Research article
09 Apr 2018
Research article
| 09 Apr 2018
Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations
Claire Pettersen et al.
Related authors
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022, https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet (GrIS) is rapidly melting. Snowfall is the only source of ice mass over the GrIS. We use satellite observations to assess how much snow on average falls over the GrIS and what the annual cycle and spatial distribution of snowfall is. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34 ± 7.5 cm yr−1 liquid equivalent.
Claire Pettersen, Ralf Bennartz, Mark S. Kulie, Aronne J. Merrelli, Matthew D. Shupe, and David D. Turner
Atmos. Chem. Phys., 16, 4743–4756, https://doi.org/10.5194/acp-16-4743-2016, https://doi.org/10.5194/acp-16-4743-2016, 2016
Short summary
Short summary
We examined four summers of data from a ground-based atmospheric science instrument suite at Summit Station, Greenland, to isolate the signature of the ice precipitation. By using a combination of instruments with different specialities, we identified a passive microwave signature of the ice precipitation. This ice signature compares well to models using synthetic data characteristic of the site.
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023, https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Short summary
Rapid changes in wind speed make the integration of wind energy produced during persistent orographic cold-air pools difficult to integrate into the electrical grid. By evaluating three versions of NOAA’s High-Resolution Rapid Refresh model, we demonstrate how model developments targeted during the second Wind Forecast Improvement Project improve the forecast of a persistent cold-air pool event.
Emily Bell, Christopher W. O'Dell, Thomas E. Taylor, Aronne Merrelli, Robert R. Nelson, Matthäus Kiel, Annmarie Eldering, Robert Rosenberg, and Brendan Fisher
Atmos. Meas. Tech., 16, 109–133, https://doi.org/10.5194/amt-16-109-2023, https://doi.org/10.5194/amt-16-109-2023, 2023
Short summary
Short summary
A small percentage of data from the Orbiting Carbon Observatory-3 (OCO-3) instrument has been shown to have a geometry-related bias in the earliest public data release. This work shows that the bias is due to a complex interplay of aerosols and viewing geometry and is largely mitigated in the latest data version through improved bias correction and quality filtering.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-836, https://doi.org/10.5194/acp-2022-836, 2023
Preprint under review for ACP
Short summary
Short summary
The lapse-rate feedback (LRF) is a major driver of the "Arctic amplification" of climate change. It arises since the warming is more pronounced at the surface than aloft. There are several processes mediating the LRF in the Arctic, for instance the omnipresent temperature inversion. Here, we compare multi-model climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF.
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, and Jonathan Hamilton
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-314, https://doi.org/10.5194/amt-2022-314, 2023
Preprint under review for AMT
Short summary
Short summary
This paper describes how measurements from a small uncrewed aircraft system can be used to estimate the vertical turbulent heat energy exchange between different layers in the atmosphere. This is particularly important for the atmosphere in the Arctic because here turbulent exchange is often suppressed, but still important to understand how the atmosphere interacts with the sea ice. Three case studies from the MOSAiC field campaign in the Arctic sea ice in 2020 are presented.
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-337, https://doi.org/10.5194/amt-2022-337, 2023
Preprint under review for AMT
Short summary
Short summary
This paper provides a new method for retrieving wind profile from Coherent Doppler Lidar (CDL) measurements. It takes advantage of layer-to-layer correlation in wind profiles to fill in the gaps, where CDL signal is too small, to provide continuous wind profiles up to 3 km. Comparison with current method and collocated radiosonde wind measurements showed excellent agreement with no degradation in results where the current method provides a valid results.
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
Steven Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-323, https://doi.org/10.5194/amt-2022-323, 2022
Preprint under review for AMT
Short summary
Short summary
Clouds near observations can increase observed radiances. This paper discusses cloud 3D radiative transfer effects upon Orbiting Carbon Observatory (OCO-2) retrievals of CO2. Ratios of 1D to 3D radiance intensity ratios are calculated using the SHDOM 3D radiative transfer program for 36 scenes of ocean glint, land nadir, and land glint observations in order to gain insight as to how 3D cloud effects impact the OCO-2 retrievals of CO2 and other variables.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022, https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-614, https://doi.org/10.5194/acp-2022-614, 2022
Preprint under review for ACP
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analysed to see if the near-surface air in the Arctic is warmed or cooled if warm/humid air masses from the South enter the Arctic, or cold/dry air moves from the North from the Arctic to mid-latitude areas. It is important to studie these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the furure Arctic climate.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
EGUsphere, https://doi.org/10.5194/egusphere-2022-706, https://doi.org/10.5194/egusphere-2022-706, 2022
Short summary
Short summary
We compare climate model output to observations from the MOSAiC expedition in the central Arctic ocean. All models show how the arrival of a warm airmass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days. Evaluating climate models usually requires long observational timeseries, but we here present a method that also works for short field campaigns.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
Maria Paola Cadeddu, Virendra Ghate, David Turner, and Thomas Surleta
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-615, https://doi.org/10.5194/acp-2022-615, 2022
Preprint under review for ACP
Short summary
Short summary
We analyze the variability of marine boundary layer moisture in the Eastern North Atlantic on a monthly and daily temporal scale and examine its fundamental role in the control of boundary layer cloudiness and precipitation. The study also highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of mesoscale vapor spatial distribution to support convection and precipitation.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Shima Bahramvash Shams, Von P. Walden, James W. Hannigan, William J. Randel, Irina V. Petropavlovskikh, Amy H. Butler, and Alvaro de la Cámara
Atmos. Chem. Phys., 22, 5435–5458, https://doi.org/10.5194/acp-22-5435-2022, https://doi.org/10.5194/acp-22-5435-2022, 2022
Short summary
Short summary
Large-scale atmospheric circulation has a strong influence on ozone in the Arctic, and certain anomalous dynamical events, such as sudden stratospheric warmings, cause dramatic alterations of the large-scale circulation. A reanalysis model is evaluated and then used to investigate the impact of sudden stratospheric warmings on mid-atmospheric ozone. Results show that the position of the cold jet stream over the Arctic before these events influences the variability of ozone.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Michael R. Gallagher, Matthew D. Shupe, Hélène Chepfer, and Tristan L'Ecuyer
The Cryosphere, 16, 435–450, https://doi.org/10.5194/tc-16-435-2022, https://doi.org/10.5194/tc-16-435-2022, 2022
Short summary
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
Irina V. Djalalova, David D. Turner, Laura Bianco, James M. Wilczak, James Duncan, Bianca Adler, and Daniel Gottas
Atmos. Meas. Tech., 15, 521–537, https://doi.org/10.5194/amt-15-521-2022, https://doi.org/10.5194/amt-15-521-2022, 2022
Short summary
Short summary
In this paper we investigate the synergy obtained by combining active (radio acoustic sounding system – RASS) and passive (microwave radiometer) remote sensing observations to obtain temperature vertical profiles through a radiative transfer model. Inclusion of the RASS observations leads to more accurate temperature profiles from the surface to 5 km above ground, well above the maximum height of the RASS observations themselves (2000 m), when compared to the microwave radiometer used alone.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Raghavendra Krishnamurthy, Rob K. Newsom, Larry K. Berg, Heng Xiao, Po-Lun Ma, and David D. Turner
Atmos. Meas. Tech., 14, 4403–4424, https://doi.org/10.5194/amt-14-4403-2021, https://doi.org/10.5194/amt-14-4403-2021, 2021
Short summary
Short summary
Planetary boundary layer (PBL) height is a critical parameter in atmospheric models. Continuous PBL height measurements from remote sensing measurements are important to understand various boundary layer mechanisms, especially during daytime and evening transition periods. Due to several limitations in existing methodologies to detect PBL height from a Doppler lidar, in this study, a machine learning (ML) approach is tested. The ML model is observed to improve the accuracy by over 50 %.
