physics, International Centre for Theoretical Physics,
Trieste, Italy
Usha Keshav Hasyagar
Space Physics Laboratory, Vikram Sarabhai Space Centre,
Thiruvananthapuram, Kerala, India
Department of Physics, University of Kerala, Thiruvananthapuram, India
Related authors
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Sobhan Kumar Kompalli, Mukunda M. Gogoi, and S. Suresh Babu
Atmos. Chem. Phys., 20, 3135–3149, https://doi.org/10.5194/acp-20-3135-2020, https://doi.org/10.5194/acp-20-3135-2020, 2020
Short summary
Short summary
Extensive measurements of the aerosol and cloud condensation nuclei (CCN) properties in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. At high supersaturations, most of the aerosols in the South Asian outflow become activated as CCN, whereas the aerosol system over the equatorial Indian Ocean is less CCN efficient even at higher supersaturations.
Venugopalan Nair Jayachandran, Surendran Nair Suresh Babu, Aditya Vaishya, Mukunda M. Gogoi, Vijayakumar S. Nair, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 561–576, https://doi.org/10.5194/acp-20-561-2020, https://doi.org/10.5194/acp-20-561-2020, 2020
Short summary
Short summary
Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCNs), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the 2016 Indian summer monsoon (ISM). A high CCN concentration is observed up to 2.5 km across the IGP, indicating the significant possibility of aerosol indirect effects.
F. Solmon, V. S. Nair, and M. Mallet
Atmos. Chem. Phys., 15, 8051–8064, https://doi.org/10.5194/acp-15-8051-2015, https://doi.org/10.5194/acp-15-8051-2015, 2015
Short summary
Short summary
Using observations and a regional climate model, we suggest that
(i) dust radiative forcing over west Asia induces complex regional feedbacks on the Indian monsoon system, notably a possible enhancement of moisture convergence over southern India; and (ii) an observed AOD positive trend attributed to an increasing Arabian dust activity during 2000-2009 could be associated with, and contributing to, the observed enhancement of southern Indian summer precipitation during this decade.
R. Kumar, M. C. Barth, V. S. Nair, G. G. Pfister, S. Suresh Babu, S. K. Satheesh, K. Krishna Moorthy, G. R. Carmichael, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, https://doi.org/10.5194/acp-15-5415-2015, 2015
Short summary
Short summary
We examine differences in the surface BC between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identify dominant sources of BC in South Asia during ICARB. Anthropogenic emissions were the main source of BC during ICARB and had about 5 times stronger influence on the BoB compared to the AS. Regional-scale transport contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Erika Coppola, Paolo Stocchi, Emanuela Pichelli, Jose Abraham Torres Alavez, Russell Glazer, Graziano Giuliani, Fabio Di Sante, Rita Nogherotto, and Filippo Giorgi
Geosci. Model Dev., 14, 7705–7723, https://doi.org/10.5194/gmd-14-7705-2021, https://doi.org/10.5194/gmd-14-7705-2021, 2021
Short summary
Short summary
In this work we describe the development of a non-hydrostatic version of the regional climate model RegCM4-NH, implemented to allow simulations at convection-permitting scales of <4 km for climate applications. The new core is described, and three case studies of intense convection are carried out to illustrate the model performances. Comparison with observations is much improved with respect to with coarse grid runs. RegCM4-NH offers a promising tool for climate investigations at a local scale.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Sobhan Kumar Kompalli, Mukunda M. Gogoi, and S. Suresh Babu
Atmos. Chem. Phys., 20, 3135–3149, https://doi.org/10.5194/acp-20-3135-2020, https://doi.org/10.5194/acp-20-3135-2020, 2020
Short summary
Short summary
Extensive measurements of the aerosol and cloud condensation nuclei (CCN) properties in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. At high supersaturations, most of the aerosols in the South Asian outflow become activated as CCN, whereas the aerosol system over the equatorial Indian Ocean is less CCN efficient even at higher supersaturations.
Venugopalan Nair Jayachandran, Surendran Nair Suresh Babu, Aditya Vaishya, Mukunda M. Gogoi, Vijayakumar S. Nair, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 561–576, https://doi.org/10.5194/acp-20-561-2020, https://doi.org/10.5194/acp-20-561-2020, 2020
Short summary
Short summary
Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCNs), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the 2016 Indian summer monsoon (ISM). A high CCN concentration is observed up to 2.5 km across the IGP, indicating the significant possibility of aerosol indirect effects.
Rita Nogherotto, Adriano Fantini, Francesca Raffaele, Fabio Di Sante, Francesco Dottori, Erika Coppola, and Filippo Giorgi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-356, https://doi.org/10.5194/nhess-2019-356, 2019
Revised manuscript not accepted
Filippo Giorgi, Francesca Raffaele, and Erika Coppola
Earth Syst. Dynam., 10, 73–89, https://doi.org/10.5194/esd-10-73-2019, https://doi.org/10.5194/esd-10-73-2019, 2019
Short summary
Short summary
The paper revisits the critical issue of precipitation characteristics in response to global warming through a new analysis of global and regional climate projections and a summary of previous work. Robust responses are identified and the underlying processes investigated. Examples of applications are given, such as the evaluation of risks associated with extremes. The paper, solicited by the EGU executive office, is based on the 2018 EGU Alexander von Humboldt medal lecture by Filippo Giorgi.
