Research article
09 Apr 2018
Research article | 09 Apr 2018
The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s
Zhicong Yin and Huijun Wang
Related authors
Links of climate variability in Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollution in North China
Zhicong Yin, Huijun Wang, Yuyan Li, Xiaohui Ma, and Xinyu Zhang
Atmos. Chem. Phys., 19, 3857–3871, https://doi.org/10.5194/acp-19-3857-2019,https://doi.org/10.5194/acp-19-3857-2019, 2019
Short summary
Pathway dependence of ecosystem responses in China to 1.5 °C global warming
Xu Yue, Hong Liao, Huijun Wang, Tianyi Zhang, Nadine Unger, Stephen Sitch, Zhaozhong Feng, and Jia Yang
Atmos. Chem. Phys., 20, 2353–2366, https://doi.org/10.5194/acp-20-2353-2020,https://doi.org/10.5194/acp-20-2353-2020, 2020
Short summary
Links of climate variability in Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollution in North China
Zhicong Yin, Huijun Wang, Yuyan Li, Xiaohui Ma, and Xinyu Zhang
Atmos. Chem. Phys., 19, 3857–3871, https://doi.org/10.5194/acp-19-3857-2019,https://doi.org/10.5194/acp-19-3857-2019, 2019
Short summary
Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s
T. Wang, H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu
Atmos. Chem. Phys., 13, 12433–12450, https://doi.org/10.5194/acp-13-12433-2013,https://doi.org/10.5194/acp-13-12433-2013, 2013
Related subject area
A foehn-induced haze front in Beijing: observations and implications
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020,https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020,https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary
What controls the formation of nocturnal low-level stratus clouds over southern West Africa during the monsoon season?
Karmen Babić, Norbert Kalthoff, Bianca Adler, Julian F. Quinting, Fabienne Lohou, Cheikh Dione, and Marie Lothon
Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019,https://doi.org/10.5194/acp-19-13489-2019, 2019
Short summary
Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019,https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Low-level stratiform clouds and dynamical features observed within the southern West African monsoon
Cheikh Dione, Fabienne Lohou, Marie Lothon, Bianca Adler, Karmen Babić, Norbert Kalthoff, Xabier Pedruzo-Bagazgoitia, Yannick Bezombes, and Omar Gabella
Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019,https://doi.org/10.5194/acp-19-8979-2019, 2019
Short summary
Residual layer ozone, mixing, and the nocturnal jet in California's San Joaquin Valley
Dani J. Caputi, Ian Faloona, Justin Trousdell, Jeanelle Smoot, Nicholas Falk, and Stephen Conley
Atmos. Chem. Phys., 19, 4721–4740, https://doi.org/10.5194/acp-19-4721-2019,https://doi.org/10.5194/acp-19-4721-2019, 2019
Short summary
From weak to intense downslope winds: origin, interaction with boundary-layer turbulence and impact on CO2 variability
Jon Ander Arrillaga, Carlos Yagüe, Carlos Román-Cascón, Mariano Sastre, Maria Antonia Jiménez, Gregorio Maqueda, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 4615–4635, https://doi.org/10.5194/acp-19-4615-2019,https://doi.org/10.5194/acp-19-4615-2019, 2019
Short summary
Spatial and temporal variability of turbulence dissipation rate in complex terrain
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, Larry K. Berg, and Aditya Choukulkar
Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019,https://doi.org/10.5194/acp-19-4367-2019, 2019
Short summary
Characterizing wind gusts in complex terrain
Frederick Letson, Rebecca J. Barthelmie, Weifei Hu, and Sara C. Pryor