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, https://doi.org/10.5194/amt-14-3033-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the lowest couple of kilometers near the surface are very important for many applications. Passive spectral radiometers are commercially available, and observations from these instruments have been used to get these profiles. However, new active lidar systems are able to measure partial profiles of water vapor. This paper investigates how the derived profiles of water vapor and temperature are improved when the active and passive observations are combined.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021, https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
Robert R. Nelson, Annmarie Eldering, David Crisp, Aronne J. Merrelli, and Christopher W. O'Dell
Atmos. Meas. Tech., 13, 6889–6899, https://doi.org/10.5194/amt-13-6889-2020, https://doi.org/10.5194/amt-13-6889-2020, 2020
Short summary
Short summary
Measurements of surface wind speed over oceans are scientifically useful. Here we show that the Orbiting Carbon Observatory-2 (OCO-2), originally designed to measure carbon dioxide using reflected sunlight, can also accurately and precisely measure wind speed. OCO-2's high spatial resolution means that it can observe close to coastlines and therefore be used to study coastal wind processes and inform related economic sectors.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Rosa Gierens, Stefan Kneifel, Matthew D. Shupe, Kerstin Ebell, Marion Maturilli, and Ulrich Löhnert
Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, https://doi.org/10.5194/acp-20-3459-2020, 2020
Short summary
Short summary
Multiyear statistics of persistent low-level mixed-phase clouds observed at an Arctic fjord environment in Svalbard are presented. The effects the local boundary layer (i.e. the fjords' wind climate and surface coupling), regional wind direction, and seasonality have on the cloud occurrence and properties are evaluated using a synergy of ground-based remote sensing methods and auxiliary data. The phenomena considered were found to modify the amount of liquid and ice in the studied clouds.
Laura Bianco, Irina V. Djalalova, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Aditya Choukulkar, Larry K. Berg, Harindra J. S. Fernando, Eric P. Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, Mikhail Pekour, Yelena Pichugina, Mark T. Stoelinga, and David D. Turner
Geosci. Model Dev., 12, 4803–4821, https://doi.org/10.5194/gmd-12-4803-2019, https://doi.org/10.5194/gmd-12-4803-2019, 2019
Short summary
Short summary
During the second Wind Forecast Improvement Project, improvements to the parameterizations were applied to the High Resolution Rapid Refresh model and its nested version. The impacts of the new parameterizations on the forecast of 80 m wind speeds and power are assessed, using sodars and profiling lidars observations for comparison. Improvements are evaluated as a function of the model’s initialization time, forecast horizon, time of the day, season, site elevation, and meteorological phenomena.
Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden
Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019, https://doi.org/10.5194/amt-12-5071-2019, 2019
Short summary
Short summary
A better understanding of polar clouds is needed for predicting climate change, including cloud thickness and the sizes and amounts of liquid droplets and ice crystals. These properties can be estimated from an instrument (an infrared spectrometer) that sits on the surface and measures how much infrared radiation is emitted by the cloud. In this work we use model data to investigate how well such an instrument could retrieve cloud properties for different instrument and error characteristics.
Gijs de Boer, Darielle Dexheimer, Fan Mei, John Hubbe, Casey Longbottom, Peter J. Carroll, Monty Apple, Lexie Goldberger, David Oaks, Justin Lapierre, Michael Crume, Nathan Bernard, Matthew D. Shupe, Amy Solomon, Janet Intrieri, Dale Lawrence, Abhiram Doddi, Donna J. Holdridge, Michael Hubbell, Mark D. Ivey, and Beat Schmid
Earth Syst. Sci. Data, 11, 1349–1362, https://doi.org/10.5194/essd-11-1349-2019, https://doi.org/10.5194/essd-11-1349-2019, 2019
Short summary
Short summary
This paper provides a summary of observations collected at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign. The Year of Polar Prediction (YOPP) is a multi-year concentrated effort to improve forecasting capabilities at high latitudes across a variety of timescales. POPEYE observations include atmospheric data collected using unmanned aircraft, tethered balloons, and radiosondes, made in parallel with routine measurements at the site.
Shima Bahramvash Shams, Von P. Walden, Irina Petropavlovskikh, David Tarasick, Rigel Kivi, Samuel Oltmans, Bryan Johnson, Patrick Cullis, Chance W. Sterling, Laura Thölix, and Quentin Errera
Atmos. Chem. Phys., 19, 9733–9751, https://doi.org/10.5194/acp-19-9733-2019, https://doi.org/10.5194/acp-19-9733-2019, 2019
Short summary
Short summary
The Arctic plays a very important role in the global ozone cycle. We use balloon-borne sampling and satellite data to create a high-quality dataset of the vertical profile of ozone from 2005 to 2017 to analyze ozone variations over four high-latitude Arctic locations. No significant annual trend is found at any of the studied locations. We develop a mathematical model to understand how deseasonalized ozone fluctuations can be influenced by various parameters.
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet (GrIS) is rapidly melting. Snowfall is the only source of ice mass over the GrIS. We use satellite observations to assess how much snow on average falls over the GrIS and what the annual cycle and spatial distribution of snowfall is. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34 ± 7.5 cm yr−1 liquid equivalent.
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Short summary
Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Here, we present three novel methods for calibrating vertically pointing cloud radars. These calibration methods are based on microphysical processes of liquid clouds, such as the transition of cloud droplets to drizzle drops. We successfully apply the methods to cloud radar data from the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites.
Christopher J. Cox, David C. Noone, Max Berkelhammer, Matthew D. Shupe, William D. Neff, Nathaniel B. Miller, Von P. Walden, and Konrad Steffen
Atmos. Chem. Phys., 19, 7467–7485, https://doi.org/10.5194/acp-19-7467-2019, https://doi.org/10.5194/acp-19-7467-2019, 2019
Short summary
Short summary
Fogs are frequently reported by observers on the Greenland Ice Sheet. Fogs play a role in the hydrological and energetic balances of the ice sheet surface, but as yet the properties of Greenland fogs are not well known. We observed fogs in all months from Summit Station for 2 years and report their properties. Annually, fogs impart a slight warming to the surface and a case study suggests that they are particularly influential by providing insulation during the coldest part of the day in summer.