Brahima Koné, Arona Diedhiou, N'datchoh Evelyne Touré, Mouhamadou Bamba Sylla, Filippo Giorgi, Sandrine Anquetin, Adama Bamba, Adama Diawara, and Arsene Toka Kobea
Earth Syst. Dynam., 9, 1261–1278, https://doi.org/10.5194/esd-9-1261-2018, https://doi.org/10.5194/esd-9-1261-2018, 2018
Short summary
Short summary
Simulations of regional climate are very sensitive to physical parameterization schemes, particularly over the tropics where convection plays a major role in monsoon dynamics. The latest version of RegCM4 was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The configuration of RegCM4 with CLM4.5 as a land surface model and the Emanuel convective scheme is recommended for the study of the West African climate.
William J. Gutowski Jr., Filippo Giorgi, Bertrand Timbal, Anne Frigon, Daniela Jacob, Hyun-Suk Kang, Krishnan Raghavan, Boram Lee, Christopher Lennard, Grigory Nikulin, Eleanor O'Rourke, Michel Rixen, Silvina Solman, Tannecia Stephenson, and Fredolin Tangang
Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, https://doi.org/10.5194/gmd-9-4087-2016, 2016
Short summary
Short summary
The Coordinated Regional Downscaling Experiment (CORDEX) is a diagnostic MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global output to produce downscaled projected changes in regional climates, and assess sources of uncertainties in the projections.
Rita Nogherotto, Adrian Mark Tompkins, Graziano Giuliani, Erika Coppola, and Filippo Giorgi
Geosci. Model Dev., 9, 2533–2547, https://doi.org/10.5194/gmd-9-2533-2016, https://doi.org/10.5194/gmd-9-2533-2016, 2016
Short summary
Short summary
The paper presents a new cloud scheme for regional climate model RegCM4.5. The new scheme treats microphysical processes occurring within stratiform clouds and with respect to the pre-existing scheme is able to allow a more physically realistic representation of cloud microphysics and distribution, improving the representation of the longwave and shortwave components of the cloud radiative forcing.
Li Liu, Fabien Solmon, Robert Vautard, Lynda Hamaoui-Laguel, Csaba Zsolt Torma, and Filippo Giorgi
Biogeosciences, 13, 2769–2786, https://doi.org/10.5194/bg-13-2769-2016, https://doi.org/10.5194/bg-13-2769-2016, 2016
Short summary
Short summary
To study the distribution of airborne ragweed pollen in changing environments and associated health risks over Europe, we introduce an approach with explicit treatment of pollen ripening, release and dispersion due to environmental drivers in an online modelling framework where climate is integrated with dispersion and vegetation production. From a simulated pollen season and concentration pattern health risks are evaluated through calculation of exposure time above health-relevant threshold levels.
F. Solmon, V. S. Nair, and M. Mallet
Atmos. Chem. Phys., 15, 8051–8064, https://doi.org/10.5194/acp-15-8051-2015, https://doi.org/10.5194/acp-15-8051-2015, 2015
Short summary
Short summary
Using observations and a regional climate model, we suggest that
(i) dust radiative forcing over west Asia induces complex regional feedbacks on the Indian monsoon system, notably a possible enhancement of moisture convergence over southern India; and (ii) an observed AOD positive trend attributed to an increasing Arabian dust activity during 2000-2009 could be associated with, and contributing to, the observed enhancement of southern Indian summer precipitation during this decade.
R. Kumar, M. C. Barth, V. S. Nair, G. G. Pfister, S. Suresh Babu, S. K. Satheesh, K. Krishna Moorthy, G. R. Carmichael, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, https://doi.org/10.5194/acp-15-5415-2015, 2015
Short summary
Short summary
We examine differences in the surface BC between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identify dominant sources of BC in South Asia during ICARB. Anthropogenic emissions were the main source of BC during ICARB and had about 5 times stronger influence on the BoB compared to the AS. Regional-scale transport contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions.
M. A. H. Zaroug, F. Giorgi, E. Coppola, G. M. Abdo, and E. A. B. Eltahir
Hydrol. Earth Syst. Sci., 18, 4311–4323, https://doi.org/10.5194/hess-18-4311-2014, https://doi.org/10.5194/hess-18-4311-2014, 2014
M. A. H. Zaroug, E. A. B. Eltahir, and F. Giorgi
Hydrol. Earth Syst. Sci., 18, 1239–1249, https://doi.org/10.5194/hess-18-1239-2014, https://doi.org/10.5194/hess-18-1239-2014, 2014
U. U. Turuncoglu, G. Giuliani, N. Elguindi, and F. Giorgi
Geosci. Model Dev., 6, 283–299, https://doi.org/10.5194/gmd-6-283-2013, https://doi.org/10.5194/gmd-6-283-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau
Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations
A new process-based and scale-aware desert dust emission scheme for global climate models – Part II: Evaluation in the Community Earth System Model version 2 (CESM2)
Aerosols in the central Arctic cryosphere: Satellite and model integrated insights during Arctic spring and summer
How well do Earth system models reproduce the observed aerosol response to rapid emission reductions? A COVID-19 case study
Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations
Impact of acidity and surface-modulated acid dissociation on cloud response to organic aerosol
The contribution of residential wood combustion to the PM2.5 concentrations in the Helsinki metropolitan area
Analysis of atmospheric particle growth based on vapor concentrations measured at the high-altitude GAW station Chacaltaya in the Bolivian Andes
Expanding the simulation of East Asian super dust storms: physical transport mechanisms impacting the western Pacific
Improving 3-day deterministic air pollution forecasts using machine learning algorithms
Opinion: The importance of historical and paleoclimate aerosol radiative effects
Assessing the assimilation of Himawari-8 observations on aerosol forecasts and radiative effects during pollution transport from South Asia to the Tibetan Plateau
