Articles | Volume 18, issue 7
Atmos. Chem. Phys., 18, 4753–4763, 2018
https://doi.org/10.5194/acp-18-4753-2018
Atmos. Chem. Phys., 18, 4753–4763, 2018
https://doi.org/10.5194/acp-18-4753-2018

Research article 09 Apr 2018

Research article | 09 Apr 2018

The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s

Zhicong Yin and Huijun Wang

Related authors

Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010
Yijia Zhang, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020,https://doi.org/10.5194/acp-20-12211-2020, 2020
Short summary
Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations
Zhicong Yin, Bufan Cao, and Huijun Wang
Atmos. Chem. Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019,https://doi.org/10.5194/acp-19-13933-2019, 2019
Short summary
The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing–Tianjin–Hebei region
Wogu Zhong, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 19, 5941–5957, https://doi.org/10.5194/acp-19-5941-2019,https://doi.org/10.5194/acp-19-5941-2019, 2019
Short summary
Links of climate variability in Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollution in North China
Zhicong Yin, Huijun Wang, Yuyan Li, Xiaohui Ma, and Xinyu Zhang
Atmos. Chem. Phys., 19, 3857–3871, https://doi.org/10.5194/acp-19-3857-2019,https://doi.org/10.5194/acp-19-3857-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent and boundary layer characteristics during VOCALS-REx
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 21, 1937–1961, https://doi.org/10.5194/acp-21-1937-2021,https://doi.org/10.5194/acp-21-1937-2021, 2021
Short summary
A foehn-induced haze front in Beijing: observations and implications
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020,https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020,https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5)
Rayonil G. Carneiro and Gilberto Fisch
Atmos. Chem. Phys., 20, 5547–5558, https://doi.org/10.5194/acp-20-5547-2020,https://doi.org/10.5194/acp-20-5547-2020, 2020
Short summary
Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020,https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary

Cited articles

Cai, W. J., Li, K., Liao, H., Wang, H. J., and Wu, L. X.: Weather Conditions Conducive to Beijing Severe Haze More Frequent under Climate Change, Nature Climate Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017.
Chen, H. P. and Wang, H. J.: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012, J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015.
Chen, H. S. and Qi, D. X. B.: Influence of snow melt anomaly over the mid-high latitudes of the Eurasian continent on summer low temperatures in northeastern China, Chinese Journal of Atmospheric Sciences, 37, 1337–1347, 2013 (in Chinese).
CMA: Ground observations, available at: http://data.cma.cn/, last access: 3 April 2018.
Cohen, J., Barlow, M., Kushner, P. J., and Saito, K.: Stratosphere and troposphere coupling and links with Eurasian land surface variability, J Climate, 20, 5335–5343, 2007.
Download
Short summary
In China, the haze pollution in December has become increasingly serious over recent decades. The relationship between the snow cover and the December haze days was analyzed. This relationship significantly strengthened after the mid-1990s, which is attributed to the effective connections between the snow cover and the Eurasian atmospheric circulations.
Altmetrics
Final-revised paper
Preprint