Christopher W. O'Dell, Annmarie Eldering, Paul O. Wennberg, David Crisp, Michael R. Gunson, Brendan Fisher, Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas E. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Osamu Uchino, and Voltaire A. Velazco
Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, https://doi.org/10.5194/amt-11-6539-2018, 2018
Amy Solomon, Gijs de Boer, Jessie M. Creamean, Allison McComiskey, Matthew D. Shupe, Maximilian Maahn, and Christopher Cox
Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018, https://doi.org/10.5194/acp-18-17047-2018, 2018
Short summary
Short summary
The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations in Arctic mixed-phase stratocumulus; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. In addition, cloud-processing causes layering of aerosols with increased concentrations of CCN at cloud top.
Matthew S. Norgren, Gijs de Boer, and Matthew D. Shupe
Atmos. Chem. Phys., 18, 13345–13361, https://doi.org/10.5194/acp-18-13345-2018, https://doi.org/10.5194/acp-18-13345-2018, 2018
Short summary
Short summary
Arctic mixed-phase clouds are a critical component of the Arctic climate system because of their ability to influence the surface radiation budget. The radiative impact of an individual cloud is closely linked to the ability of the cloud to convert liquid drops to ice. In this paper, we show through an observational record that clouds present in polluted atmospheric conditions have lower amounts of ice than similar clouds found in clean conditions.
Chellappan Seethala, Jan Fokke Meirink, Ákos Horváth, Ralf Bennartz, and Rob Roebeling
Atmos. Chem. Phys., 18, 13283–13304, https://doi.org/10.5194/acp-18-13283-2018, https://doi.org/10.5194/acp-18-13283-2018, 2018
Short summary
Short summary
We compared the microphysical properties of South Atlantic stratocumulus (Sc) from three different satellite instruments (SEVIRI, TMI, MODIS). The liquid water path (LWP) and its diurnal cycle from the three datasets agreed very well in overcast, smoke-free scenes. LWP showed a decrease from an early morning peak to a late afternoon minimum, after which it increased until morning. The presence of smoke aloft Sc, however, negatively biased the LWP retrieved by the visible/near-infrared technique.
Robert A. Stillwell, Ryan R. Neely III, Jeffrey P. Thayer, Matthew D. Shupe, and David D. Turner
Atmos. Meas. Tech., 11, 835–859, https://doi.org/10.5194/amt-11-835-2018, https://doi.org/10.5194/amt-11-835-2018, 2018
Short summary
Short summary
This work focuses on making unambiguous measurements of Arctic cloud phase and assessing those measurements within the context of cloud radiative effects. It is found that effects related to lidar data recording systems can cause retrieval ambiguities that alter the interpretation of cloud phase in as much as 30 % of the available data. This misinterpretation of cloud-phase data can cause a misinterpretation of the effect of cloud phase on the surface radiation budget by as much as 10 to 30 %.
Ralf Bennartz and John Rausch
Atmos. Chem. Phys., 17, 9815–9836, https://doi.org/10.5194/acp-17-9815-2017, https://doi.org/10.5194/acp-17-9815-2017, 2017
Short summary
Short summary
Cloud droplet number concentration is linked to air pollution levels via indirect aerosol effects. The climatological results presented here provide constraints on cloud droplet number concentration globally, thereby helping to evaluate global climate models and study the impact of pollution regionally and globally.
Yann Blanchard, Alain Royer, Norman T. O'Neill, David D. Turner, and Edwin W. Eloranta
Atmos. Meas. Tech., 10, 2129–2147, https://doi.org/10.5194/amt-10-2129-2017, https://doi.org/10.5194/amt-10-2129-2017, 2017
Short summary
Short summary
Multiband thermal measurements of zenith sky radiance were used in a retrieval algorithm, to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. The retrieval technique was validated using a synergy lidar and radar data. Inversions were performed across three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of thin ice clouds.
John Rausch, Kerry Meyer, Ralf Bennartz, and Steven Platnick
Atmos. Meas. Tech., 10, 2105–2116, https://doi.org/10.5194/amt-10-2105-2017, https://doi.org/10.5194/amt-10-2105-2017, 2017
Short summary
Short summary
This paper documents the observed differences in the aggregated (Level-3) cloud droplet effective radius and droplet number concentration estimates inferred from the Aqua–MODIS cloud product collections 5.1 and 6 for warm oceanic cloud scenes over the year 2008. We note significant differences in effective radius and droplet concentration between the two products and discuss the algorithmic and calibration changes which may contribute to observed results.
Yinghui Liu, Matthew D. Shupe, Zhien Wang, and Gerald Mace
Atmos. Chem. Phys., 17, 5973–5989, https://doi.org/10.5194/acp-17-5973-2017, https://doi.org/10.5194/acp-17-5973-2017, 2017
Short summary
Short summary
Detailed and accurate vertical distributions of cloud properties are essential to accurately calculate the surface radiative flux and to depict the mean climate state, and such information is more desirable in the Arctic due to its recent rapid changes and the challenging observation conditions. This study presents a feasible way to provide such information by blending cloud observations from surface and space-based instruments with the understanding of their respective strength and limitations.
Ralf Bennartz, Heidrun Höschen, Bruno Picard, Marc Schröder, Martin Stengel, Oliver Sus, Bojan Bojkov, Stefano Casadio, Hannes Diedrich, Salomon Eliasson, Frank Fell, Jürgen Fischer, Rainer Hollmann, Rene Preusker, and Ulrika Willén
Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017, https://doi.org/10.5194/amt-10-1387-2017, 2017
Short summary
Short summary
The microwave radiometers (MWR) on board ERS-1, ERS-2, and Envisat provide a continuous time series of brightness temperature observations between 1991 and 2012. Here we report on a new total column water vapour (TCWV) and wet tropospheric correction (WTC) dataset that builds on this time series. The dataset is publicly available under doi:10.5676/DWD_EMIR/V001.
Nathaniel B. Miller, Matthew D. Shupe, Christopher J. Cox, David Noone, P. Ola G. Persson, and Konrad Steffen
The Cryosphere, 11, 497–516, https://doi.org/10.5194/tc-11-497-2017, https://doi.org/10.5194/tc-11-497-2017, 2017
Short summary
Short summary
A comprehensive observational dataset is assembled to investigate atmosphere–Greenland ice sheet interactions and characterize surface temperature variability. The amount the surface temperature warms, due to increases in cloud presence and/or elevated sun angle, varies throughout the annual cycle and is modulated by the responses of latent, sensible and ground heat fluxes. This observationally based study provides process-based relationships, which are useful for evaluation of climate models.
Robert A. Stillwell, Ryan R. Neely III, Jeffrey P. Thayer, Matthew D. Shupe, and Michael O'Neill
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-303, https://doi.org/10.5194/amt-2016-303, 2016
Revised manuscript not accepted
Short summary
Short summary
This work explores the observation of Arctic mixed phase clouds by lidar and the consequences of mishandling lidar signals linking the signals to their geophysical interpretation. It concludes 3 points: 1) cloud phase identification is not only linked to cloud phase but other cloud properties, 2) having more than two polarization signals can be used to quality control data not possible with only two signals, and 3) phase retrievals with more than two polarizations enhance retrieval flexibility.