Atmos. Chem. Phys., 19, 3797–3819, https://doi.org/10.5194/acp-19-3797-2019,https://doi.org/10.5194/acp-19-3797-2019, 2019
Short summary
Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity
Kunihiko Kodera, Nawo Eguchi, Rei Ueyama, Yuhji Kuroda, Chiaki Kobayashi, Beatriz M. Funatsu, and Chantal Claud
Atmos. Chem. Phys., 19, 2655–2669, https://doi.org/10.5194/acp-19-2655-2019,https://doi.org/10.5194/acp-19-2655-2019, 2019
Short summary
The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study
Karmen Babić, Bianca Adler, Norbert Kalthoff, Hendrik Andersen, Cheikh Dione, Fabienne Lohou, Marie Lothon, and Xabier Pedruzo-Bagazgoitia
Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019,https://doi.org/10.5194/acp-19-1281-2019, 2019
Short summary
Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: an observation-based analysis of conditions and processes
Bianca Adler, Karmen Babić, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, Cheikh Dione, Xabier Pedruzo-Bagazgoitia, and Hendrik Andersen
Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019,https://doi.org/10.5194/acp-19-663-2019, 2019
Short summary
High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018,https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city
Mikhail Varentsov, Pavel Konstantinov, Alexander Baklanov, Igor Esau, Victoria Miles, and Richard Davy
Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/10.5194/acp-18-17573-2018,https://doi.org/10.5194/acp-18-17573-2018, 2018
Short summary
A comparison of plume rise algorithms to stack plume measurements in the Athabasca oil sands
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018,https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions
Andrei Serafimovich, Stefan Metzger, Jörg Hartmann, Katrin Kohnert, Donatella Zona, and Torsten Sachs
Atmos. Chem. Phys., 18, 10007–10023, https://doi.org/10.5194/acp-18-10007-2018,https://doi.org/10.5194/acp-18-10007-2018, 2018
Short summary
Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing
Zhiheng Liao, Jiaren Sun, Jialin Yao, Li Liu, Haowen Li, Jian Liu, Jielan Xie, Dui Wu, and Shaojia Fan
Atmos. Chem. Phys., 18, 6771–6783, https://doi.org/10.5194/acp-18-6771-2018,https://doi.org/10.5194/acp-18-6771-2018, 2018
Short summary
Observational analyses of dramatic developments of a severe air pollution event in the Beijing area
Ju Li, Jielun Sun, Mingyu Zhou, Zhigang Cheng, Qingchun Li, Xiaoyan Cao, and Jingjiang Zhang
Atmos. Chem. Phys., 18, 3919–3935, https://doi.org/10.5194/acp-18-3919-2018,https://doi.org/10.5194/acp-18-3919-2018, 2018
Short summary
The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole
William Neff, Jim Crawford, Marty Buhr, John Nicovich, Gao Chen, and Douglas Davis
Atmos. Chem. Phys., 18, 3755–3778, https://doi.org/10.5194/acp-18-3755-2018,https://doi.org/10.5194/acp-18-3755-2018, 2018
Short summary
Mountain waves modulate the water vapor distribution in the UTLS
Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp
Atmos. Chem. Phys., 17, 14853–14869, https://doi.org/10.5194/acp-17-14853-2017,https://doi.org/10.5194/acp-17-14853-2017, 2017
In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2 decades of IAGOS long-term routine observation
Florian Berkes, Patrick Neis, Martin G. Schultz, Ulrich Bundke, Susanne Rohs, Herman G. J. Smit, Andreas Wahner, Paul Konopka, Damien Boulanger, Philippe Nédélec, Valerie Thouret, and Andreas Petzold
Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017,https://doi.org/10.5194/acp-17-12495-2017, 2017
Short summary
A meteorological and chemical overview of the DACCIWA field campaign in West Africa in June–July 2016
