Research article
08 Apr 2019
Research article | 08 Apr 2019
On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica
Étienne Vignon et al.
Related authors
Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020,https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models
Georgia Sotiropoulou, Etienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-328,https://doi.org/10.5194/acp-2020-328, 2020
Revised manuscript accepted for ACP
Short summary
Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau
Christophe Genthon, Luc Piard, Etienne Vignon, Jean-Baptiste Madeleine, Mathieu Casado, and Hubert Gallée
Atmos. Chem. Phys., 17, 691–704, https://doi.org/10.5194/acp-17-691-2017,https://doi.org/10.5194/acp-17-691-2017, 2017
Short summary
Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016,https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015,https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
A case study of a low-level jet during OPALE
H. Gallée, H. Barral, E. Vignon, and C. Genthon
Atmos. Chem. Phys., 15, 6237–6246, https://doi.org/10.5194/acp-15-6237-2015,https://doi.org/10.5194/acp-15-6237-2015, 2015
Short summary
On the drivers of droplet variability in Alpine mixed-phase clouds
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1036,https://doi.org/10.5194/acp-2020-1036, 2020
Preprint under review for ACP
Short summary
Three-dimensional radiative transfer effects on airborne and ground-based trace gas remote sensing
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020,https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020,https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models
Georgia Sotiropoulou, Etienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-328,https://doi.org/10.5194/acp-2020-328, 2020
Revised manuscript accepted for ACP
Short summary
Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019,https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
The vertical structure of precipitation at two stations in East Antarctica derived from micro rain radars
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019,https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018,https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018,https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Precipitation at Dumont d'Urville, Adélie Land, East Antarctica: the APRES3 field campaigns dataset
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018,https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Unraveling hydrometeor mixtures in polarimetric radar measurements
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018,https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Measurements of precipitation in Dumont d'Urville, Adélie Land, East Antarctica
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017,https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
A high space–time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale Mediterranean catchment (Auzon) of the Ardèche region, France
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017,https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau
Christophe Genthon, Luc Piard, Etienne Vignon, Jean-Baptiste Madeleine, Mathieu Casado, and Hubert Gallée
Atmos. Chem. Phys., 17, 691–704, https://doi.org/10.5194/acp-17-691-2017,https://doi.org/10.5194/acp-17-691-2017, 2017
Short summary
Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016,https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary
Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016,https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016,https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014
J. Grazioli, G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne
Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015,https://doi.org/10.5194/acp-15-13787-2015, 2015
Short summary
Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015,https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
A case study of a low-level jet during OPALE
H. Gallée, H. Barral, E. Vignon, and C. Genthon
Atmos. Chem. Phys., 15, 6237–6246, https://doi.org/10.5194/acp-15-6237-2015,https://doi.org/10.5194/acp-15-6237-2015, 2015
Short summary
Monitoring and prediction in early warning systems for rapid mass movements
M. Stähli, M. Sättele, C. Huggel, B. W. McArdell, P. Lehmann, A. Van Herwijnen, A. Berne, M. Schleiss, A. Ferrari, A. Kos, D. Or, and S. M. Springman
Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015,https://doi.org/10.5194/nhess-15-905-2015, 2015
Short summary
Hydrometeor classification from two-dimensional video disdrometer data
J. Grazioli, D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne
Atmos. Meas. Tech., 7, 2869–2882, https://doi.org/10.5194/amt-7-2869-2014,https://doi.org/10.5194/amt-7-2869-2014, 2014
Related subject area
A foehn-induced haze front in Beijing: observations and implications
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020,https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020,https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary
What controls the formation of nocturnal low-level stratus clouds over southern West Africa during the monsoon season?