Aerosol–meteorology feedback diminishes the transboundary transport of black carbon into the Tibetan Plateau
Associations of interannual variation in summer tropospheric ozone with the Western Pacific Subtropical High in China from 1999 to 2017
Climate intervention using marine cloud brightening (MCB) compared with stratospheric aerosol injection (SAI) in the UKESM1 climate model
Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: Strong surfactants
Increased importance of aerosol–cloud interactions for surface PM2.5 pollution relative to aerosol–radiation interactions in China with the anthropogenic emission reductions
The role of temporal scales in extracting dominant meteorological drivers of major airborne pollutants
Biomass-burning smoke's properties and its interactions with marine stratocumulus clouds in WRF-CAM5 and southeastern Atlantic field campaigns
Air pollution trapping in the Dresden Basin from gray-zone scale urban modeling
The effect of atmospherically relevant aminium salts on water uptake
Droplet collection efficiencies estimated from satellite retrievals constrain effective radiative forcing of aerosol-cloud interactions
Intercomparison of Aerosol Optical Depths from four reanalyses and their multi-reanalysis-consensus
The impact of aerosols on stratiform clouds over southern West Africa: a large-eddy-simulation study
Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth's surface
Rapid Iodine Oxoacids Nucleation Enhanced by Dimethylamine in Broad Marine Regions
Global aviation contrail climate effects from 2019 to 2021
Global aerosol typing classification using a new hybrid algorithm utilizing Aerosol Robotic Network data
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
The underappreciated role of transboundary pollution in future air quality and health improvements in China
The export of African mineral dust across the Atlantic and its impact over the Amazon Basin
Assimilation of POLDER observations to estimate aerosol emissions
Role of atmospheric aerosols in severe winter fog over Indo Gangetic Plains of India: a case study
Effect of radiation interaction and aerosol processes on ventilation and aerosol concentrations in a real urban neighbourhood in Helsinki
Numerical evidence that the impact of CCN and INP concentrations on mixed-phase clouds is observable with cloud radars
Atlantic Multidecadal Oscillation modulates the relationship between El Niño–Southern Oscillation and fire weather in Australia
Identifying climate model structural inconsistencies allows for tight constraint of aerosol radiative forcing
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-440, https://doi.org/10.5194/egusphere-2024-440, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW AOD data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine understanding of aerosol effects on cloud microphysics, ice nucleation and radiative forcing under evolving AA.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
Atmos. Chem. Phys., 24, 1467–1487, https://doi.org/10.5194/acp-24-1467-2024, https://doi.org/10.5194/acp-24-1467-2024, 2024
Short summary
Short summary
The effect of organic acid aerosol on sulfur chemistry and cloud properties was investigated in an atmospheric model. Organic acid dissociation was considered using both bulk and surface-related properties. We found that organic acid dissociation leads to increased hydrogen ion concentrations and sulfate aerosol mass in aqueous aerosols, increasing cloud formation. This could be important in large-scale climate models as many organic aerosol components are both acidic and surface-active.
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024, https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Short summary
Residential wood combustion is a major source of fine particulate matter. This study has evaluated the contribution of residential wood combustion to fine particle concentrations and its year-to-year and seasonal variation in te Helsinki metropolitan area. The average concentrations attributed to wood combustion in winter were up to 10- or 15-fold compared to summer. Wood combustion caused 12 % to 14 % of annual fine particle concentrations. In winter, the contribution ranged from 16 % to 21 %.
Arto Heitto, Cheng Wu, Diego Aliaga, Luis Blacutt, Xuemeng Chen, Yvette Gramlich, Liine Heikkinen, Wei Huang, Radovan Krejci, Paolo Laj, Isabel Moreno, Karine Sellegri, Fernando Velarde, Kay Weinhold, Alfred Wiedensohler, Qiaozhi Zha, Federico Bianchi, Marcos Andrade, Kari E. J. Lehtinen, Claudia Mohr, and Taina Yli-Juuti
Atmos. Chem. Phys., 24, 1315–1328, https://doi.org/10.5194/acp-24-1315-2024, https://doi.org/10.5194/acp-24-1315-2024, 2024
Short summary
Short summary
Particle growth at the Chacaltaya station in Bolivia was simulated based on measured vapor concentrations and ambient conditions. Major contributors to the simulated growth were low-volatility organic compounds (LVOCs). Also, sulfuric acid had major role when volcanic activity was occurring in the area. This study provides insight on nanoparticle growth at this high-altitude Southern Hemispheric site and hence contributes to building knowledge of early growth of atmospheric particles.
Steven Soon-Kai Kong, Saginela Ravindra Babu, Sheng-Hsiang Wang, Stephen M. Griffith, Jackson Hian-Wui Chang, Ming-Tung Chuang, Guey-Rong Sheu, and Neng-Huei Lin
Atmos. Chem. Phys., 24, 1041–1058, https://doi.org/10.5194/acp-24-1041-2024, https://doi.org/10.5194/acp-24-1041-2024, 2024
Short summary
Short summary
In this study, we combined ground observations from 7-SEAS Dongsha Experiment, MERRA-2 reanalysis, and MODIS satellite images for evaluation and improvement of the CMAQ dust model for cases of East Asian Dust reaching the Taiwan region, including Dongsha in the western Pacific. We proposed a better CMAQ dust treatment over East Asia and for the first time revealed the impact of typhoons on dust transport.