Peter Knippertz, Andreas H. Fink, Adrien Deroubaix, Eleanor Morris, Flore Tocquer, Mat J. Evans, Cyrille Flamant, Marco Gaetani, Christophe Lavaysse, Celine Mari, John H. Marsham, Rémi Meynadier, Abalo Affo-Dogo, Titike Bahaga, Fabien Brosse, Konrad Deetz, Ridha Guebsi, Issaou Latifou, Marlon Maranan, Philip D. Rosenberg, and Andreas Schlueter
Atmos. Chem. Phys., 17, 10893–10918, https://doi.org/10.5194/acp-17-10893-2017,https://doi.org/10.5194/acp-17-10893-2017, 2017
Short summary
Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality
Andrea Mues, Maheswar Rupakheti, Christoph Münkel, Axel Lauer, Heiko Bozem, Peter Hoor, Tim Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8157–8176, https://doi.org/10.5194/acp-17-8157-2017,https://doi.org/10.5194/acp-17-8157-2017, 2017
Short summary
Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations
Narendra Singh, Raman Solanki, Narendra Ojha, Ruud H. H. Janssen, Andrea Pozzer, and Surendra K. Dhaka
Atmos. Chem. Phys., 16, 10559–10572, https://doi.org/10.5194/acp-16-10559-2016,https://doi.org/10.5194/acp-16-10559-2016, 2016
Short summary
Estimation of the advection effects induced by surface heterogeneities in the surface energy budget
Joan Cuxart, Burkhard Wrenger, Daniel Martínez-Villagrasa, Joachim Reuder, Marius O. Jonassen, Maria A. Jiménez, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jens Dünnermann, Laura Conangla, and Anirban Garai
Atmos. Chem. Phys., 16, 9489–9504, https://doi.org/10.5194/acp-16-9489-2016,https://doi.org/10.5194/acp-16-9489-2016, 2016
Short summary
Turbulence kinetic energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days
Erik Nilsson, Fabienne Lohou, Marie Lothon, Eric Pardyjak, Larry Mahrt, and Clara Darbieu
Atmos. Chem. Phys., 16, 8849–8872, https://doi.org/10.5194/acp-16-8849-2016,https://doi.org/10.5194/acp-16-8849-2016, 2016
Short summary
How stratospheric are deep stratospheric intrusions? LUAMI 2008
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016,https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation
Astrid Lampert, Falk Pätzold, Maria Antonia Jiménez, Lennart Lobitz, Sabrina Martin, Gerald Lohmann, Guylaine Canut, Dominique Legain, Jens Bange, Dani Martínez-Villagrasa, and Joan Cuxart
Atmos. Chem. Phys., 16, 8009–8021, https://doi.org/10.5194/acp-16-8009-2016,https://doi.org/10.5194/acp-16-8009-2016, 2016
Short summary
Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation
A. D. Elvidge, I. A. Renfrew, A. I. Weiss, I. M. Brooks, T. A. Lachlan-Cope, and J. C. King
Atmos. Chem. Phys., 16, 1545–1563, https://doi.org/10.5194/acp-16-1545-2016,https://doi.org/10.5194/acp-16-1545-2016, 2016
Short summary
Motion-correlated flow distortion and wave-induced biases in air–sea flux measurements from ships
J. Prytherch, M. J. Yelland, I. M. Brooks, D. J. Tupman, R. W. Pascal, B. I. Moat, and S. J. Norris
Atmos. Chem. Phys., 15, 10619–10629, https://doi.org/10.5194/acp-15-10619-2015,https://doi.org/10.5194/acp-15-10619-2015, 2015
Short summary
Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study
C. Román-Cascón, C. Yagüe, L. Mahrt, M. Sastre, G.-J. Steeneveld, E. Pardyjak, A. van de Boer, and O. Hartogensis
Atmos. Chem. Phys., 15, 9031–9047, https://doi.org/10.5194/acp-15-9031-2015,https://doi.org/10.5194/acp-15-9031-2015, 2015
Short summary
Cited articles
Cai, W. J., Li, K., Liao, H., Wang, H. J., and Wu, L. X.: Weather Conditions Conducive to Beijing Severe Haze More Frequent under Climate Change, Nature Climate Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017.