Karmen Babić, Norbert Kalthoff, Bianca Adler, Julian F. Quinting, Fabienne Lohou, Cheikh Dione, and Marie Lothon
Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019,https://doi.org/10.5194/acp-19-13489-2019, 2019
Short summary
Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019,https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Low-level stratiform clouds and dynamical features observed within the southern West African monsoon
Cheikh Dione, Fabienne Lohou, Marie Lothon, Bianca Adler, Karmen Babić, Norbert Kalthoff, Xabier Pedruzo-Bagazgoitia, Yannick Bezombes, and Omar Gabella
Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019,https://doi.org/10.5194/acp-19-8979-2019, 2019
Short summary
Residual layer ozone, mixing, and the nocturnal jet in California's San Joaquin Valley
Dani J. Caputi, Ian Faloona, Justin Trousdell, Jeanelle Smoot, Nicholas Falk, and Stephen Conley
Atmos. Chem. Phys., 19, 4721–4740, https://doi.org/10.5194/acp-19-4721-2019,https://doi.org/10.5194/acp-19-4721-2019, 2019
Short summary
From weak to intense downslope winds: origin, interaction with boundary-layer turbulence and impact on CO2 variability
Jon Ander Arrillaga, Carlos Yagüe, Carlos Román-Cascón, Mariano Sastre, Maria Antonia Jiménez, Gregorio Maqueda, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 4615–4635, https://doi.org/10.5194/acp-19-4615-2019,https://doi.org/10.5194/acp-19-4615-2019, 2019
Short summary
Spatial and temporal variability of turbulence dissipation rate in complex terrain
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, Larry K. Berg, and Aditya Choukulkar
Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019,https://doi.org/10.5194/acp-19-4367-2019, 2019
Short summary
Characterizing wind gusts in complex terrain
Frederick Letson, Rebecca J. Barthelmie, Weifei Hu, and Sara C. Pryor
Atmos. Chem. Phys., 19, 3797–3819, https://doi.org/10.5194/acp-19-3797-2019,https://doi.org/10.5194/acp-19-3797-2019, 2019
Short summary
Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity
Kunihiko Kodera, Nawo Eguchi, Rei Ueyama, Yuhji Kuroda, Chiaki Kobayashi, Beatriz M. Funatsu, and Chantal Claud
Atmos. Chem. Phys., 19, 2655–2669, https://doi.org/10.5194/acp-19-2655-2019,https://doi.org/10.5194/acp-19-2655-2019, 2019
Short summary
The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study
Karmen Babić, Bianca Adler, Norbert Kalthoff, Hendrik Andersen, Cheikh Dione, Fabienne Lohou, Marie Lothon, and Xabier Pedruzo-Bagazgoitia
Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019,https://doi.org/10.5194/acp-19-1281-2019, 2019
Short summary
Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: an observation-based analysis of conditions and processes
Bianca Adler, Karmen Babić, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, Cheikh Dione, Xabier Pedruzo-Bagazgoitia, and Hendrik Andersen
Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019,https://doi.org/10.5194/acp-19-663-2019, 2019
Short summary
High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018,https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city
Mikhail Varentsov, Pavel Konstantinov, Alexander Baklanov, Igor Esau, Victoria Miles, and Richard Davy
Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/10.5194/acp-18-17573-2018,https://doi.org/10.5194/acp-18-17573-2018, 2018
Short summary
A comparison of plume rise algorithms to stack plume measurements in the Athabasca oil sands
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018,https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions
Andrei Serafimovich, Stefan Metzger, Jörg Hartmann, Katrin Kohnert, Donatella Zona, and Torsten Sachs
Atmos. Chem. Phys., 18, 10007–10023, https://doi.org/10.5194/acp-18-10007-2018,https://doi.org/10.5194/acp-18-10007-2018, 2018
Short summary
Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing
Zhiheng Liao, Jiaren Sun, Jialin Yao, Li Liu, Haowen Li, Jian Liu, Jielan Xie, Dui Wu, and Shaojia Fan
Atmos. Chem. Phys., 18, 6771–6783, https://doi.org/10.5194/acp-18-6771-2018,https://doi.org/10.5194/acp-18-6771-2018, 2018
Short summary
Observational analyses of dramatic developments of a severe air pollution event in the Beijing area
Ju Li, Jielun Sun, Mingyu Zhou, Zhigang Cheng, Qingchun Li, Xiaoyan Cao, and Jingjiang Zhang
Atmos. Chem. Phys., 18, 3919–3935, https://doi.org/10.5194/acp-18-3919-2018,https://doi.org/10.5194/acp-18-3919-2018, 2018
