Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-11799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-11799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Possible mechanisms of summer cirrus clouds over the Tibetan Plateau
Feng Zhang
Department of Atmospheric and Oceanic Sciences & Institute of
Atmospheric Sciences, Fudan University, Shanghai, China
Innovation Center of Ocean and Atmosphere System, Zhuhai Fudan
Innovation Research Institute, Zhuhai, China
Qiu-Run Yu
Department of Atmospheric and Oceanic Sciences, McGill University,
Montréal, Quebec, Canada
Jia-Li Mao
Key Laboratory of Meteorological Disaster, Ministry of Education,
Nanjing University of Information Science and Technology, Nanjing, China
Chen Dan
Key Laboratory of Meteorological Disaster, Ministry of Education,
Nanjing University of Information Science and Technology, Nanjing, China
Yanyu Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science and Engineering,
Fudan University, Shanghai, China
Qianshan He
CORRESPONDING AUTHOR
Shanghai Meteorological Service, Shanghai, China
Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
Tiantao Cheng
Department of Atmospheric and Oceanic Sciences & Institute of
Atmospheric Sciences, Fudan University, Shanghai, China
Chunhong Chen
Shanghai Meteorological Service, Shanghai, China
Dongwei Liu
Shanghai Meteorological Service, Shanghai, China
Yanping Gao
Shanxi Institute of Meteorological Sciences, Taiyuan, China
Related authors
No articles found.
Kai Wang, Xiaocong Wang, Qianshan He, Hong Nie, Yanyu Wang, and Yonghang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-4514, https://doi.org/10.5194/egusphere-2025-4514, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We analyzed ten years of satellite data to study ice particle numbers in cirrus clouds over the Tibetan Plateau. The north has fewer particles than the south due to weaker convection and differences in dust and smoke. Ice particles form through freezing, producing a “V” shaped profile, but weak upward winds in the north shift this peak lower. These findings help understand climate in high mountain regions.
Yarong Peng, Hongli Wang, Yaqin Gao, Shengao Jing, Shuhui Zhu, Dandan Huang, Peizhi Hao, Shengrong Lou, Tiantao Cheng, Cheng Huang, and Xuan Zhang
Atmos. Meas. Tech., 16, 15–28, https://doi.org/10.5194/amt-16-15-2023, https://doi.org/10.5194/amt-16-15-2023, 2023
Short summary
Short summary
This work examined the phase partitioning behaviors of organic compounds at hourly resolution in ambient conditions with the use of the CHemical Analysis of aeRosols ONline (CHARON) inlet coupled to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). Properly accounting for the neutral losses of small moieties during the molecular feature extraction from PTR mass spectra could significantly reduce uncertainties associated with the gas–particle partitioning measurements.
Tongqiang Liu, Qianshan He, Yonghang Chen, Jie Liu, Qiong Liu, Wei Gao, Guan Huang, Wenhao Shi, and Xiaohong Yu
Atmos. Chem. Phys., 21, 5377–5391, https://doi.org/10.5194/acp-21-5377-2021, https://doi.org/10.5194/acp-21-5377-2021, 2021
Short summary
Short summary
The variation in aerosol 355 nm lidar ratio and its influence factors were analyzed in Shanghai. About 90 % of the lidar ratio was distributed in 10 sr–80 sr, with an average of 41.0±22.5 sr, and the lidar ratio decreased with the increase in height. Due to aerosol radiative effects, the vertical slope of the lidar ratio presented a decreasing trend with increasing atmospheric turbidity. A large lidar ratio above 1 km was related to biomass burning aerosols and high relative humidity.
Yarong Peng, Hongli Wang, Qian Wang, Shengao Jing, Jingyu An, Yaqin Gao, Cheng Huang, Rusha Yan, Haixia Dai, Tiantao Cheng, Qiang Zhang, Meng Li, Li Li, Shengrong Lou, Shikang Tao, Qinyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1108, https://doi.org/10.5194/acp-2020-1108, 2020
Revised manuscript not accepted
Short summary
Short summary
The evolution of NMHCs emissions and the effectiveness of control measures were investigated based on long term measurements in a megacity of China. Discrepancies between measurements and emission inventories emphasized the need for emission validation both in speciation and sources. Varied trends of NMHCs speciation and sources suggested the differential effect of the past control measures, which provided new insights into future clean air policies in polluted region including China.
Cited articles
Bao, X. and Zhang, F.: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim,
and ERA-40 reanalysis datasets against independent sounding observations
over the Tibetan Plateau, J. Climate, 26, 206–214, 2013.
Boehm, M. T. and Lee, S.: The implications of tropical Rossby waves for
tropical tropopause cirrus formation and for the equatorial upwelling of the
Brewer–Dobson circulation, J. Atmos. Sci., 60, 247–261, 2003.