Penny M. Rowe, Christopher J. Cox, and Von P. Walden
Atmos. Meas. Tech., 9, 3641–3659, https://doi.org/10.5194/amt-9-3641-2016, https://doi.org/10.5194/amt-9-3641-2016, 2016
Short summary
Short summary
Clouds play an important role in the rapid climate change occurring in polar regions, yet cloud measurements are challenging in such harsh, remote environments. Here we explore how well a proposed low-power infrared spectrometer, which would be highly portable, could be used to determine cloud height. Using simulated data, we estimate retrieval accuracy, finding that such an instrument would be able to constrain cloud height, particular for low, thick clouds, which are common in polar region.
Christopher J. Cox, Penny M. Rowe, Steven P. Neshyba, and Von P. Walden
Earth Syst. Sci. Data, 8, 199–211, https://doi.org/10.5194/essd-8-199-2016, https://doi.org/10.5194/essd-8-199-2016, 2016
Short summary
Short summary
Observations of cloud properties are necessary to understand and model clouds. Observations are frequently retrieved using remotely sensed measurements of infrared cloud emission. To support development and validation of the retrieval algorithms, this work produced a synthetic high-spectral-resolution infrared data set based on atmospheric conditions typical of the Arctic. Advantages of the data set include a priori knowledge of cloud properties and control over measurement uncertainties.
Claire Pettersen, Ralf Bennartz, Mark S. Kulie, Aronne J. Merrelli, Matthew D. Shupe, and David D. Turner
Atmos. Chem. Phys., 16, 4743–4756, https://doi.org/10.5194/acp-16-4743-2016, https://doi.org/10.5194/acp-16-4743-2016, 2016
Short summary
Short summary
We examined four summers of data from a ground-based atmospheric science instrument suite at Summit Station, Greenland, to isolate the signature of the ice precipitation. By using a combination of instruments with different specialities, we identified a passive microwave signature of the ice precipitation. This ice signature compares well to models using synthetic data characteristic of the site.
Andrew M. Dzambo, David D. Turner, and Eli J. Mlawer
Atmos. Meas. Tech., 9, 1613–1626, https://doi.org/10.5194/amt-9-1613-2016, https://doi.org/10.5194/amt-9-1613-2016, 2016
Short summary
Short summary
Radiosondes are used to characterize the humidity in the middle and upper troposphere, but suffer from a solar radiation induced dry bias. This work investigates the accuracy of two published correction algorithms using comparisons with other instruments.
T. M. Gray and R. Bennartz
Atmos. Meas. Tech., 8, 5089–5097, https://doi.org/10.5194/amt-8-5089-2015, https://doi.org/10.5194/amt-8-5089-2015, 2015
Short summary
Short summary
Volcanic ash poses a serious threat to aircraft traffic. A simple neural-network based technique was developed to detect volcanic ash from space using satellite infrared observations. A validation study shows promising results for several individual case studies. Issues remain near the edge of the satellite's field of view as well as in situations where ash is mixed with meteorological clouds.
A. Lattanzio, F. Fell, R. Bennartz, I. F. Trigo, and J. Schulz
Atmos. Meas. Tech., 8, 4561–4571, https://doi.org/10.5194/amt-8-4561-2015, https://doi.org/10.5194/amt-8-4561-2015, 2015
Short summary
Short summary
EUMETSAT has generated a surface albedo data set climate data record, spanning over more than 2 decades, from measurements acquired by Meteosat First Generation satellites. EUMETSAT coordinated a study for the validation of such a data record. In the validation report, the full set of results, including comparison with in situ measurements and satellites, was presented. A method of increasing the quality of the data set, removing cloud-contaminated pixels, is presented.
A. Solomon, G. Feingold, and M. D. Shupe
Atmos. Chem. Phys., 15, 10631–10643, https://doi.org/10.5194/acp-15-10631-2015, https://doi.org/10.5194/acp-15-10631-2015, 2015
Short summary
Short summary
The maintenance of cloud ice production in Arctic mixed-phase stratocumulus is investigated in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. It is demonstrated that IN recycling through subcloud sublimation prolongs ice production. Competing feedbacks between dynamical mixing and recycling are found to slow the rate of ice lost. The results of this study have important implications for the maintenance of phase partitioning in Arctic clouds.
A. Merrelli, R. Bennartz, C. W. O'Dell, and T. E. Taylor
Atmos. Meas. Tech., 8, 1641–1656, https://doi.org/10.5194/amt-8-1641-2015, https://doi.org/10.5194/amt-8-1641-2015, 2015
G. Sotiropoulou, J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson
Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, https://doi.org/10.5194/acp-14-12573-2014, 2014
Short summary
Short summary
During ASCOS, clouds are more frequently decoupled from the surface than coupled to it; when coupling occurs it is primary driven by the cloud. Decoupled clouds have a bimodal structure; they are either weakly or strongly decoupled from the surface; the enhancement of the decoupling is possibly due to sublimation of precipitation. Stable clouds (no cloud-driven mixing) are also observed; those are optically thin, often single-phase liquid, with no or negligible precipitation (e.g. fog).
J. M. Intrieri, G. de Boer, M. D. Shupe, J. R. Spackman, J. Wang, P. J. Neiman, G. A. Wick, T. F. Hock, and R. E. Hood
Atmos. Meas. Tech., 7, 3917–3926, https://doi.org/10.5194/amt-7-3917-2014, https://doi.org/10.5194/amt-7-3917-2014, 2014
Short summary
Short summary
In winter 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Arctic to evaluate a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind speed and direction information between the stratosphere and surface. During the 25-hour polar flight, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude.