Zhiguo Zhang, Christer Johansson, Magnuz Engardt, Massimo Stafoggia, and Xiaoliang Ma
Atmos. Chem. Phys., 24, 807–851, https://doi.org/10.5194/acp-24-807-2024, https://doi.org/10.5194/acp-24-807-2024, 2024
Short summary
Short summary
Up-to-date information on present and near-future air quality help people avoid exposure to high levels of air pollution. We apply different machine learning models to significantly improve traditional forecasts of PM10, NOx, and O3 in Stockholm, Sweden. It is shown that forecasts of all air pollutants are improved by the input of lagged measurements and taking calendar information into account. The final modelled errors are substantially smaller than uncertainties in the measurements.
Natalie M. Mahowald, Longlei Li, Samuel Albani, Douglas S. Hamilton, and Jasper F. Kok
Atmos. Chem. Phys., 24, 533–551, https://doi.org/10.5194/acp-24-533-2024, https://doi.org/10.5194/acp-24-533-2024, 2024
Short summary
Short summary
Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols interacted with the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem.
Min Zhao, Tie Dai, Daisuke Goto, Hao Wang, and Guangyu Shi
Atmos. Chem. Phys., 24, 235–258, https://doi.org/10.5194/acp-24-235-2024, https://doi.org/10.5194/acp-24-235-2024, 2024
Short summary
Short summary
During a springtime pollution input from South Asia to the Tibetan Plateau, we combined atmospheric chemistry modeling and data assimilation methods to assimilate and forecast aerosols from South Asia and the Tibetan Plateau. Assimilation of observations over a whole time window leads to a more reasonable distribution of daily variations in the aerosol forecast field. We also find that aerosol assimilation can improve the surface solar energy forecast in the Tibetan Plateau region.
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024, https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP) saw a record-breaking aerosol pollution event from April 20 to May 10, 2016. We studied the impact of aerosol–meteorology feedback on the transboundary transport flux of black carbon (BC) during this severe pollution event. It was found that the aerosol–meteorology feedback decreases the transboundary transport flux of BC from the central and western Himalayas towards the TP. This study is of great significance for the protection of the ecological environment of the TP.
Xiaodong Zhang, Ruiyu Zhugu, Xiaohu Jian, Xinrui Liu, Kaijie Chen, Shu Tao, Junfeng Liu, Hong Gao, Tao Huang, and Jianmin Ma
Atmos. Chem. Phys., 23, 15629–15642, https://doi.org/10.5194/acp-23-15629-2023, https://doi.org/10.5194/acp-23-15629-2023, 2023
Short summary
Short summary
WRF-Chem modeling was conducted to assess impacts of Western Pacific Subtropical High Pressure (WPSH) on interannual fluctuations of O3 pollution in China. We find that, while precursor emissions dominated the long-term trend and magnitude of O3 from 1999 to 2017, WPSH determined interannual variation of summer O3. The response of O3 pollution to WPSH in major urban clusters depended on the proximity of these urban areas to WPSH. The results could help long-term O3 pollution mitigation planning.
Jim M. Haywood, Andy Jones, Anthony C. Jones, Paul Halloran, and Philip J. Rasch
Atmos. Chem. Phys., 23, 15305–15324, https://doi.org/10.5194/acp-23-15305-2023, https://doi.org/10.5194/acp-23-15305-2023, 2023
Short summary
Short summary
The difficulties in ameliorating global warming and the associated climate change via conventional mitigation are well documented, with all climate model scenarios exceeding 1.5 °C above the preindustrial level in the near future. There is therefore a growing interest in geoengineering to reflect a greater proportion of sunlight back to space and offset some of the global warming. We use a state-of-the-art Earth-system model to investigate two of the most prominent geoengineering strategies.
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 23, 15149–15164, https://doi.org/10.5194/acp-23-15149-2023, https://doi.org/10.5194/acp-23-15149-2023, 2023
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six models to surface activity of strongly surface active aerosol and find significant differences between the models, especially with large fractions of surfactant in the dry particles.
Da Gao, Bin Zhao, Shuxiao Wang, Yuan Wang, Brian Gaudet, Yun Zhu, Xiaochun Wang, Jiewen Shen, Shengyue Li, Yicong He, Dejia Yin, and Zhaoxin Dong
Atmos. Chem. Phys., 23, 14359–14373, https://doi.org/10.5194/acp-23-14359-2023, https://doi.org/10.5194/acp-23-14359-2023, 2023
Short summary
Short summary
Surface PM2.5 concentrations can be enhanced by aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs). In this study, we found PM2.5 enhancement induced by ACIs shows a significantly smaller decrease ratio than that induced by ARIs in China with anthropogenic emission reduction from 2013 to 2021, making ACIs more important for enhancing PM2.5 concentrations. ACI-induced PM2.5 enhancement needs to be emphatically considered to meet the national PM2.5 air quality standard.
Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng Lv, Qi Yao, Bingbo Gao, and Ziyue Chen
Atmos. Chem. Phys., 23, 14065–14076, https://doi.org/10.5194/acp-23-14065-2023, https://doi.org/10.5194/acp-23-14065-2023, 2023
Short summary
Short summary
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no quantitative evidence has proved this before. Based on rare 3 h meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scales presented large variations. This research suggests that data sources of different temporal scales should be comprehensively considered for better attribution and prevention of airborne pollution.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Michael Weger and Bernd Heinold
Atmos. Chem. Phys., 23, 13769–13790, https://doi.org/10.5194/acp-23-13769-2023, https://doi.org/10.5194/acp-23-13769-2023, 2023
Short summary
Short summary
This study investigates the effects of complex terrain on air pollution trapping using a numerical model which simulates the dispersion of emissions under real meteorological conditions. The additionally simulated aerosol age allows us to distinguish areas that accumulate aerosol over time from areas that are more influenced by fresh emissions. The Dresden Basin, a widened section of the Elbe Valley in eastern Germany, is selected as the target area in a case study to demonstrate the concept.