Chen, G., Iwasaki, T., Qin, H., and Sha, W.: Evaluation of the warm-season
diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim,
NCEP CFSR, and NASA MERRA, J. Climate, 27, 5517–5537, 2014.
Cohen, N. Y. and Boos, W. R.: Modulation of subtropical stratospheric
gravity waves by equatorial rainfall, Geophys. Res. Lett., 43, 466–471,
2016.
Corti, T. and Peter, T.: A simple model for cloud radiative forcing, Atmos. Chem. Phys., 9, 5751–5758, https://doi.org/10.5194/acp-9-5751-2009, 2009.
Dai, G., Wu, S., Song, X., and Liu, L.: Optical and Geometrical Properties of Cirrus Clouds over the Tibetan Plateau Measured by LiDAR and Radiosonde Sounding during the Summertime in 2014, Remote Sensing, 11, 302, https://doi.org/10.3390/rs11030302, 2019.
Das, S. K., Chiang, C. W., and Nee, J. B.: Influence of tropical easterly
jet on upper tropical cirrus: An observational study from CALIPSO, Aura-MLS,
and NCEP/NCAR data, J. Geophys. Res., 116, D12204, https://doi.org/10.1029/2011JD015923, 2011.
Duan, A. M. and Wu, G. X.: Role of the Tibetan Plateau thermal forcing in
the summer climate patterns over subtropical Asia, Clim. Dynam., 24,
793–807, 2005.
Eguchi, N., Yokota, T., and Inoue, G.: Characteristics of cirrus clouds from
ICESat/GLAS observations, Geophys. Res. Lett., 34, 29–30, https://doi.org/10.1029/2007GL029529, 2007.
Feng, J., Liao, H., and Li, J.: The impact of monthly variation of the Pacific–North America (PNA) teleconnection pattern on wintertime surface-layer aerosol concentrations in the United States, Atmos. Chem. Phys., 16, 4927–4943, https://doi.org/10.5194/acp-16-4927-2016, 2016.
Fu, R., Hu, Y., Wright, J. S., Jiang, J. H., Dickinson, R. E., Chen, M.,
and Wu, D. L.: Short circuit of water vapor and polluted air to the global
stratosphere by convective transport over the Tibetan Plateau, P. Natl.
Acad. Sci. USA., 103, 5664–5669, 2006.
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and
Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267, 2009.
Fujiwara, M., Iwasaki, S., Shimizu, A., Inai, Y., Shiotani, M., Hasebe, F.,
and Hamada, A.: Cirrus observations in the tropical tropopause layer
over the western Pacific, J. Geophys. Res., 114, D09304, https://doi.org/10.1029/2008JD011040, 2009.
Gao, B. C., Yang, P., Guo, G., Park, S. K., Wiscombe, W. J., and Chen, B.:
Measurements of water vapor and high clouds over the Tibetan Plateau with
the Terra MODIS instrument, IEEE T. Geosci. Remote Sens., 41,
895–900, 2003.
Gerlitz, L., Conrad, O., Thomas, A., and Böhner, J.: Warming patterns
over the Tibetan Plateau and adjacent lowlands derived from elevation-and
bias corrected ERA-Interim data, Clim. Res., 58, 235–246, 2014.
Gettelman, A., Kinnison, D. E., Dunkerton, T. J., and Brasseur, G. P.:
Impact of monsoon circulations on the upper troposphere and lower
stratosphere, J. Geophys. Res., 109, D22101, https://doi.org/10.1029/2004JD004878, 2004.
He, Q. S., Li, C. C., Ma, J. Z., Wang, H. Q., Shi, G. M., Liang, Z. R.,
and Zhou, X. W.: The properties and formation of cirrus clouds over the
Tibetan Plateau based on summertime lidar measurements, J. Atmos. Sci.,
70, 901–915, 2013.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., and Simmons, A.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020.
Hu, J. and Duan, A.: Relative contributions of the Tibetan Plateau thermal
forcing and the Indian Ocean Sea surface temperature basin mode to the
interannual variability of the East Asian summer monsoon, Clim. Dynam.,
45, 2697–2711, 2015.
Immler, F., Krüger, K., Fujiwara, M., Verver, G., Rex, M., and Schrems, O.: Correlation between equatorial Kelvin waves and the occurrence of extremely thin ice clouds at the tropical tropopause, Atmos. Chem. Phys., 8, 4019–4026, https://doi.org/10.5194/acp-8-4019-2008, 2008.
Jensen, E. and Pfister, L.: Transport and freeze-drying in the tropical
tropopause layer, J. Geophys. Res., 109, D02027, https://doi.org/10.1029/2003JD004022, 2004.