U. Hamann, A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind
Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, https://doi.org/10.5194/amt-7-2839-2014, 2014
J. Sedlar and M. D. Shupe
Atmos. Chem. Phys., 14, 3461–3478, https://doi.org/10.5194/acp-14-3461-2014, https://doi.org/10.5194/acp-14-3461-2014, 2014
A. Kniffka, M. Stengel, M. Lockhoff, R. Bennartz, and R. Hollmann
Atmos. Meas. Tech., 7, 887–905, https://doi.org/10.5194/amt-7-887-2014, https://doi.org/10.5194/amt-7-887-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
G. de Boer, M. D. Shupe, P. M. Caldwell, S. E. Bauer, O. Persson, J. S. Boyle, M. Kelley, S. A. Klein, and M. Tjernström
Atmos. Chem. Phys., 14, 427–445, https://doi.org/10.5194/acp-14-427-2014, https://doi.org/10.5194/acp-14-427-2014, 2014
P. M. Rowe, S. Neshyba, and V. P. Walden
Atmos. Chem. Phys., 13, 11925–11933, https://doi.org/10.5194/acp-13-11925-2013, https://doi.org/10.5194/acp-13-11925-2013, 2013
M. D. Shupe, P. O. G. Persson, I. M. Brooks, M. Tjernström, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck
Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, https://doi.org/10.5194/acp-13-9379-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Distinct regional meteorological influences on low-cloud albedo susceptibility over global marine stratocumulus regions
Diurnal cycles of cloud cover and its vertical distribution over the Tibetan Plateau revealed by satellite observations, reanalysis datasets, and CMIP6 outputs
Satellite observations of seasonality and long-term trends in cirrus cloud properties over Europe: investigation of possible aviation impacts
Ice crystal characterization in cirrus clouds III: retrieval of ice crystal shape and roughness from observations of halo displays
Technical note: Identification of two ice-nucleating regimes for dust-related cirrus clouds based on the relationship between number concentrations of ice-nucleating particles and ice crystals
Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica
Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations
Observing short-timescale cloud development to constrain aerosol–cloud interactions
Observations of microphysical properties and radiative effects of contrail cirrus and natural cirrus over the North Atlantic
Natural Marine Cloud Brightening in the Southern Ocean
Microphysical Characteristics of Super Typhoon Lekima (2019) and Its Impacts on Polarimetric Radar Remote Sensing of Precipitation
Exploring relations between cloud morphology, cloud phase, and cloud radiative properties in Southern Ocean's stratocumulus clouds
Observations of cold-cloud properties in the Norwegian Arctic using ground-based and spaceborne lidar
An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2Ex
A Lagrangian analysis of pockets of open cells over the southeastern Pacific
The formation and composition of the Mount Everest plume in winter
New insights on the prevalence of drizzle in marine stratocumulus clouds based on a machine learning algorithm applied to radar Doppler spectra
Addressing the difficulties in quantifying droplet number response to aerosol from satellite observations
Optically thin clouds in the trades
On the global relationship between polarimetric radio occultation observable ΔΦ and ice water content
Stability-dependent increases in liquid water with droplet number in the Arctic
Lightning activity in northern Europe during a stormy winter: disruptions of weather patterns originating in global climate phenomena
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data
Albedo susceptibility of northeastern Pacific stratocumulus: the role of covarying meteorological conditions
Opportunistic experiments to constrain aerosol effective radiative forcing
Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic
Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol and dynamics with ground-based remote sensing
Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
A climatology of trade-wind cumulus cold pools and their link to mesoscale cloud organization
Global evidence of aerosol-induced invigoration in marine cumulus clouds
Impacts of the Saharan air layer on the physical properties of the Atlantic tropical cyclone cloud systems: 2003–2019
Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production
Changes in cirrus cloud properties and occurrence over Europe during the COVID-19-caused air traffic reduction
A new conceptual model for adiabatic fog
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
Lightning occurrences and intensity over the Indian region: long-term trends and future projections
Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds
Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors
Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications
Lidar observations of cirrus clouds in Palau (7°33′ N, 134°48′ E)
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
A-Train estimates of the sensitivity of the cloud-to-rainwater ratio to cloud size, relative humidity, and aerosols
Ice injected into the tropopause by deep convection – Part 2: Over the Maritime Continent
Jianhao Zhang and Graham Feingold
Atmos. Chem. Phys., 23, 1073–1090, https://doi.org/10.5194/acp-23-1073-2023, https://doi.org/10.5194/acp-23-1073-2023, 2023
Short summary
Short summary
Using observations from space, we show maps of potential brightness changes in marine warm clouds in response to increases in cloud droplet concentrations. The environmental and aerosol conditions in which these clouds reside covary differently in each ocean basin, leading to distinct evolutions of cloud brightness changes. This work stresses the central importance of the covariability between meteorology and aerosol for scaling up the radiative response of cloud brightness changes.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Qiang Li and Silke Groß
Atmos. Chem. Phys., 22, 15963–15980, https://doi.org/10.5194/acp-22-15963-2022, https://doi.org/10.5194/acp-22-15963-2022, 2022
Short summary
Short summary
The IPCC report identified that cirrus clouds have a significant impact on the radiation balance comparable to the CO2 effects, which, however, is still hard to parameterize. The current study investigates the possible impact of aviation on cirrus properties based on the analysis of 10-year lidar measurements of CALIPSO. The results reveal that there is a significant positive trend in cirrus depolarization ratio in the last 10 years before COVID-19, which is strongly correlated with aviation.
Linda Forster and Bernhard Mayer
Atmos. Chem. Phys., 22, 15179–15205, https://doi.org/10.5194/acp-22-15179-2022, https://doi.org/10.5194/acp-22-15179-2022, 2022
Short summary
Short summary
We present a novel retrieval using ground-based imaging observations of halo displays together with radiative transfer simulations to help improve our understanding of ice crystal properties representative of cirrus clouds. Analysis of 4400 calibrated HaloCam images featuring a 22° halo revealed aggregates of hexagonal columns of 20 µm effective radius with a mixture of about 37 % smooth and 63% severely roughened surfaces as the best match in general.
Yun He, Zhenping Yin, Fuchao Liu, and Fan Yi
Atmos. Chem. Phys., 22, 13067–13085, https://doi.org/10.5194/acp-22-13067-2022, https://doi.org/10.5194/acp-22-13067-2022, 2022
Short summary
Short summary
A method is proposed to identify the sole presence of heterogeneous nucleation and competition between heterogeneous and homogeneous nucleation for dust-related cirrus clouds by characterizing the relationship between dust ice-nucleating particle concentration calculated from CALIOP using the POLIPHON method and in-cloud ice crystal number concentration from the DARDAR-Nice dataset. Two typical cirrus cases are shown as a demonstration, and the proposed method can be extended to a global scale.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022, https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Short summary
The response of clouds to changes in aerosol remains a large uncertainty in our understanding of the climate. Studies typically look at aerosol and cloud processes in snapshot images, measuring all properties at the same time. Here we use multiple images to characterise how cloud temporal development responds to aerosol. We find a reduction in liquid water path with increasing aerosol, party due to feedbacks. This suggests the aerosol impact on cloud water may be weaker than in previous studies.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-537, https://doi.org/10.5194/acp-2022-537, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This paper discusses differences between contrails, contrail cirrus and natural cirrus combining HALO aircraft measurements and MSG satellite remote sensing with radiative transfer simulations for cases in the ML-CIRRUS campaign over the North Atlantic. Microphysical properties are evaluated to investigate the evolution of contrails. Contrail cirrus net radiative forcing is four times as large as for contrails, and natural cirrus is in-between.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Mathew Peter Gombert, and Elizabeth Sterner
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-571, https://doi.org/10.5194/acp-2022-571, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The number cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number in the Southern Ocean is related to the oceanic phytoplankton abundance near Antarctica.
Yabin Gou, Haonan Chen, and Lulin Xue
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-495, https://doi.org/10.5194/acp-2022-495, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima (2019) using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, and polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Jessica Danker, Odran Sourdeval, Isabel L. McCoy, Robert Wood, and Anna Possner
Atmos. Chem. Phys., 22, 10247–10265, https://doi.org/10.5194/acp-22-10247-2022, https://doi.org/10.5194/acp-22-10247-2022, 2022
Short summary
Short summary
Using spaceborne lidar-radar retrievals, we show that seasonal changes in cloud phase outweigh changes in cloud-phase statistics across cloud morphologies at given cloud-top temperatures. These results show that cloud morphology does not seem to pose a primary constraint on cloud-phase statistics in the Southern Ocean. Meanwhile, larger changes in in-cloud albedo across cloud morphologies are observed in supercooled liquid rather than mixed-phase stratocumuli.