Short summary
The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole
William Neff, Jim Crawford, Marty Buhr, John Nicovich, Gao Chen, and Douglas Davis
Atmos. Chem. Phys., 18, 3755–3778, https://doi.org/10.5194/acp-18-3755-2018,https://doi.org/10.5194/acp-18-3755-2018, 2018
Short summary
Mountain waves modulate the water vapor distribution in the UTLS
Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp
Atmos. Chem. Phys., 17, 14853–14869, https://doi.org/10.5194/acp-17-14853-2017,https://doi.org/10.5194/acp-17-14853-2017, 2017
In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2 decades of IAGOS long-term routine observation
Florian Berkes, Patrick Neis, Martin G. Schultz, Ulrich Bundke, Susanne Rohs, Herman G. J. Smit, Andreas Wahner, Paul Konopka, Damien Boulanger, Philippe Nédélec, Valerie Thouret, and Andreas Petzold
Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017,https://doi.org/10.5194/acp-17-12495-2017, 2017
Short summary
A meteorological and chemical overview of the DACCIWA field campaign in West Africa in June–July 2016
Peter Knippertz, Andreas H. Fink, Adrien Deroubaix, Eleanor Morris, Flore Tocquer, Mat J. Evans, Cyrille Flamant, Marco Gaetani, Christophe Lavaysse, Celine Mari, John H. Marsham, Rémi Meynadier, Abalo Affo-Dogo, Titike Bahaga, Fabien Brosse, Konrad Deetz, Ridha Guebsi, Issaou Latifou, Marlon Maranan, Philip D. Rosenberg, and Andreas Schlueter
Atmos. Chem. Phys., 17, 10893–10918, https://doi.org/10.5194/acp-17-10893-2017,https://doi.org/10.5194/acp-17-10893-2017, 2017
Short summary
Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality
Andrea Mues, Maheswar Rupakheti, Christoph Münkel, Axel Lauer, Heiko Bozem, Peter Hoor, Tim Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8157–8176, https://doi.org/10.5194/acp-17-8157-2017,https://doi.org/10.5194/acp-17-8157-2017, 2017
Short summary
Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations
Narendra Singh, Raman Solanki, Narendra Ojha, Ruud H. H. Janssen, Andrea Pozzer, and Surendra K. Dhaka
Atmos. Chem. Phys., 16, 10559–10572, https://doi.org/10.5194/acp-16-10559-2016,https://doi.org/10.5194/acp-16-10559-2016, 2016
Short summary
Estimation of the advection effects induced by surface heterogeneities in the surface energy budget
Joan Cuxart, Burkhard Wrenger, Daniel Martínez-Villagrasa, Joachim Reuder, Marius O. Jonassen, Maria A. Jiménez, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jens Dünnermann, Laura Conangla, and Anirban Garai
Atmos. Chem. Phys., 16, 9489–9504, https://doi.org/10.5194/acp-16-9489-2016,https://doi.org/10.5194/acp-16-9489-2016, 2016
Short summary
Turbulence kinetic energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days
Erik Nilsson, Fabienne Lohou, Marie Lothon, Eric Pardyjak, Larry Mahrt, and Clara Darbieu
Atmos. Chem. Phys., 16, 8849–8872, https://doi.org/10.5194/acp-16-8849-2016,https://doi.org/10.5194/acp-16-8849-2016, 2016
Short summary
How stratospheric are deep stratospheric intrusions? LUAMI 2008
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016,https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation
Astrid Lampert, Falk Pätzold, Maria Antonia Jiménez, Lennart Lobitz, Sabrina Martin, Gerald Lohmann, Guylaine Canut, Dominique Legain, Jens Bange, Dani Martínez-Villagrasa, and Joan Cuxart
Atmos. Chem. Phys., 16, 8009–8021, https://doi.org/10.5194/acp-16-8009-2016,https://doi.org/10.5194/acp-16-8009-2016, 2016
Short summary
Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation
A. D. Elvidge, I. A. Renfrew, A. I. Weiss, I. M. Brooks, T. A. Lachlan-Cope, and J. C. King
Atmos. Chem. Phys., 16, 1545–1563, https://doi.org/10.5194/acp-16-1545-2016,https://doi.org/10.5194/acp-16-1545-2016, 2016
Short summary
Motion-correlated flow distortion and wave-induced biases in air–sea flux measurements from ships
J. Prytherch, M. J. Yelland, I. M. Brooks, D. J. Tupman, R. W. Pascal, B. I. Moat, and S. J. Norris
Atmos. Chem. Phys., 15, 10619–10629, https://doi.org/10.5194/acp-15-10619-2015,https://doi.org/10.5194/acp-15-10619-2015, 2015
Short summary
Cited articles
Adams, N.: Identifying the Characteristics of Strong Southerly Wind Events at
Casey Station in East Antarctica Using a Numerical Weather Prediction System,
Mon. Weather Rev., 133, 3548–3561,
https://doi.org/10.1175/MWR3050.1, 2005.
