Articles | Volume 18, issue 7
https://doi.org/10.5194/acp-18-4715-2018
https://doi.org/10.5194/acp-18-4715-2018
Research article
 | 
09 Apr 2018
Research article |  | 09 Apr 2018

Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations

Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden

Related authors

A comparative evaluation of snowflake particle shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD)
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022,https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
DeepPrecip: a deep neural network for precipitation retrievals
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022,https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021,https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Satellite observations of snowfall regimes over the Greenland Ice Sheet
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020,https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Spatial and temporal variability of snowfall over Greenland from CloudSat observations
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019,https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of weather systems on observed precipitation at Ny-Ålesund (Svalbard)
Kerstin Ebell, Christian Buhren, Rosa Gierens, Giovanni Chellini, Melanie Lauer, Andreas Walbröl, Sandro Dahlke, Pavel Krobot, and Mario Mech
Atmos. Chem. Phys., 25, 7315–7342, https://doi.org/10.5194/acp-25-7315-2025,https://doi.org/10.5194/acp-25-7315-2025, 2025
Short summary
Analysis of ship emission effects on clouds over the southeastern Atlantic using geostationary satellite observations
Nikos Benas, Jan Fokke Meirink, Rob Roebeling, and Martin Stengel
Atmos. Chem. Phys., 25, 6957–6973, https://doi.org/10.5194/acp-25-6957-2025,https://doi.org/10.5194/acp-25-6957-2025, 2025
Short summary
Relationship between latent and radiative heating fields of tropical cloud systems using synergistic satellite observations
Xiaoting Chen, Claudia J. Stubenrauch, and Giulio Mandorli
Atmos. Chem. Phys., 25, 6857–6880, https://doi.org/10.5194/acp-25-6857-2025,https://doi.org/10.5194/acp-25-6857-2025, 2025
Short summary
Shallow cloud variability in Houston, Texas, during the ESCAPE and TRACER field experiments
Zackary Mages, Pavlos Kollias, Bernat Puigdomènech Treserras, Paloma Borque, and Mariko Oue
Atmos. Chem. Phys., 25, 6025–6045, https://doi.org/10.5194/acp-25-6025-2025,https://doi.org/10.5194/acp-25-6025-2025, 2025
Short summary
How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 25, 5617–5631, https://doi.org/10.5194/acp-25-5617-2025,https://doi.org/10.5194/acp-25-5617-2025, 2025
Short summary

Cited articles

Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement Program, Phys. Today, 55, 39–44, 2003.
Appenzeller, C., Schwander, J., Sommer, S., and Stocker, T. F.: The North Atlantic Oscillation and its imprint on precipitation and ice accumulation in Greenland, Geophys. Res. Lett., 25, 1939–1942, 1998.
Bromwich, D. H., Cullather, R. I., Chen, Q., and Csatho, B. M.: Evaluation of recent precipitation studies for Greenland ice sheet, J. Geophys. Res.-Atmos., 103, 26007–26024, https://doi.org/10.1029/98jd02278, 1998.
Bromwich, D. H., Chen, Q. S., Li, Y., and Cullather, R. I.: Precipitation over Greenland and its relation to the North Atlantic Oscillation, J. Geophys. Res.-Atmos., 104, 22103–22115, 1999.
Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013.
Download
Short summary
A novel method for classifying Arctic precipitation using ground based remote sensors is presented. The classification reveals two distinct, primary regimes of precipitation over the central Greenland Ice Sheet: snowfall coupled to deep, fully glaciated ice clouds or to shallow, mixed-phase clouds. The ice clouds are associated with low-pressure storm systems from the southeast, while the mixed-phase clouds slowly propagate from the southwest along a quiescent flow.
Share
Altmetrics
Final-revised paper
Preprint