Britta Schäfer, Tim Carlsen, Ingrid Hanssen, Michael Gausa, and Trude Storelvmo
Atmos. Chem. Phys., 22, 9537–9551, https://doi.org/10.5194/acp-22-9537-2022, https://doi.org/10.5194/acp-22-9537-2022, 2022
Short summary
Short summary
Cloud properties are important for the surface radiation budget. This study presents cold-cloud observations based on lidar measurements from the Norwegian Arctic between 2011 and 2017. Using statistical assessments and case studies, we give an overview of the macro- and microphysical properties of these clouds and demonstrate the capabilities of long-term cloud observations in the Norwegian Arctic from the ground-based lidar at Andenes.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Kevin M. Smalley, Matthew D. Lebsock, Ryan Eastman, Mark Smalley, and Mikael K. Witte
Atmos. Chem. Phys., 22, 8197–8219, https://doi.org/10.5194/acp-22-8197-2022, https://doi.org/10.5194/acp-22-8197-2022, 2022
Short summary
Short summary
We use geostationary satellite observations to track pockets of open-cell (POC) stratocumulus and analyze how precipitation, cloud microphysics, and the environment change. Precipitation becomes more intense, corresponding to increasing effective radius and decreasing number concentrations, while the environment remains relatively unchanged. This implies that changes in cloud microphysics are more important than the environment to POC development.
Edward E. Hindman and Scott Lindstrom
Atmos. Chem. Phys., 22, 7995–8008, https://doi.org/10.5194/acp-22-7995-2022, https://doi.org/10.5194/acp-22-7995-2022, 2022
Short summary
Short summary
Winds buffeting the Mt. Everest massif often produce plumes. This systematic study identified plumes from daily observations of real-time, on-line images from a geosynchronous meteorological satellite. The corresponding meteorological data were used with a cloud-forming model to show the plumes were composed, depending on the temperature, of droplets, crystals or both. They were not composed of resuspended snow, which is a common belief. We estimated the plumes may produce significant snowfall.
Zeen Zhu, Pavlos Kollias, Edward Luke, and Fan Yang
Atmos. Chem. Phys., 22, 7405–7416, https://doi.org/10.5194/acp-22-7405-2022, https://doi.org/10.5194/acp-22-7405-2022, 2022
Short summary
Short summary
Drizzle (small rain droplets) is an important component of warm clouds; however, its existence is poorly understood. In this study, we capitalized on a machine-learning algorithm to develop a drizzle detection method. We applied this algorithm to investigate drizzle occurrence and found out that drizzle is far more ubiquitous than previously thought. This study demonstrates the ubiquitous nature of drizzle in clouds and will improve understanding of the associated microphysical process.
Hailing Jia, Johannes Quaas, Edward Gryspeerdt, Christoph Böhm, and Odran Sourdeval
Atmos. Chem. Phys., 22, 7353–7372, https://doi.org/10.5194/acp-22-7353-2022, https://doi.org/10.5194/acp-22-7353-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction is the most uncertain component of the anthropogenic forcing of the climate. By combining satellite and reanalysis data, we show that the strength of the Twomey effect (S) increases remarkably with vertical velocity. Both the confounding effect of aerosol–precipitation interaction and the lack of vertical co-location between aerosol and cloud are found to overestimate S, whereas the retrieval biases in aerosol and cloud appear to underestimate S.
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022, https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Short summary
The trades are home to a plethora of small cumulus clouds that are often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades, covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the cloud-free signal.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-300, https://doi.org/10.5194/acp-2022-300, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The results of comparing the polarimetric radio occultation observable ΔΦ and the ice water content derived from the Cloudsat radar, in a global and statistical way, show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 22, 5743–5756, https://doi.org/10.5194/acp-22-5743-2022, https://doi.org/10.5194/acp-22-5743-2022, 2022
Short summary
Short summary
Clouds are important to the Arctic surface energy budget, but the impact of aerosols on their properties is largely uncertain. This work shows that the response of liquid water path to cloud droplet number increases is strongly dependent on lower tropospheric stability (LTS), with weaker cooling effects in polluted clouds and at high LTS. LTS is projected to decrease in a warmer Arctic, reducing the cooling effect of aerosols and producing a positive, aerosol-dependent cloud feedback.
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
Short summary
The 2014–2015 winter brought an enormous number of lightning strokes to northern Europe, about 4 times more than their long-term median over the last decade. This unusual production of lightning, concentrated above the ocean and along the western coastal areas, was probably due to a combination of large-scale climatic events like El Niño and the North Atlantic Oscillation, causing increased sea surface temperatures and updraft strengths, which acted as additional thundercloud-charging drivers.
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 22, 2135–2152, https://doi.org/10.5194/acp-22-2135-2022, https://doi.org/10.5194/acp-22-2135-2022, 2022
Short summary
Short summary
Marine low-level clouds cover vast areas of the Southern Ocean, and they are essential to the Earth system energy balance. We use 3 years of satellite observations to group low-level clouds by their spatial structure using a pattern-recognizing program. We studied two primary cloud type patterns, i.e. open and closed clouds. Open clouds are uniformly distributed over the storm track, while closed clouds are most predominant in the southeastern Indian Ocean. Closed clouds exhibit a daily cycle.
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary
Short summary
To enrich our understanding of coupling of continental clouds, we developed a novel methodology to determine cloud coupling state from a lidar and a suite of surface meteorological instruments. This method is built upon advancement in our understanding of fundamental boundary layer processes and clouds. As the first remote sensing method for determining the coupling state of low clouds over land, this methodology paves a solid ground for further investigating the coupled land–atmosphere system.
Jianhao Zhang, Xiaoli Zhou, Tom Goren, and Graham Feingold
Atmos. Chem. Phys., 22, 861–880, https://doi.org/10.5194/acp-22-861-2022, https://doi.org/10.5194/acp-22-861-2022, 2022
Short summary
Short summary
Oceanic liquid-form clouds are effective sunlight reflectors. Their brightness is highly sensitive to changes in the amount of aerosol particles in the atmosphere and the state of the atmosphere they reside in. This study quantifies this sensitivity using long-term satellite observations and finds an overall cloud brightening (a cooling effect) potential and an essential role of the covarying meteorological conditions in governing this sensitivity for northeastern Pacific stratocumulus.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022, https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Martin Radenz, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann
Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, https://doi.org/10.5194/acp-21-17969-2021, 2021
Short summary
Short summary
This study brings together long-term ground-based remote-sensing observations of mixed-phase clouds at three key locations of aerosol–cloud interactions in the Northern and Southern Hemisphere midlatitudes. The findings contribute several new aspects on the nature of the excess of supercooled liquid clouds in the Southern Hemisphere, such as a long-term lidar-based estimate of ice-nucleating particle profiles as well as the effects of boundary layer coupling and gravity waves on ice formation.