a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H.,
van den
Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and
Fettweis, X.: Estimation of the Antarctic surface mass balance using the
regional climate model MAR (1979–2015) and identification of dominant
processes, The Cryosphere, 13, 281–296,
https://doi.org/10.5194/tc-13-281-2019, 2019.
a
Alexander, S. and Murphy, D.: The Seasonal Cycle of Lower-Tropospheric
Gravity
Wave Activity at Davis, Antarctica (69
∘ S, 78
∘ E), J.
Atmos.
Sci., 72, 1010–1021,
https://doi.org/10.1175/JAS-D-14-0171.1, 2015.
a
Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard,
G., Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal
variations in drag coefficients over a sastrugi-covered snowfield of coastal
East Antarctica, Bound.-Lay. Meteorol., 164, 107–133,
https://doi.org/10.1007/s10546-017-0242-5, 2017.
a
Argentini, S. and Mastrantonio, G.: Barrier winds recorded during two summer
Antarctic campaigns and their interaction with the katabatic flows as
observed by a tri-axial Doppler sodar, Int. J. Remote
Sens., 15, 455–466,
https://doi.org/10.1080/01431169408954086, 1994.
a
Argentini, S., Mastrantonio, G., Viola, A., Pettre, P., and Dargaud, G.:
Sodar
performance and preliminary results after one year of measurements at Adelie
land coast, east Antarctica, Bound.-Lay. Meteorol., 81, 75–103,
https://doi.org/10.1007/BF00119401, 1996.
a,
b
Barthélemy, A., Goose, H., Mathiot, P., and Fichefet, T.: Inclusion of a
katabatic wind correction in a coarse-resolution global coupled climate
model, Ocean Modell., 48, 45–54,
https://doi.org/10.1007/s10546-017-0304-8, 2012.
a
Bintanja, R.: Mesoscale Meteorological Conditions in Dronning Maud Land,
Antarctica, during Summer: A Qualitative Analysis of Forcing Mechanisms,
J. Appl. Meteorol., 39, 2348–2370, 2000.
a,
b
Bintanja, R., Severijns, C., Haarsma, R., and Hazeleger, W.: The future of
Antarctica's surface winds simulated by a high-resolution global climate
model: 1. Model description and validation, J. Geophys. Res.-Atmos., 119, 7136–7159,
https://doi.org/10.1002/2013JD020847, 2014.
a
Bock, O., Bosser, P., Bourcy, T., David, L., Goutail, F., Hoareau, C.,
Keckhut, P., Legain, D., Pazmino, A., Pelon, J., Pipis, K., Poujol, G.,
Sarkissian, A., Thom, C., Tournois, G., and Tzanos, D.: Accuracy assessment
of water vapour measurements from in situ and remote sensing techniques
during the DEMEVAP 2011 campaign at OHP, Atmos. Meas. Tech., 6, 2777–2802,
https://doi.org/10.5194/amt-6-2777-2013, 2013.
a
Bracegirdle, T. J. and Marshall, G. J.: The Reliability of Antarctic
Tropospheric Pressure and Temperature in the Latest Global Reanalyses,
J. Clim., 25, 7138–7146,
https://doi.org/10.1175/JCLI-D-11-00685.1, 2012.