Noora Hyttinen
Atmos. Chem. Phys., 23, 13809–13817, https://doi.org/10.5194/acp-23-13809-2023, https://doi.org/10.5194/acp-23-13809-2023, 2023
Short summary
Short summary
Water activity in aerosol particles describes how particles respond to variations in relative humidity. Here, water activities were calculated for a set of 80 salts that may be present in aerosol particles using a state-of-the-art quantum-chemistry-based method. The effect of the dissociated salt on water activity varies with both the cation and anion. Most of the studied salts increase water uptake compared to pure water-soluble organic particles.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
EGUsphere, https://doi.org/10.5194/egusphere-2023-2161, https://doi.org/10.5194/egusphere-2023-2161, 2023
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth Systems Model estimates of the radiative forcing due to the interactions of aerosols with clouds due to warm rain processes.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedettie, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2354, https://doi.org/10.5194/egusphere-2023-2354, 2023
Short summary
Short summary
The study compares and evaluates the monthly aerosol optical depth of four reanalyses (RA) and their consensus. The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where diversity and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Lambert Delbeke, Chien Wang, Pierre Tulet, Cyrielle Denjean, Maurin Zouzoua, Nicolas Maury, and Adrien Deroubaix
Atmos. Chem. Phys., 23, 13329–13354, https://doi.org/10.5194/acp-23-13329-2023, https://doi.org/10.5194/acp-23-13329-2023, 2023
Short summary
Short summary
Low-level stratiform clouds (LLSCs) appear frequently over southern West Africa during the West African monsoon. Local and remote aerosol sources (biomass burning aerosols from central Africa) play a significant role in the LLSC life cycle. Based on measurements by the DACCIWA campaign, large-eddy simulation (LES) was conducted using different aerosol scenarios. The results show that both indirect and semi-direct effects can act individually or jointly to influence the life cycles of LLSCs.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1774, https://doi.org/10.5194/egusphere-2023-1774, 2023
Short summary
Short summary
The nucleation process of iodic acid (HIO3) and iodous acid (HIO2) was proved to be critical in marine areas. However, HIO3-HIO2 nucleation cannot effectively derive the observed rapid new particle formation in broad marine areas. We show the extensive participation of dimethylamine (DMA) in HIO3-HIO2 nucleation and find a significant enhancement of DMA on the HIO3-HIO2 nucleation, which establishes reasonable connections between the iodine oxoacids nucleation and the rapid marine new particles.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc Stettler
EGUsphere, https://doi.org/10.5194/egusphere-2023-1859, https://doi.org/10.5194/egusphere-2023-1859, 2023
Short summary
Short summary
The radiative forcing attributable to aviation contrails is estimated for 2019–21. We estimate a global contrail net RF that is approximately half the best estimate of a previous study. Contrail climate impacts have not scaled proportionally with air traffic growth due to higher growth in regions where contrails are less likely to form. There are significant opportunities to mitigate contrail impacts as only 2 % of all flights globally account for 80 % of the annual contrail energy forcing.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1754, https://doi.org/10.5194/egusphere-2023-1754, 2023
Short summary
Short summary
A new aerosol-type classification algorithm was proposed. It includes an optical database building by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated using the new algorithm to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2023-1822, https://doi.org/10.5194/egusphere-2023-1822, 2023
Short summary
Short summary
In this study, we diagnose uncertainties in CO and OC emissions from four inventories for seven majorwildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Jun-Wei Xu, Jintai Lin, Dan Tong, and Lulu Chen
Atmos. Chem. Phys., 23, 10075–10089, https://doi.org/10.5194/acp-23-10075-2023, https://doi.org/10.5194/acp-23-10075-2023, 2023
Short summary
Short summary
This study highlights the necessity of a low-carbon pathway in foreign countries for China to achieve air quality goals and to protect public health. We find that adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 63 000–270 000 transboundary PM2.5-associated mortalities in China in 2060. Our study provides direct evidence of the necessity of inter-regional cooperation for air quality improvement.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Athanasios Tsikerdekis, Otto P. Hasekamp, Nick A. J. Schutgens, and Qirui Zhong
Atmos. Chem. Phys., 23, 9495–9524, https://doi.org/10.5194/acp-23-9495-2023, https://doi.org/10.5194/acp-23-9495-2023, 2023
Short summary
Short summary
Aerosols are tiny particles of different substances (species) that can be emitted into the atmosphere by natural processes or by anthropogenic activities. However, the actual aerosol emission amount per species is highly uncertain. Thus in this work we correct the aerosol emissions used to drive a global aerosol–climate model using satellite observations through a process called data assimilation. These more accurate aerosol emissions can lead to a more accurate weather and climate prediction.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
EGUsphere, https://doi.org/10.5194/egusphere-2023-1686, https://doi.org/10.5194/egusphere-2023-1686, 2023
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using the WRF-Chem model. The increase in RH with aerosol-radiation feedback (ARF) is found to be important for fog formation as it promoted the growth of aerosol and increased aerosol activation in the polluted environment. ARF and aqueous phase chemistry affected the timing of fog formation by ~1–2 hours and the fog intensity by modulating the meteorology and aerosol concentration.