Chen, H. P. and Wang, H. J.: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012, J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015.
Chen, H. S. and Qi, D. X. B.: Influence of snow melt anomaly over the mid-high latitudes of the Eurasian continent on summer low temperatures in northeastern China, Chinese Journal of Atmospheric Sciences, 37, 1337–1347, 2013 (in Chinese).
CMA: Ground observations, available at: http://data.cma.cn/, last access: 3 April 2018.
Cohen, J., Barlow, M., Kushner, P. J., and Saito, K.: Stratosphere and troposphere coupling and links with Eurasian land surface variability, J Climate, 20, 5335–5343, 2007.
Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., and Cherry, J. E.: Arctic warming, increasing snow cover and widespread boreal winter cooling, Environ. Res. Lett., 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., and Beljaars, A. C. M.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Deser, C., Tomas, R., Alexander, M., and Lawrence, D.: The seasonal atmospheric response to projected Arctic sea ice loss in the late twentyfirst century, J. Clim., 23, 333–351, https://doi.org/10.1175/2009JCLI3053.1, 2010.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä, T., Su, H., Cheng, Y. F., Yang, X. Q., Wang, M. H., Chi, X. G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R. J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, B. C. : Enhanced haze pollution by black carbon in megacities in China, Geophys. Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Ding, Y. H. and Liu, Y. J.: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity, Sci. China Ser. D: Earth Sci., 57, 36–46, 2014 (in Chinese).
ERA-Interim: PBLH data, available at: http://www.ecmwf.int/en/research/climate-reanalysis/era-interim, last access: 3 April 2018.
Gao, H. and Li, X.: Influences of El Nino Southern Oscillation events on haze frequency in eastern China during boreal winters, Int. J. Climatol., 35, 2682–2688, https://doi.org/10.1002/joc.4133, 2015.
Gong, G., Cohen, J., Entekhabi, D., and Ge, Y.: Hemispheric-scale climate response to Northern Eurasia land surface characteristics and snow anomalies, Global Planet Change, 56, 359–370, 2007.
Jeong, J. H., Ou, T., Linderholm, H. W., Kim, B. M., Kim, S. J., Kug, J. S., and Chen, D. L.: Recent recovery of the siberian high intensity, J. Geophys. Res.-Atmos., 116, D23102, https://doi.org/10.1029/2011JD015904, 2011.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Li, F. and Wang, H. J.: Autumn Eurasian snow depth, autumn Arctic sea ice cover and East Asian winter monsoon, Int. J. Climatol., 34, 3616–3625, 2014.
Li, H., Wang, H., and Jiang, D.: Influence of October Eurasian snow on winter temperature over Northeast China, Adv Atmos Sci., 34, 116–126, https://doi.org/10.1007/s00376-016-5274-0, 2017.
Li, Q., Zhang, R. H., and Wang, Y.: Interannual variation of the winter-time fog–haze days across central and eastern China and its relation with East Asian winter monsoon, Int. J. Climatol., 36, 346–354, https://doi.org/10.1002/joc.4350, 2015.
NCEP/NCAR: Atmospheric data, available at: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html, last access: 3 April 2018.
Rutgers University: Snow cover data, available at: http://climate.rutgers.edu/snowcover/, last access: 3 April 2018.
Sun, B.: Seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring and the associated surface heat budget, Atmos. Oceanic Sci. Lett., 10, 191–197, https://doi.org/10.1080/16742834.2017.1286226, 2017.
Wang, H.-J. and Chen, H.-P.: Understanding the recent trend of haze pollution in eastern China: roles of climate change, Atmos. Chem. Phys., 16, 4205–4211, https://doi.org/10.5194/acp-16-4205-2016, 2016.
Wang, S. Y. and Liu, J. P.: Delving into the relationship between autumn Arctic sea ice and central–eastern Eurasian winter climate, Atmos. Oceanic Sci. Lett., 9, 366–374, https://doi.org/10.1080/16742834.2016.1207482, 2016.