a,
b
Bromwich, D. H., Parish, T., Pellegrini, A., Stearns, C. R., and Weidner,
G. A.: Spatial and temporal variations of the intense katabatic winds at
Terra Nova Bay, Antarctica, Antarctic
Meteorology and Climatology: Studies
Based on Automatic Weather Stations, Amer. Geophys. Union, 47–68, 1993. a
Bromwich, D. H., Steinhoff, D. F., Simmonds, I., Keay, K., and Fogt, R. L.:
Climatological aspects of cyclogenesis near Adélie Land Antarctica, Tellus
A, 63, 921–938,
https://doi.org/10.1111/j.1600-0870.2011.00537.x, 2011.
a,
b
Bromwich, D. H., Otieno, F. O., Hines, K. M., Manning, K. W., and Shilo, E.:
Comprehensive evaluation of polar weather research and forecasting model
performance in the Antarctic, J. Geophys. Res.-Atmos.,
118, 274–292,
https://doi.org/10.1029/2012JD018139, 2013.
a,
b
Carrasco, J. F., Bromwich, D. H., and Monaghan, A. J.: Distribution and
Characteristics of Mesoscale Cyclones in the Antarctic: Ross Sea Eastward to
the Weddell Sea, Mon. Weather Rev., 131, 289–301,
https://doi.org/10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2, 2003.
a
Climate Change Service: ERA Interim and ERA5 reanalyses, available at:
https://climate.copernicus.euTS2, last access: 1 April 2019.
Connolley, W. M. and King, J. C.: Atmospheric water-vapour transport to
Antarctica inferred from radiosonde data, Q. J. Roy.
Meteorol. Soc., 119, 325–342,
https://doi.org/10.1002/qj.49711951006, 1993.
a
Deb, P., Andrew, O., Scott, H. J., Tony, P., John, T., Daniel, B., O., P. J.,
and Steve, C.: An assessment of the Polar Weather Research and Forecasting
(WRF) model representation of near-surface meteorological variables over West
Antarctica, J. Geophys. Res.-Atmos., 121, 1532–1548,
https://doi.org/10.1002/2015JD024037, 2016.
a,
b
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P. , Beljaars, A. C., van de Berg, L. , Bidlot,
J. , Bormann, N., Delsol, C., Dragani, R., Fuentes, M. , Geer, A. J.,
Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L.,
Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P.,Monge-Sanz,
B. M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J., and Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system,
Q. J. R. Meteorol. Soc., 137, 553–597, 2011. a
Dufour, A., Charrondière, C., and Zolina, O.: Moisture transport in
observations and reanalyses as a proxy for snow accumulation in East
Antarctica, The Cryosphere, 13, 413–425,
https://doi.org/10.5194/tc-13-413-2019, 2019.
a
Durán-Alarcón, C., Boudevillain, B., Genthon, C., Grazioli, J.,
Souverijns,
N., van Lipzig, N. P. M., Gorodetskaya, I. V., and Berne, A.: The vertical
structure of precipitation at two stations in East Antarctica derived from
micro rain radars, The Cryosphere, 13, 247–264,
https://doi.org/10.5194/tc-13-247-2019, 2019.
a
ECMWF: Advancing global NWP through international collaboration, available
at:
https://www.ecmwf.int, last access: 1 April 2019.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N.
E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G.,
Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske,
D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni,
P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel,
R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill,
W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk,
B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A.,
Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N.,
Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto,
B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti,
A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,
The Cryosphere, 7, 375–393,
https://doi.org/10.5194/tc-7-375-2013, 2013.
a,
b
Gallée, H. and Pettré, P.: Dynamical Constraints on Katabatic Wind
Cessation in Adélie Land, Antarctica, J. Atmos.