Jensen, E. J., Toon, O. B., Selkirk, H. B., Spinhirne, J. D., and Schoeberl,
M. R.: On the formation and persistence of subvisible cirrus clouds near the
tropical tropopause, J. Geophys. Res., 101, 21361–21375, 1996.
Jin, M.: MODIS observed seasonal and interannual variations of atmospheric
conditions associated with the hydrological cycle over Tibetan Plateau,
Geophys. Res. Lett., 33, 277–305, https://doi.org/10.1029/2006GL026713, 2006.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H.,
and Miyaoka, K.: The JRA-55 reanalysis: General specifications and basic
characteristics, J. Meteorol. Soc. Jpn., 93, 5–48, 2015.
Li, Q., Jiang, J. H., Wu, D. L., Read, W. G., Livesey, N. J., Waters, J. W.,
and Turquety, S.: Convective outflow of South Asian pollution: A global
CTM simulation compared with EOS MLS observations, Geophys. Res. Lett.,
32, L14826, https://doi.org/10.1029/2005GL022762, 2005.
Liebmann, B. and Smith, C. A.: Description of a complete (interpolated)
outgoing longwave radiation dataset, B. Am. Meteorol. Soc., 77,
1275–1277, 1996.
Liu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R.,
and Hostetler, C.: The CALIPSO lidar cloud and aerosol discrimination:
Version 2 algorithm and initial assessment of performance, J. Atmos. Oceanic
Technol., 26, 1198–1213, 2009.
Lorenz, E. N. and Lorenz, F. N.: The nature and theory of the general circulation of the atmosphere, 218, p.31, Geneva, World Meteorological Organization, 1967.
Lu, J., Wang, F., Liu, H., and Lin, P.: Stationary mesoscale eddies, upgradient
eddy fluxes, and the anisotropy of eddy diffusivity, Geophys. Res. Lett.,
43, 743–751, 2016.
Luo, Y., Zhang, R., Qian, W., Luo, Z., and Hu, X.: Intercomparison of deep
convection over the Tibetan Plateau–Asian monsoon region and subtropical
North America in boreal summer using CloudSat/CALIPSO data, J. Climate,
24, 2164–2177, 2011.
McFarquhar, G. M., Heymsfield, A. J., Spinhirne, J., and Hart, B.: Thin and
subvisual tropopause tropical cirrus: Observations and radiative impacts, J.
Atmos. Sci., 57, 1841–1853, 2000.
Nazaryan, H., McCormick, M. P., and Menzel, W. P.: Global characterization
of cirrus clouds using CALIPSO data, J. Geophys. Res., 113, D16211, https://doi.org/10.1029/2007JD009481, 2008.
Pandit, A. K., Gadhavi, H., Ratnam, M. V., Jayaraman, A., Raghunath, K., and
Rao, S. V. B.: Characteristics of cirrus clouds and tropical tropopause
layer: Seasonal variation and long-term trends, J. Atmos. Sol.-Terr.
Phy., 121, 248–256, 2014.
Park, M., Randel, W. J., Emmons, L. K., and Livesey, N. J.: Transport
pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model
of Ozone and Related Tracers (MOZART), J. Geophys. Res., 114, D08303, https://doi.org/10.1029/2007JD009481, 2009.
Pfister, L., Selkirk, H. B., Jensen, E. J., Schoeberl, M. R., Toon, O. B.,
Browell, E. V., and Hintsa, E.: Aircraft observations of thin cirrus
clouds near the tropical tropopause, J. Geophys. Res., 106, 9765–9786,
2001.
Prabhakara, C., Kratz, D. P., Yoo, J. M., Dalu, G., and Vernekar, A.:
Optically thin cirrus clouds: Radiative impact on the warm pool, J. Quant.
Spectrosc. Ra., 49, 467–483, 1993.
Randel, W. J. and Jensen, E. J.: Physical processes in the tropical
tropopause layer and their roles in a changing climate, Nat. Geosci., 6,
169–176, 2013.
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K.
A., and Pumphrey, H.: Asian monsoon transport of pollution to the
stratosphere, Science, 328, 611–613, 2010.
Riihimaki, L. D. and McFarlane, S. A.: Frequency and morphology of tropical
tropopause layer cirrus from CALIPSO observations: Are isolated cirrus
different from those connected to deep convection?, J. Geophys. Res.,
115, D18201, https://doi.org/10.1029/2009JD013133, 2010.
Rosenfield, J. E., Considine, D. B., Schoeberl, M. R., and Browell, E. V.:
The impact of subvisible cirrus clouds near the tropical tropopause on
stratospheric water vapor, Geophys. Res. Lett., 25, 1883–1886, 1998.
Rossow, W. B. and Schiffer, R. A.: ISCCP cloud data products, B. Am.
