Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-11799-2020
https://doi.org/10.5194/acp-20-11799-2020
Research article
 | 
19 Oct 2020
Research article |  | 19 Oct 2020

Possible mechanisms of summer cirrus clouds over the Tibetan Plateau

Feng Zhang, Qiu-Run Yu, Jia-Li Mao, Chen Dan, Yanyu Wang, Qianshan He, Tiantao Cheng, Chunhong Chen, Dongwei Liu, and Yanping Gao

Related authors

A satellite observation-based analysis of the distribution and formation mechanism of ice crystal number concentration over the Tibetan Plateau
Kai Wang, Xiaocong Wang, Qianshan He, Hong Nie, Yanyu Wang, and Yonghang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-4514,https://doi.org/10.5194/egusphere-2025-4514, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Real-time measurement of phase partitioning of organic compounds using a proton-transfer-reaction time-of-flight mass spectrometer coupled to a CHARON inlet
Yarong Peng, Hongli Wang, Yaqin Gao, Shengao Jing, Shuhui Zhu, Dandan Huang, Peizhi Hao, Shengrong Lou, Tiantao Cheng, Cheng Huang, and Xuan Zhang
Atmos. Meas. Tech., 16, 15–28, https://doi.org/10.5194/amt-16-15-2023,https://doi.org/10.5194/amt-16-15-2023, 2023
Short summary
Long-term variation in aerosol lidar ratio in Shanghai based on Raman lidar measurements
Tongqiang Liu, Qianshan He, Yonghang Chen, Jie Liu, Qiong Liu, Wei Gao, Guan Huang, Wenhao Shi, and Xiaohong Yu
Atmos. Chem. Phys., 21, 5377–5391, https://doi.org/10.5194/acp-21-5377-2021,https://doi.org/10.5194/acp-21-5377-2021, 2021
Short summary
Long-term measurements (2009–2015) of non-methane hydrocarbons (NMHCs) in a megacity of China: implication for emission validation and source control
Yarong Peng, Hongli Wang, Qian Wang, Shengao Jing, Jingyu An, Yaqin Gao, Cheng Huang, Rusha Yan, Haixia Dai, Tiantao Cheng, Qiang Zhang, Meng Li, Li Li, Shengrong Lou, Shikang Tao, Qinyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1108,https://doi.org/10.5194/acp-2020-1108, 2020
Revised manuscript not accepted
Short summary

Cited articles

Bao, X. and Zhang, F.: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau, J. Climate, 26, 206–214, 2013. 
Boehm, M. T. and Lee, S.: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer–Dobson circulation, J. Atmos. Sci., 60, 247–261, 2003. 
Chen, G., Iwasaki, T., Qin, H., and Sha, W.: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA, J. Climate, 27, 5517–5537, 2014. 
Cohen, N. Y. and Boos, W. R.: Modulation of subtropical stratospheric gravity waves by equatorial rainfall, Geophys. Res. Lett., 43, 466–471, 2016. 
Corti, T. and Peter, T.: A simple model for cloud radiative forcing, Atmos. Chem. Phys., 9, 5751–5758, https://doi.org/10.5194/acp-9-5751-2009, 2009. 
Download
Short summary
In this work, we make the three main contributions. (1) We reveal the remarkable differences in the geographical distributions of cirrus over the Tibetan Plateau regarding the cloud top height. (2) The orography, gravity wave, and deep convection determine the formation of cirrus with a cloud top below 9, at 9–12, and above 12 km, respectively. (3) It is the first time the contributions of the Tibetan Plateau to the presence of cirrus on a regional scale are discussed.
Share
Altmetrics
Final-revised paper
Preprint