Sci., 55, 1755–1770,
https://doi.org/10.1175/1520-0469(1998)055<1755:DCOKWC>2.0.CO;2, 1998.
a,
b,
c,
d
Gallée, H. and Schayes, G.: Development of a three-dimensional meso-gamma
primitive equation model, katabatic winds simulation in the area of Terra
Nova Bay, Antarctica, Mon. Weather Rev., 12, 671–685, 1994. a
Gallée, H., Pettré, P., and Schayes, G.: Sudden cessation of
katabatic
winds in Adélie Land, Antarctica, J. Appl. Meteorol.,
35, 1142–1152, 1996. a
Genthon, C. and Krinner, G.: Convergence and disposal of energy and moisture
on
the Antarctic polar cap from ECMWFreanalyses and forecasts, J. Clim., 11,
1703–1716, 1998. a
Gera, B. S., Argentini, S., Mastrantonio, G., Viola, A., and Weill, A.:
Characteristics of the boundary layer thermal structure at a coastal region
of Adélie Land, East Antarctica, Ant. Sci., 10, 89–98,
https://doi.org/10.1017/S0954102098000121, 1998.
a
Grazioli, J., Genthon, C., Boudevillain, B., Duran-Alarcon, C., Del Guasta,
M.,
Madeleine, J.-B., and Berne, A.: Measurements of precipitation in Dumont
d'Urville, Adélie Land, East Antarctica, The Cryosphere, 11, 1797–1811,
https://doi.org/10.5194/tc-11-1797-2017, 2017a.
a
Grazioli, J., Madeleine, J.-B., Gallée, H., Forbes, R. M., Genthon, C.,
Krinner, G., and Berne, A.: Katabatic winds diminish precipitation
contribution to the Antarctic ice mass balance, P. Natl.
Acad. Sci. USA, 114, 10858–10863,
https://doi.org/10.1073/pnas.1707633114,
2017b.
a,
b,
c
Ingleby, B.: An assessment of different radiosonde type 2015/2016, ECMWF
Technical Memorandum, p. 807, 2017. a
King, J. C.: Low-level wind profiles at an Antarctic coastal station,
Antarct.
Sci., 1, 169–178, 1989. a
King, J. C. and Anderson, P. S.: A humidity climatology for Halley,
Antarctica, based on frost-point hygrometer measurements, Antarct.
Sci., 11, 100–104, 1999. a
King, J. C., Argentini, S. A., and Anderson, P. S.: Contrasts between the
summertime surface energy balance and boundary layer structure at Dome C
and Halley stations, Antarctica, J. Geophys. Res., 111, D02105,
https://doi.org/10.1029/2005JD006130, 2006.
a
Kottmeier, C.: The influence of baroclinicity and stability on the wind and
temperature conditions at the Georg von Neumayer Antarctic station,
Tellus A, 38, 263–276, 1986. a
König-Langlo, G., King, J. C., and Pettré, P.: Climatology of the
three
coastal Antarctic stations Dumont d'Urville, Neumayer, and Halley, J.
Geophys. Res.-Atmos., 103, 10935–10946,
https://doi.org/10.1029/97JD00527, 1998.
a,
b,
c
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., van Meijgaard,
E.,
van de Berg, W. J., Palm, S. P., and Sanz Rodrigo, J.: Modeling drifting snow
in Antarctica with a regional climate model: 1. Methods and model
evaluation, J. Geophys. Res.-Atmos., 117, D05108,
https://doi.org/10.1029/2011JD016145, d05108, 2012.
a
Listowski, C. and Lachlan-Cope, T.: The microphysics of clouds over the
Antarctic Peninsula – Part 2: modelling aspects within Polar WRF,
Atmos. Chem. Phys., 17, 10195–10221,
https://doi.org/10.5194/acp-17-10195-2017, 2017.
a
Milosevich, L. M., Paukkunen, A., Vömel, H., and Oltmans, S. J.:
Development and Validation of a Time-Lag Correction for Vaisala Radiosonde
Humidity Measurements, J. Atmos. Ocean. Technol., 21, 1305–1327,
https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2, 2004.
a
Monaghan, A. J., Bromwich, D. H., Powers, J. G., and Manning, K. W.: The
Climate of the McMurdo, Antarctica, Region as Represented by One Year
of Forecasts from the Antarctic Mesoscale Prediction System, J.