Jani Strömberg, Xiaoyu Li, Mona Kurppa, Heino Kuuluvainen, Liisa Pirjola, and Leena Järvi
Atmos. Chem. Phys., 23, 9347–9364, https://doi.org/10.5194/acp-23-9347-2023, https://doi.org/10.5194/acp-23-9347-2023, 2023
Short summary
Short summary
We conclude that with low wind speeds, solar radiation has a larger decreasing effect (53 %) on pollutant concentrations than aerosol processes (18 %). Additionally, our results showed that with solar radiation included, pollutant concentrations were closer to observations (−13 %) than with only aerosol processes (+98 %). This has implications when planning simulations under calm conditions such as in our case and when deciding whether or not simulations need to include these processes.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
EGUsphere, https://doi.org/10.5194/egusphere-2023-1887, https://doi.org/10.5194/egusphere-2023-1887, 2023
Short summary
Short summary
Spectral-bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Guanyu Liu, Jing Li, and Tong Ying
Atmos. Chem. Phys., 23, 9217–9228, https://doi.org/10.5194/acp-23-9217-2023, https://doi.org/10.5194/acp-23-9217-2023, 2023
Short summary
Short summary
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO). However, the correlation between ENSO and the Australian Fire Weather Index (FWI) increases from 0.17 to 0.70 when the Atlantic Multidecadal Oscillation (AMO) shifts from a negative to positive phase. This is explained by the teleconnection effect through which the warmer AMO generates Rossby wave trains and results in high pressures and a weather condition conducive to wildfires.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Cited articles
Ajay, P., Pathak, B., Solmon, F., Bhuyan, P. K., and Giorgi, F.: Obtaining
best parameterization scheme of RegCM 4.4 for aerosols and chemistry
simulations over the CORDEX South Asia, Clim. Dyn., 53, 329–352,
https://doi.org/10.1007/s00382-018-4587-3, 2019.
Ali, K., Acharja, P., Trivedi, D. K., Kulkarni, R., Pithani, P., Safai, P.
D., Chate, D. M., Ghude, S., Jenamani, R. K., and Rajeevan, M.:
Characterization and source identification of PM 2.5 and its chemical and
carbonaceous constituents during Winter Fog Experiment 2015–16 at Indira
Gandhi International Airport, Delhi, Sci. Total Environ., 662, 687–696,
https://doi.org/10.1016/j.scitotenv.2019.01.285, 2019.
Aswini, A. R., Hegde, P., Nair, P. R., and Aryasree, S.: Seasonal changes in
carbonaceous aerosols over a tropical coastal location in response to
meteorological processes, Sci. Total Environ., 656, 1261–1279,
https://doi.org/10.1016/j.scitotenv.2018.11.366, 2019.
Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S.,
Kompalli, S. K., Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P. K.
and, Singh, D.: Trends in aerosol optical depth over Indian region: Potential
causes and impact indicators, J. Geophys. Res.-Atmos., 118, 11794–11806,
https://doi.org/10.1002/2013JD020507, 2013.
Babu, S. S., Nair, V. S., Gogoi, M. M., and Moorthy, K. K.: Seasonal
variation of vertical distribution of aerosol single scattering albedo over
Indian sub-continent: RAWEX aircraft observations, Atmos. Environ., 125,
312–323, https://doi.org/10.1016/j.atmosenv.2015.09.041, 2016.
Bharali, C., Nair, V. S., Chutia, L. and, Babu, S. S.: Modeling of the
Effects of Wintertime Aerosols on Boundary Layer Properties Over the Indo
Gangetic Plain, J. Geophys. Res.-Atmos., 124, 4141–4157,
https://doi.org/10.1029/2018JD029758, 2019.
Chatani, S. and Sharma, S.: Uncertainties Caused by Major Meteorological
Analysis Data Sets in Simulating Air Quality Over India, J. Geophys. Res.-Atmos., 123, 6230–6247, https://doi.org/10.1029/2017JD027502, 2018.
Dai, A.: Recent Climatology, Variability, and Trends in Global Surface
Humidity, J. Clim., 19, 3589–3606, https://doi.org/10.1175/JCLI3816.1, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. -M.,
Petäjä, T., Su, H., Cheng, Y. F., Yang, X. -Q., Wang, M. H., Chi, X.
G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R.
J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C.
B.: Enhanced haze pollution by black carbon in megacities in China, Geophys.
Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Di Sante, F., Coppola, E., Farneti, R., and Giorgi, F.: Indian Summer Monsoon
as simulated by the regional earth system model RegCM-ES: the role of local
air–sea interaction, Clim. Dyn., 53, 759–778,
https://doi.org/10.1007/s00382-019-04612-8, 2019.
Feng, Y., Cadeddu, M., Kotamarthi, V. R., Renju, R., and Suresh Raju, C.:
Humidity Bias and Effect on Simulated Aerosol Optical Properties during the
Ganges Valley Experiment, Curr. Sci., 111, 93,
https://doi.org/10.18520/cs/v111/i1/93-100, 2016.
Gautam, R. and Singh, M. K.: Urban Heat Island Over Delhi Punches Holes in
Widespread Fog in the Indo-Gangetic Plains, Geophys. Res. Lett., 45,
1114–1121, https://doi.org/10.1002/2017GL076794, 2018.
Gautam, R., Hsu, N. C., Kafatos, M., and Tsay, S.-C.: Influences of winter
haze on fog/low cloud over the Indo-Gangetic plains, J. Geophys. Res.,
112, D05207, https://doi.org/10.1029/2005JD007036, 2007.