Meteorol. Soc., 72, 2–20, 1991.
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2288, 1999.
Sassen, K. and Mace, G. G.: Ground based remote sensing
of cirrus clouds, 168–209, Oxford, New York, NY, 2002.
Sassen, K., Wang, Z., and Liu, D.: Cirrus clouds and deep convection in the
tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., 114, D00H06, https://doi.org/10.1029/2009JD011916, 2009.
Solomon, S., Qin, D., Manning, M., Averyt, K., and Marquis, M. (Eds.):
Climate change 2007-the physical science basis: Working group I contribution
to the fourth assessment report of the IPCC (Vol. 4), Cambridge University
Press, 2007.
Sun, X., Sun, Y., Zhou, Z., Alam, M. A., and Bermel, P.: Radiative sky
cooling: fundamental physics, materials, structures, and applications,
Nanophotonics, 6, 997–1015, 2017.
Thorsen, T. J., Fu, Q., Comstock, J. M., Sivaraman, C., Vaughan, M. A.,
Winker, D. M., and Turner, D. D.: Macrophysical properties of tropical
cirrus clouds from the CALIPSO satellite and from ground-based micropulse
and Raman lidars, J. Geophys. Res., 118, 9209–9220, 2013.
Vaughan, M. A., Powell, K. A., Winker, D. M., Hostetler, C. A., Kuehn, R.
E., Hunt, W. H., and McGill, M. J.: Fully automated detection of cloud
and aerosol layers in the CALIPSO lidar measurements, J. Atmos. Oceanic
Technol., 26, 2034–2050, 2009.
Wang, P. H., Minnis, P., McCormick, M. P., Kent, G. S., and Skeens, K. M.: A
6-year climatology of cloud occurrence frequency from Stratospheric Aerosol
and Gas Experiment II observations (1985–1990), J. Geophys. Res., 101,
29407–29429, 1996.
Winker, D. M. and Trepte, C. R.: Laminar cirrus observed near the tropical
tropopause by LITE, Geophys. Res. Lett., 25, 3351–3354, 1998.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
and Young, S. A.: Overview of the CALIPSO mission and CALIOP data processing
algorithms, J. Atmos. Oceanic Technol., 26, 2310–2323, 2009.
Wu, G. X.: The nonlinear response of the atmosphere to large-scale
mechanical and thermal forcing, J. Atmos. Sci., 41, 2456–2476, 1984.
Yan, Y., Liu, Y., and Lu, J.: Cloud vertical structure, precipitation, and
cloud radiative effects over Tibetan Plateau and its neighboring regions, J.
Geophys. Res., 121, 5864–5877, 2016.
Yanai, M., Li. C., and Song, Z.: Seasonal heating of the Tibetan Plateau and
its effects on the evolution of the Asian summer monsoon, J. Meteorol. Soc.
Jpn., 70, 319–351, 1992.
Yang, Y., Zhao, C., and Fan, H.: Spatiotemporal distributions of cloud
properties over China based on Himawari-8 advanced Himawari imager data,
Atmos. Res., 240, 104927, https://doi.org/10.1016/j.atmosres.2020.104927, 2020.
Zerefos, C. S., Eleftheratos, K., Balis, D. S., Zanis, P., Tselioudis, G., and Meleti, C.: Evidence of impact of aviation on cirrus cloud formation, Atmos. Chem. Phys., 3, 1633–1644, https://doi.org/10.5194/acp-3-1633-2003, 2003.
Zhao, C., Liu, L., Wang, Q., Qiu, Y., Wang, W., Wang, Y., and Fan, T.:
Toward understanding the properties of high ice clouds at the naqu site on
the Tibetan Plateau using ground-based active remote sensing measurements
obtained during a short period in July 2014, J. Appl. Meteorol. Clim.,
55, 2493–2507, 2016.
Zhao, C., Chen, Y., Li, J., Letu, H., Su, Y., Chen, T., and Wu, X.:
Fifteen-year statistical analysis of cloud characteristics over China using
Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations,
Int. J. Climatol., 39, 2612–2629, 2019.
Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X., and Menenti,
M.: Aerosol characteristics and impacts on weather and climate over the
Tibetan Plateau, Natl. Sci. Rev., 7, 492–495, 2020.
Short summary
In this work, we make the three main contributions. (1) We reveal the remarkable differences in the geographical distributions of cirrus over the Tibetan Plateau regarding the cloud top height. (2) The orography, gravity wave, and deep convection determine the formation of cirrus with a cloud top below 9, at 9–12, and above 12 km, respectively. (3) It is the first time the contributions of the Tibetan Plateau to the presence of cirrus on a regional scale are discussed.
In this work, we make the three main contributions. (1) We reveal the remarkable differences in...
Altmetrics
Final-revised paper
Preprint