Xu, X., Zhao, T., Liu, F., Gong, S. L., Kristovich, D., Lu, C., Guo, Y., Cheng, X., Wang, Y., and Ding, G.: Climate modulation of the Tibetan Plateau on haze in China, Atmos. Chem. Phys., 16, 1365–1375, https://doi.org/10.5194/acp-16-1365-2016, 2016.
Xu, X. P., He, S. P., Li, F., and Wang, H. J.: Impact of northern eurasian snow cover in autumn on the warm arctic–cold eurasia pattern during the following january and its linkage to stationary planetary waves, Clim. Dynam., 50, 1–14, https://doi.org/10.1007/s00382-017-3732-8, 2017.
Yang, T., Sun, Y., Zhang, W., Wang, Z., and Wang, X.: Chemical characterization of submicron particles during typical air pollution episodes in spring over Beijing, Atmos. Oceanic Sci. Lett., 9, 255–262, https://doi.org/10.1080/16742834.2016.1173509, 2016.
Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions, J. Geophys. Res.-Atmos., 121, 13050–13065, 2016.
Yang, Y., Russell, L. M., Lou, S., Liao, H., Guo, J., Liu, Y., Singh, B., and Ghan, S. J.: Dustwind interactions can intensify aerosol pollution over eastern China, Nat. Commun., 8, 15333, https://doi.org/10.1038/ncomms15333, 2017a.
Yang, Y., Wang, H., Smith, S. J., Ma, P.-L., and Rasch, P. J.: Source attribution of black carbon and its direct radiative forcing in China, Atmos. Chem. Phys., 17, 4319–4336, https://doi.org/10.5194/acp-17-4319-2017, 2017b.
Yin, Z. and Wang, H.: Role of atmospheric circulations in haze pollution in December 2016, Atmos. Chem. Phys., 17, 11673–11681, https://doi.org/10.5194/acp-17-11673-2017, 2017.
Yin, Z., Wang, H., and Chen, H.: Understanding severe winter haze events in the North China Plain in 2014: roles of climate anomalies, Atmos. Chem. Phys., 17, 1641–1651, https://doi.org/10.5194/acp-17-1641-2017, 2017.
Yin, Z. C. and Wang, H. J.: The relationship between the subtropical Western Pacific SST and haze over North-Central North China Plain, Int. J. Climatol., 36, 3479–3491, https://doi.org/10.1002/joc.4570, 2016.
Yin, Z. C., Wang, H. J., and Yuan, D. M.: Interdecadal increase of haze in winter over North China and the Huang-huai area and the weakening of the East Asia winter monsoon, Chin. Sci. Bull., 60, 1395–1400, 2015 (in Chinese).
Yuan, D. M. and Ma, X. H.: The severe haze in 16–21 December 2016 and associated atmospheric circulation anomalies, Climatic and Environmental Research, 22, 757–764, https://doi.org/10.3878/j.issn.1006-9585.2017.17029, 2017 (in Chinese).
Zhang, F., Yan, J. R., Li, J. N., Wu, K., Iwabuchi, H., and Shi, Y. N.: A new radiative transfer method for solar radiation in a vertically internally inhomogeneous medium, J. Atmos. Sci., 75, 41–55, https://doi.org/10.1175/JAS-D-17-0104.1, 2017,
Zhou, W.: Impact of Arctic amplification on East Asian winter climate, Atmos. Oceanic Sci. Lett., 10, 385–388, https://doi.org/10.1080/16742834.2017.1350093, 2017.
Zou, Y. F., Wang, Y. H., Zhang, Y. Z., and Koo, J. H.: Arctic sea ice, Eurasia snow, and extreme winter haze in China, Science Advances, 3, e1602751, https://doi.org/10.1126/sciadv.1602751, 2017.