George, S. K., Nair, P. R., Parameswaran, K., Jacob, S., and Abraham, A.:
Seasonal trends in chemical composition of aerosols at a tropical coastal
site of India, J. Geophys. Res.-Atmos., 113, D16209, https://doi.org/10.1029/2007JD009507, 2008.
Ghude, S. D., Bhat, G. S., Prabhakaran, T., Jenamani, R. K., Chate, D. M.,
Safai, P. D., Karipot, A. K., Konwar, M., Pithani, P., Sinha, V., Rao, P. S.
P., Dixit, S. A., Tiwari, S., Todekar, K., Varpe, S., Srivastava, A. K.,
Bisht, D. S., Murugavel, P., Ali, K., Mina, U., Dharua, M., Rao, J.,
Padmakumari, B., Hazra, A., Nigam, N., Shende, U., Lal, D. M., Chandra, B.
P., Mishra, A. K., Kumar, A., Hakkim, H., Pawar, H., Acharja, P., Kulkarni,
R., Subharthi, C., Balaji, B., Varghese, M., Bera, S., and Rajeevan, M.:
Winter Fog Experiment Over the Indo-Gangetic Plains of India, Curr. Sci.,
112, 767, https://doi.org/10.18520/cs/v112/i04/767-784, 2017.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X.,
Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U.,
Cozzini, S., Güttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A.,
Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.:
RegCM4: Model description and preliminary tests over multiple CORDEX
domains, Clim. Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Goswami, P. and Sarkar, S.: Analysis and quantification of contrasts in
observed meteorological fields for foggy and non-foggy days, Meteorol.
Atmos. Phys., 127, 605–623, https://doi.org/10.1007/s00703-015-0384-2, 2015.
Gurjar, B. R., Butler, T. M., Lawrence, M. G., and Lelieveld, J.: Evaluation
of emissions and air quality in megacities, Atmos. Environ., 42,
1593–1606, https://doi.org/10.1016/j.atmosenv.2007.10.048, 2008.
Hodnebrog, Ø., Myhre, G., Samset, B. H., Alterskjær, K., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Forster, P. M., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T. B., Shawki, D., Shindell, D., Shine, K. P., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D.: Water vapour adjustments and responses differ between climate drivers, Atmos. Chem. Phys., 19, 12887–12899, https://doi.org/10.5194/acp-19-12887-2019, 2019.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prévôt, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
Kasten, F.: Visibility forecast in the phase of pre-condensation, Tellus,
21, 631–635, https://doi.org/10.3402/tellusa.v21i5.10112, 1969.
Kiehl, J. T., Schneider, T. L., Rasch, P. J., Barth, M. C., and Wong, J.:
Radiative forcing due to sulfate aerosols from simulations with the National
Center for Atmospheric Research Community Climate Model, Version 3, J.
Geophys. Res.-Atmos., 105, 1441–1457, https://doi.org/10.1029/1999JD900495, 2000.
Kumar, M., Tiwari, S., Murari, V., Singh, A. K., and Banerjee, T.: Wintertime
characteristics of aerosols at middle Indo-Gangetic Plain: Impacts of
regional meteorology and long range transport, Atmos. Environ., 104,
162–175, https://doi.org/10.1016/j.atmosenv.2015.01.014, 2015a.
Kumar, R., Barth, M. C., Nair, V. S., Pfister, G. G., Suresh Babu, S., Satheesh, S. K., Krishna Moorthy, K., Carmichael, G. R., Lu, Z., and Streets, D. G.: Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB), Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, 2015b.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu,
J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S.-S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact on
air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117, 2017.
Liepert, B. G., Feichter, J., Lohmann, U., and Roeckner, E.: Can aerosols
spin down the water cycle in a warmer and moister world?, Geophys. Res.
Lett., 31, L06207, https://doi.org/10.1029/2003GL019060, 2004.
Mandariya, A. K., Tripathi, S. N., Gupta, T., and Mishra, G.: Wintertime
hygroscopic growth factors (HGFs) of accumulation mode particles and their
linkage to chemical composition in a heavily polluted urban atmosphere of
Kanpur at the Centre of IGP, India: Impact of ambient relative humidity,
Sci. Total Environ., 704, 135363, https://doi.org/10.1016/j.scitotenv.2019.135363, 2020.
McInnes, L., Bergin, M., Ogren, J., and Schwartz, S.: Apportionment of light
scattering and hygroscopic growth to aerosol composition, Geophys. Res.
Lett., 25, 513–516, https://doi.org/10.1029/98GL00127, 1998.
Mukhopadhyay, P., Jaswal, A. K., and Deshpande, M.: Variability and Trends of
Atmospheric Moisture over the Indian Region, in Observed Climate Variability
and Change over the Indian Region, edited by: Rajeevan, M. N. and Nayak, S.,
Springer, Singapore, 129–144, 2017.
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George,
S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N. S.
N., Niranjan, K., Madhavan, B. L. L., Srikant, V., Dutt, C. B. S. B. S.,
Badarinath, K. V. S. V. S., and Reddy, R. R. R. R.: Wintertime aerosol
characteristics over the Indo-Gangetic Plain (IGP): Impacts of local
boundary layer processes and long-range transport, J. Geophys. Res-Atmos.,
112, D13205, https://doi.org/10.1029/2006JD008099, 2007.
Nair, V. S., Solmon, F., Giorgi, F., Mariotti, L., Babu, S. S., and Moorthy,
K. K.: Simulation of South Asian aerosols for regional climate studies, J.
Geophys. Res.-Atmos., 117, D04209, https://doi.org/10.1029/2011JD016711, 2012.