Clim., 18, 1174–1189,
https://doi.org/10.1175/JCLI3336.1, 2005.
a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics
on
the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137,
991–1007,
https://doi.org/10.1175/2008MWR2556.1, 2009.
a
Naithani, J., Gallée, H., and Schayes, G.: Marine air intrusion into the
Adelie Land sector of East Antarctica: A study using the regional
climate model (MAR), J. Geophys. Res.-Atmos., 107,
https://doi.org/10.1029/2000JD000274, 2002.
a
Naithani, J., Argentini, S., and Schayes, G.: Analysis of strong wind events
around Adelie land, East Antarctica, Ann. Geophys., 46, 2003.
a,
b
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its
Numerical Stability and Application to a Regional Prediction of Advection
Fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006.
a
Nicolas, J. P. and Bromwich, D. H.: New Reconstruction of Antarctic
Near-Surface Temperatures: Multidecadal Trends and Reliability of Global
Reanalyses, J. Clim., 27, 8070–8093,
https://doi.org/10.1175/JCLI-D-13-00733.1, 2014.
a
Nygård, T., Valkonen, T., and Vihma, T.: Antarctic Low-Tropospheric
Humidity Inversions: 10-Yr Climatology, J. Clim., 26, 5205–5219,
https://doi.org/10.1175/JCLI-D-12-00446.1, 2013.
a,
b
Orr, A., Phillips, T., Webster, S., Elvidge, A., Weeks, M., Hosking, S., and
Turner, J.: Met Office Unified Model high-resolution simulations of a strong
wind event in Antarctica, Q. J. Roy. Meteorol.
Soc., 140, 2287–2297,
https://doi.org/10.1002/qj.2296, 2014.
a
Parish, T. R. and Bromwich, D. H.: Reexamination of the Near-Surface Airflow
over the Antarctic Continent and Implications of Atmospheric Circulations
at High Southern Latitudes, Mon. Weather Rev., 135, 1961–1973,
https://doi.org/10.1175/MWR3374.1, 2007.
a,
b
Parish, T. R., Pettré, P., and Wendler, G.: A numerical study of the
diurnal variation of the Adelie Land katabatic wind regime, J.
Geophys. Res.-Atmos., 98, 12933–12947,
https://doi.org/10.1029/92JD02080, 1993.
a
Pattyn, F., Matsuoka, K., and Berte, J.: Glacio-meteorological conditions in
the vicinity of the Belgian Princess Elisabeth Station, Antarctica,
Antarct.
Sci., 22, 79–85,
https://doi.org/10.1017/S0954102009990344, 2010.
a
Pettré, P., Payan, C., and Parish, T. R.: Interaction of katabatic flow
with local thermal effects in a coastal region of Adelie Land, east
Antarctica, J. Geophys. Res.-Atmos., 98,
10429–10440,
https://doi.org/10.1029/92JD02969, 1993.
a
Renfrew, I. A.: The dynamics of idealized katabatic flow over a moderate
slope
and ice shelf, Q. J. Roy. Meteorol. Soc., 130,
1023–1045,
https://doi.org/10.1256/qj.03.24, 2004.
a
Renfrew, I. A. and Anderson, P. S.: Profiles of katabatic flow in summer and
winter over Coats Land, Antarctica, Q. J. Roy.
Meteorol. Soc., 132, 779–802,
https://doi.org/10.1256/qj.05.148, 2007.
a
Sanz Rodrigo, J., Buchlin, J.-M., van Beeck, J., Lenaerts, J. T. M., and
van den Broeke, M. R.: Evaluation of the Antarctic surface wind climate
from ERA reanalyses and RACMO2/ANT simulations based on automatic weather
stations, Clim. Dynam., 40, 353–376,
https://doi.org/10.1007/s00382-012-1396-y,
2013.
a
Seefeldt, M. W., Tripoli, G. J., and Stearns, C. R.: A High-Resolution
Numerical Simulation of the Wind Flow in the Ross Island Region, Antarctica,
Mon. Weather Rev., 131, 435–458,
https://doi.org/10.1175/1520-0493(2003)131<0435:AHRNSO>2.0.CO;2, 2003.
a
Sorbjan, Z., Kodama, Y., and Wendler, G.: Observational Study of the
Atmospheric Boundary Layer over Antarctica, J. Clim. Appl.
