Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10531-2020
https://doi.org/10.5194/acp-20-10531-2020
Research article
 | 
10 Sep 2020
Research article |  | 10 Sep 2020

The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events

Jessica Oehrlein, Gabriel Chiodo, and Lorenzo M. Polvani

Related authors

Hunga Tonga-Hunga Ha’apai Volcano Impact Model Observation Comparison (HTHH-MOC) Project: Experiment Protocol and Model Descriptions
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412,https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024,https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Tropospheric links to uncertainty in stratospheric subseasonal predictions
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024,https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary
ClimKern v1.1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
EGUsphere, https://doi.org/10.5194/egusphere-2024-2561,https://doi.org/10.5194/egusphere-2024-2561, 2024
Short summary
Modulation of the Northern polar vortex by the Hunga Tonga-Hunga Ha'apai eruption and associated surface response
Ales Kuchar, Timofei Sukhodolov, Gabriel Chiodo, Andrin Jörimann, Jessica Kult-Herdin, Eugene Rozanov, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2024-1909,https://doi.org/10.5194/egusphere-2024-1909, 2024
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Age of air from in situ trace gas measurements: insights from a new technique
Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, and Colm Sweeney
Atmos. Chem. Phys., 24, 12425–12445, https://doi.org/10.5194/acp-24-12425-2024,https://doi.org/10.5194/acp-24-12425-2024, 2024
Short summary
Tropospheric links to uncertainty in stratospheric subseasonal predictions
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024,https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary
On the estimation of stratospheric age of air from correlations of multiple trace gases
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624,https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
The impact of El Niño–Southern Oscillation on the total column ozone over the Tibetan Plateau
Yang Li, Wuhu Feng, Xin Zhou, Yajuan Li, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 8277–8293, https://doi.org/10.5194/acp-24-8277-2024,https://doi.org/10.5194/acp-24-8277-2024, 2024
Short summary
Hemispheric asymmetry in recent stratospheric age of air changes
Kimberlee Dube, Susann Tegtmeier, Felix Ploeger, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1736,https://doi.org/10.5194/egusphere-2024-1736, 2024
Short summary

Cited articles

Albers, J. R. and Nathan, T. R.: Pathways for communicating the effects of stratospheric ozone to the polar vortex: Role of zonally asymmetric ozone, J. Atmos. Sci., 69, 785–801, 2012. a
Ayarzaguëna, B. and Serrano, E.: Monthly Characterization of the Tropospheric Circulation over the Euro-Atlantic Area in Relation with the Timing of Stratospheric Final Warmings, J. Climate, 22, 6313–6324, https://doi.org/10.1175/2009JCLI2913.1, 2009. a, b
Ayarzagüena, B., Polvani, L. M., Langematz, U., Akiyoshi, H., Bekki, S., Butchart, N., Dameris, M., Deushi, M., Hardiman, S. C., Jöckel, P., Klekociuk, A., Marchand, M., Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L. D., Plummer, D. A., Revell, L., Rozanov, E., Saint-Martin, D., Scinocca, J., Stenke, A., Stone, K., Yamashita, Y., Yoshida, K., and Zeng, G.: No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, 2018. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a, b
Baldwin, M. P. and Thompson, D. W.: A critical comparison of stratosphere-troposphere coupling indices, Q. J. Roy. Meteor. Soc., 135, 1661–1672, 2009. a
Download
Short summary
Winter winds in the stratosphere 10–50 km above the surface impact climate at the surface. Prior studies suggest that this interaction between the stratosphere and the surface is affected by ozone. We compare two ways of including ozone in computer simulations of climate. One method is more realistic but more expensive. We find that the method of including ozone in simulations affects the surface climate when the stratospheric winds are unusually weak but not when they are unusually strong.
Altmetrics
Final-revised paper
Preprint