Articles | Volume 19, issue 7
https://doi.org/10.5194/acp-19-4659-2019
https://doi.org/10.5194/acp-19-4659-2019
Research article
 | 
08 Apr 2019
Research article |  | 08 Apr 2019

On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica

Étienne Vignon, Olivier Traullé, and Alexis Berne

Related authors

A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024,https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023,https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Reanalysis representation of low-level winds in the Antarctic near-coastal region
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022,https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022,https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Clouds drive differences in future surface melt over the Antarctic ice shelves
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022,https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Air–sea interactions in stable atmospheric conditions: lessons from the desert semi-enclosed Gulf of Eilat (Aqaba)
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
Atmos. Chem. Phys., 24, 6177–6195, https://doi.org/10.5194/acp-24-6177-2024,https://doi.org/10.5194/acp-24-6177-2024, 2024
Short summary
Overview: Quasi-Lagrangian observations of Arctic air mass transformations – Introduction and initial results of the HALO–(AC)3 aircraft campaign
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schäfer, Vera Schemannn, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
EGUsphere, https://doi.org/10.5194/egusphere-2024-783,https://doi.org/10.5194/egusphere-2024-783, 2024
Short summary
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024,https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023,https://doi.org/10.5194/acp-23-15473-2023, 2023
Short summary
The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic
Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen
Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023,https://doi.org/10.5194/acp-23-15365-2023, 2023
Short summary

Cited articles

Adams, N.: Identifying the Characteristics of Strong Southerly Wind Events at Casey Station in East Antarctica Using a Numerical Weather Prediction System, Mon. Weather Rev., 133, 3548–3561, https://doi.org/10.1175/MWR3050.1, 2005. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Alexander, S. and Murphy, D.: The Seasonal Cycle of Lower-Tropospheric Gravity Wave Activity at Davis, Antarctica (69 S, 78 E), J. Atmos. Sci., 72, 1010–1021, https://doi.org/10.1175/JAS-D-14-0171.1, 2015. a
Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard, G., Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal variations in drag coefficients over a sastrugi-covered snowfield of coastal East Antarctica, Bound.-Lay. Meteorol., 164, 107–133, https://doi.org/10.1007/s10546-017-0242-5, 2017. a
Argentini, S. and Mastrantonio, G.: Barrier winds recorded during two summer Antarctic campaigns and their interaction with the katabatic flows as observed by a tri-axial Doppler sodar, Int. J. Remote Sens., 15, 455–466, https://doi.org/10.1080/01431169408954086, 1994. a
Download
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Altmetrics
Final-revised paper
Preprint