Yang Yi, Fan Yi, Fuchao Liu, Yunpeng Zhang, Changming Yu, and Yun He
Atmos. Chem. Phys., 21, 17649–17664, https://doi.org/10.5194/acp-21-17649-2021, https://doi.org/10.5194/acp-21-17649-2021, 2021
Short summary
Short summary
Our lidar observations reveal the complete microphysical process of hydrometeors falling from mid-level stratiform clouds. We find that the surface rainfall begins as supercooled mixed-phase hydrometeors fall out of a liquid parent cloud base. We find also that the collision–coalescence growth of precipitating raindrops and subsequent spontaneous breakup always occur around 0.6 km altitude during surface rainfalls. Our findings provide new insights into stratiform precipitation formation.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Raphaela Vogel, Heike Konow, Hauke Schulz, and Paquita Zuidema
Atmos. Chem. Phys., 21, 16609–16630, https://doi.org/10.5194/acp-21-16609-2021, https://doi.org/10.5194/acp-21-16609-2021, 2021
Short summary
Short summary
The shallow cumulus clouds that populate the trade-wind regions can produce substantial amounts of rain. Before reaching the surface, part of the rain can evaporate and form pools of cold air that spread at the surface as density currents. We use 10 years of data from Barbados to show that such cold pools occur on 3 out of 4 d, that cold-pool periods are 90 % cloudier relative to the average winter conditions, and that they are connected to specific patterns of mesoscale cloud organization.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021, https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Short summary
When aerosols enter the atmosphere, they interact with the clouds above in what we term aerosol–cloud interactions and lead to a series of reactions which delay the onset of rain. This delay may lead to increased rain rates, or invigoration, when the cloud eventually rains. We show that aerosol leads to invigoration in certain environments. The strength of the invigoration depends on how large the cloud is, which suggests that it is highly tied to the organization of the cloud system.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Qiang Li and Silke Groß
Atmos. Chem. Phys., 21, 14573–14590, https://doi.org/10.5194/acp-21-14573-2021, https://doi.org/10.5194/acp-21-14573-2021, 2021
Short summary
Short summary
Aircraft emit exhaust gases and particles directly into the atmosphere, which may contribute to climate change. We present a significant reduction in the occurrence rate and particle linear depolarization ratio of cirrus clouds based on the analysis of measurements with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite during COVID-19 when air traffic was significantly reduced. The findings imply that these clouds formed with less influence from aviation.
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021, https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary
Short summary
The article presents a new conceptual model to describe the temporal evolution of continental fog layers, developed based on 7 years of fog measurements performed at the SIRTA observatory, France. This new paradigm relates the visibility reduction caused by fog to its vertical thickness and liquid water path and provides diagnostic variables that could substantially improve the reliability of fog dissipation nowcasting at a local scale, based on real-time profiling observation.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021, https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021, https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary
Short summary
Heterogeneous ice formation in Arctic mixed-phase clouds under consideration of their surface-coupling state is investigated. Cloud phase and macrophysical properties were determined by means of lidar and cloud radar measurements, the coupling state, and cloud minimum temperature by radiosonde profiles. Above −15 °C cloud minimum temperature, surface-coupled clouds are more likely to contain ice by a factor of 2–6. By means of a literature survey, causes of the observed effects are discussed.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Johannes Mohrmann, Robert Wood, Tianle Yuan, Hua Song, Ryan Eastman, and Lazaros Oreopoulos
Atmos. Chem. Phys., 21, 9629–9642, https://doi.org/10.5194/acp-21-9629-2021, https://doi.org/10.5194/acp-21-9629-2021, 2021
Short summary
Short summary
Observations of marine-boundary-layer conditions are composited by cloud type, based on a new classification dataset. It is found that two cloud types, representing regions of clustered and suppressed low-level clouds, occur in very similar large-scale conditions but are distinguished from each other by considering low-level circulation and surface wind fields, validating prior results from modeling.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021, https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
Short summary
Cloud responses to aerosol are time-sensitive, but this development is rarely observed. This study uses isolated aerosol perturbations from ships to measure this development and shows that macrophysical (width, cloud fraction, detectability) and microphysical (droplet number) properties of ship tracks vary strongly with time since emission, background cloud and meteorological state. This temporal development should be considered when constraining aerosol–cloud interactions with observations.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Ulrike Proske, Verena Bessenbacher, Zane Dedekind, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 21, 5195–5216, https://doi.org/10.5194/acp-21-5195-2021, https://doi.org/10.5194/acp-21-5195-2021, 2021
Short summary
Short summary
Ice crystals falling out of one cloud can initiate freezing in a second cloud below. We estimate the occurrence frequency of this natural cloud seeding over Switzerland from satellite data and sublimation calculations. We find that such situations with an ice cloud above another cloud are frequent and that the falling crystals survive the fall between two clouds in a significant number of cases, suggesting that natural cloud seeding is an important phenomenon over Switzerland.
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167, https://doi.org/10.5194/acp-21-4149-2021, https://doi.org/10.5194/acp-21-4149-2021, 2021
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021, https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary
Short summary
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to the lack of measurements over the sea ice. In this paper, we exploit a series of lidar profiles acquired from autonomous drifting buoys deployed in the Arctic Ocean and derive a statistic of low cloud frequency and macrophysical properties. We also show that clouds contribute to warm the surface in the shoulder seasons but not significantly from May to September.
Kevin M. Smalley and Anita D. Rapp
Atmos. Chem. Phys., 21, 2765–2779, https://doi.org/10.5194/acp-21-2765-2021, https://doi.org/10.5194/acp-21-2765-2021, 2021
Short summary
Short summary
We use satellite observations of shallow cumulus clouds to investigate the influence of cloud size on the ratio of cloud water path to rainwater (WRR) in different environments. For a fixed temperature and relative humidity, WRR increases with cloud size, but it varies little with aerosols. These results imply that increasing WRR with rising temperature relates not only to deeper clouds but also to more frequent larger clouds.
Iris-Amata Dion, Cyrille Dallet, Philippe Ricaud, Fabien Carminati, Thibaut Dauhut, and Peter Haynes
Atmos. Chem. Phys., 21, 2191–2210, https://doi.org/10.5194/acp-21-2191-2021, https://doi.org/10.5194/acp-21-2191-2021, 2021
Short summary
Short summary
Ice in the tropopause has a strong radiative effect on climate. The amount of ice injected (∆IWC) up to the tropical tropopause layer has been shown to be the highest over the Maritime Continent (MC), a region that includes Indonesia. ∆IWC is studied over islands and sea of the MC. Space-borne observations of ice, precipitation and lightning are used to estimate ∆IWC and are compared to ∆IWC estimated from the ERA5 reanalyses. It is shown that Java is the area of the greatest ∆IWC over the MC.
Cited articles
Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement Program, Phys. Today, 55, 39–44, 2003.
Appenzeller, C., Schwander, J., Sommer, S., and Stocker, T. F.: The North Atlantic Oscillation and its imprint on precipitation and ice accumulation in Greenland, Geophys. Res. Lett., 25, 1939–1942, 1998.