Nair, V. S., Babu, S. S., Manoj, M. R., Moorthy, K. K., and Chin, M.: Direct
radiative effects of aerosols over South Asia from observations and
modeling, Clim. Dyn., 49, 1411–1428, https://doi.org/10.1007/s00382-016-3384-0, 2016a.
Nair, V. S., Babu, S. S., Gogoi, M. M., and Moorthy, K. K.: Large-scale
enhancement in aerosol absorption in the lower free troposphere over
continental India during spring, Geophys. Res. Lett., 43, 11453–11461,
https://doi.org/10.1002/2016GL070669, 2016b.
Ram, K., Sarin, M. M., and Hegde, P.: Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in Central Himalaya, Atmos. Chem. Phys., 10, 11791–11803, https://doi.org/10.5194/acp-10-11791-2010, 2010.
Ram, K., Sarin, M. M., and Tripathi, S. N.: Temporal Trends in Atmospheric PM
2.5, PM 10, Elemental Carbon, Organic Carbon, Water-Soluble Organic
Carbon, and Optical Properties: Impact of Biomass Burning Emissions in The
Indo-Gangetic Plain, Environ. Sci. Technol., 46, 686–695,
https://doi.org/10.1021/es202857w, 2012.
Ramanathan, V.: Aerosols, Climate, and the Hydrological Cycle, Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034, 2001.
Rengarajan, R., Sudheer, A. K., and Sarin, M. M.: Wintertime PM2.5 and PM10
carbonaceous and inorganic constituents from urban site in western India,
Atmos. Res., 102, 420–431, https://doi.org/10.1016/j.atmosres.2011.09.005, 2011.
Safai, P. D., Kewat, S., Pandithurai, G., Praveen, P. S., Ali, K., Tiwari,
S., Rao, P. S. P., Budhawant, K. B., Saha, S. K., and Devara, P. C. S.:
Aerosol characteristics during winter fog at Agra, North India, J. Atmos.
Chem., 61, 101–118, https://doi.org/10.1007/s10874-009-9127-4, 2008.
Satsangi, A., Pachauri, T., Singla, V., Lakhani, A., and Kumari, K. M.:
Organic and elemental carbon aerosols at a suburban site, Atmos. Res., 113,
13–21, https://doi.org/10.1016/j.atmosres.2012.04.012, 2012.
Shalaby, A., Zakey, A. S., Tawfik, A. B., Solmon, F., Giorgi, F., Stordal, F., Sillman, S., Zaveri, R. A., and Steiner, A. L.: Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4), Geosci. Model Dev., 5, 741–760, https://doi.org/10.5194/gmd-5-741-2012, 2012.
Solmon, F., Giorgi, F., and Liousse, C.: Aerosol modelling for regional
climate studies: application to anthropogenic particles and evaluation over
a European/African domain, Tellus B, 58, 51–72,
https://doi.org/10.1111/j.1600-0889.2005.00155.x, 2006.
Solmon, F., Nair, V. S., and Mallet, M.: Increasing Arabian dust activity and the Indian summer monsoon, Atmos. Chem. Phys., 15, 8051–8064, https://doi.org/10.5194/acp-15-8051-2015, 2015.
Syed, F. S., Körnich, H., and Tjernström, M.: On the fog variability
over south Asia, Clim. Dyn., 39, 2993–3005,
https://doi.org/10.1007/s00382-012-1414-0, 2012.
Tie, X., Huang, R.-J., Cao, J., Zhang, Q., Cheng, Y., Su, H., Chang, D.,
Pöschl, U., Hoffmann, T., Dusek, U., Li, G., Worsnop, D. R., and O'Dowd,
C. D.: Severe Pollution in China Amplified by Atmospheric Moisture, Sci.
Rep.-UK, 7, 15760, https://doi.org/10.1038/s41598-017-15909-1, 2017.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H.,
Granados-Muñoz, M. J., Olmo, F. J., and Alados-Arboledas, L.: Effect of
hygroscopic growth on the aerosol light-scattering coefficient: A review of
measurements, techniques and error sources, Atmos. Environ., 141, 494–507,
https://doi.org/10.1016/j.atmosenv.2016.07.021, 2016.
Usha, K. H., Nair, V. S., and Babu, S. S.: Modeling of aerosol induced snow
albedo feedbacks over the Himalayas and its implications on regional
climate, Clim. Dyn., 54, 4191–4210, https://doi.org/10.1007/s00382-020-05222-5, 2020.
Watson-Parris, D., Bellouin, N., Deaconu, L. T., Schutgens, N. A. J.,
Yoshioka, M., Regayre, L. A., Pringle, K. J., Johnson, J. S., Smith, C. J.,
Carslaw, K. S., and Stier, P.: Constraining Uncertainty in Aerosol Direct
Forcing, Geophys. Res. Lett., 47, e2020GL087141,
https://doi.org/10.1029/2020GL087141, 2020.
Zakey, A. S., Giorgi, F., and Bi, X.: Modeling of sea salt in a regional
climate model: Fluxes and radiative forcing, J. Geophys. Res., 113,
D14221, https://doi.org/10.1029/2007JD009209, 2008.
Short summary
Air pollution and wintertime fog over South Asia is a major concern due to its significant implications on air quality, visibility and health. Coupled model simulations show that hygroscopic growth of aerosols contributes significantly to the aerosol-induced cooling at the surface. Our analysis demonstrates that the aerosol–moisture interaction is the most significant contributor favouring and strengthening the high-aerosol conditions (poor air quality) prevailing over South Asia during winter.
Air pollution and wintertime fog over South Asia is a major concern due to its significant...
Altmetrics
Final-revised paper
Preprint