Meteorol., 25, 641–651,
https://doi.org/10.1175/1520-0450, 1986.
a
Streten, N. A.: A review of the climate of Mawson – a representative
strong
wind site in East Antarctica, Antarct. Sci., 2, 79–89, 1990. a
Tomasi, C., Petkov, B., Benedetti, E., Vitale, V., Pellegrini, A., Dargaud,
G.,
De Silvestri, L., Grigioni, P., Fossat, E., Roth, W. L., and Valenziano, L.:
Characterization of the atmospheric temperature and moisture conditions above
Dome C (Antarctica) during austral summer and fall months, J.
Geophys.
Res., 111, D20305,
https://doi.org/10.1029/2005JD006976, 2006.
a
Turner, J., Lachlan-Cope, T. A., Marshall, G. J., Pendlebury, S., and Adams,
N.: An extreme wind event at Casey Station, Antarctica, J. Geophys. Res.,
106, 7291–7311, 2001. a
Uotila, P., Vihma, T., Pezza, A. B., Simmonds, I., Keay, K., and Lynch,
A. H.:
Relationships between Antarctic cyclones and surface conditions as derived
from high-resolution numerical weather prediction data, J.
Geophys. Res.-Atmos., 116, D07109,
https://doi.org/10.1029/2010JD015358, 2011.
a
Van den Broeke, M. and Van Lipzig, N. P. M.: Factors Controlling the
Near-Surface Wind Field in Antarctica, Mon. Weather Rev., 21,
1417–1431, 2003.
a,
b,
c,
d
Van den Broeke, M. R., Van Lipzig, N. P. M., and Van Meijgaard , E.:
Momentum Budget of the East Antarctic Atmospheric Boundary Layer: Results
of a Regional Climate Model, J. Atmos. Sci., 59,
3117–3129,
https://doi.org/10.1175/1520-0469(2002)059<3117:MBOTEA>2.0.CO;2, 2002.
a,
b
Van Lipzig, N. P. M. and Van Den Broeke, M. R.: A model study on the
relation between atmospheric boundary-layer dynamics and poleward atmospheric
moisture transport in Antarctica, Tellus A, 54, 497–511,
https://doi.org/10.3402/tellusa.v54i5.12168, 2002.
a,
b,
c
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E.,
Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M.,
Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht,
K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den
Broeke, M. R.: Modelling the climate and surface mass balance of polar ice
sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12,
1479–1498,
https://doi.org/10.5194/tc-12-1479-2018, 2018.
a
Vignon, E., Hourdin, F., Genthon, C., Van de Wiel, B. J. H., Gallée, H.,
Madeleine, J.-B., and Beaumet, J.: Modeling the Dynamics of the Atmospheric
Boundary Layer Over the Antarctic Plateau With a General Circulation Model,
J. Adv. Model Earth Sy., 10, 98–125,
https://doi.org/10.1002/2017MS001184, 2018.
a,
b
Wendler, G., André, J. C., Pettré, P., Gosink, J., and Parish, T.:
Katabatic winds in Adélie Coast, Antarctica Meteorology and
Climatology: Studies Based on Automatic Weather Stations, american
Geophysical Union, Washington, DC,
https://doi.org/10.1029/AR061p0023, 1993.
a
Wille, J. D., Bromwich, D. H., Cassano, J. J., Nigro, M. A., Mateling, M. E.,
and Lazzara, M. A.: Evaluation of the AMPS Boundary Layer Simulations on the
Ross Ice Shelf, Antarctica, with Unmanned Aircraft Observations, J.
Appl. Meteorol. Clim., 56, 2239–2258,
https://doi.org/10.1175/JAMC-D-16-0339.1, 2017.
a
Yurchak, B. S.: An Assessment of Radiosonde Launch Conditions Affected by the
Surface Wind, Russ. Meteorol. Hydrol., 38, 159–167, 2013. a
Zhang, Y., Seidel, D. J., Golaz, J.-C., Deser, C., and Tomas, R. A.:
Climatological Characteristics of Arctic and Antarctic Surface-Based
Inversions, J. Clim., 24, 5167–5186,
https://doi.org/10.1175/2011JCLI4004.1,
2011.
a