Bromwich, D. H., Cullather, R. I., Chen, Q., and Csatho, B. M.: Evaluation of recent precipitation studies for Greenland ice sheet, J. Geophys. Res.-Atmos., 103, 26007–26024, https://doi.org/10.1029/98jd02278, 1998.
Bromwich, D. H., Chen, Q. S., Li, Y., and Cullather, R. I.: Precipitation over Greenland and its relation to the North Atlantic Oscillation, J. Geophys. Res.-Atmos., 104, 22103–22115, 1999.
Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013.
Castellani, B. B., Shupe, M. D., Hudak, D. R., and Sheppard, B. E.: The annual cycle of snowfall at Summit, Greenland, J. Geophys. Res., 120, 6654–6668, https://doi.org/10.1002/2015JD023072, 2015.
Chen, Q. S., Bromwich, D. H., and Bai, L.: Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity, J. Climate, 10, 839–870, 1997.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005.
Crewell, S. and Löhnert, U.: Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy, Radio Sci., 38, 8042, https://doi.org/10.1029/2002RS002634 2003.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Dee, D. P., Uppala, S. M., Simmons, A. J., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dolan, B. and Rutledge, S. A.: A theory-based hydrometeor identification algorithm for X-band polarimetric radars, J. Atmos. Ocean. Tech., 26, 2071–2088, 2009.
Edwards-Opperman, J., Cavallo, S., and Turner, D. D.: The occurrence and properties of long-lived liquid bearing clouds over the Greenland Ice Sheet and their relationship to the North Atlantic Oscillation, J. Appl. Meteorol. Clim., https://doi.org/10.1175/JAMC-D-17-0230.1, online first, 2018.
Hanna, E., McConnell, J., Das, S., Cappelen, J., and Stephens, A.: Observed and modeled Greenland ice sheet snow accumulation, 1958–2003, and links with regional climate forcing, J. Climate, 19, 344–358, 2006.
Hanna, E., Cropper, T. E., Hall, R. J., and Cappelen, J.: Greenland Blocking Index 1851–2015: a regional climate change signal, Int. J. Climatol., 36, 4847–4861, 2016.
Holton, J.: An Introduction to Dynamical Meteorolgy, 4th Edn., 151–155, 2004.
Johnson, B. T., Petty, G. W., and Skofronick-Jackson, G.: Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions, J. Appl. Meteorol. Clim., 51, 2152–2171, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kapsner, W. R., Alley, R. B., Shuman, C. A., Anandakrishnan, S., and Grootes, P. M.: Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years, Nature, 373, 52–54, 1995.
Kneifel, S., Löhnert, U., Battaglia, A., Crewell, S., and Siebler, D.: Snow scattering signals in ground based passive microwave radiometer measurements, J. Geophys. Res., 115, D16214, https://doi.org/10.1029/2010JD013856, 2010.
Kneifel, S., Bennartz, R., and Kulie, M. S.: A triple-frequency approach to retrieve microphysical snowfall parameters, J. Geophys. Res., 116, D11203, https://doi.org/10.1029/2010JD015430, 2011.
Kollias, P., Clothiaux, E. E., Ackerman, T. P., Albrecht, B. A., Widener, K. B., Moran, K. P., Luke, E. P., Johnson, K. L., Bharadwaj, N., Mead, J. B., Miller, M. A., Verlinde, J., Marchand, R. T., and Mace, G. G.: Development and applications of ARM millimeter-wavelength cloud radars. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monograph, 57, Amer. Meteor. Soc., 17.1–17.19, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1, 2016.
Korolev, A. V., Isaac, G. A., and Hallett, J.: Ice particle habits in Arctic clouds, Geophys. Res. Lett., 26, 299–1302, 1999.
Kulie, M. S. and Bennartz, R.: Utilizing spaceborne radars to retrieve dry snowfall, J. Appl. Meteorol. Clim., 48, 2564–2580, 2009.
Kulie, M. S., Bennartz, R., Greenwald, T., Chen, Y., and Weng, F.: Uncertainties in Microwave Properties of Frozen Precipitation: Implications for Remote Sensing and Data Assimilation, J. Atmos. Sci., 67, 3471–3487, 2010.
Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., Bennartz, R., and L'Ecuyer, T. S.: A Shallow Cumuliform Snowfall Census Using Spaceborne Radar, J. Hydrometeorol., 17, 1261–1279, 2016.
Libbrecht, K.: The Art of the Snowflake: A Photographic Album, Voyageur Press, London, 2007.
Moran, K. P., Martner, B., Post, M. J., Kropfli, R. A., Welsh, D. C., and Widener, K. B.: An unattended cloud-profiling radar for use in climate research, B. Am. Meteorol. Soc., 79, 443–455, 1998.
Liu, G.: A database of microwave single-scattering properties for nonspherical ice particles, B. Am. Meteorol. Soc., 89, 1563–1570, 2008.
Matrosov, S. Y.: Modeling backscatter properties of snowfall at millimeter wavelengths, J. Atmos. Sci., 64, 1727–1736, 2007.
McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., and Garing, J. S.: Optical Properties of the Atmosphere, 3rd Edn., Air Force Cambridge Research Laboratories, Report AFCRL-72-0497, 1972.
Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: IceBridge BedMachine Greenland, Version 2, Ice Surface Elevation, Boulder, Colorado, USA: NASA DAAC at the National Snow and Ice Data Center, https://doi.org/10.5067/AD7B0HQNSJ29, 2015.
Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci., 5, 11–13, 2012.
Payne, V. H., Delamere, J. S., Cady-Pereira, K. E., Gamache, R. R., Moncet, J.-L., Mlawer, E. J., and Clough, S. A.: Air-broadened half-widths of the 22- and 183-GHz water-vapor lines, IEEE T. Geosci. Remote Sens., 46, 3601–3617, https://doi.org/10.1109/TGRS.2008.2002435, 2008.
Payne, V. H., Mlawer, E. J., Cady-Pereira, K. E., and Moncet, J.-L.: Water vapor continuum absorption in the microwave, IEEE T. Geosci. Remote Sens., 49, 2194–2208, https://doi.org/10.1109/TGRS.2010.2091416, 2011.
Pettersen, C. and Merrelli, A.: Microwave radiometer snow categorization tool for Summit, Greenland, 2010–2015, https://doi.org/10.18739/A2R28Q, 2018.
Pettersen, C., Bennartz, R., Kulie, M. S., Merrelli, A. J., Shupe, M. D., and Turner, D. D.: Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland, Atmos. Chem. Phys., 16, 4743–4756, https://doi.org/10.5194/acp-16-4743-2016, 2016.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation: Reprinted 1980, Springer Science & Business Media, Vancouver, 2012.
Rogers, J. C., Bathke, D. J., Mosley-Thompson, E., and Wang, S. H.: Atmospheric circulation and cyclone frequency variations linked to the primary modes of Greenland snow accumulation, Geophys. Res. Lett., 31, L23208, https://doi.org/10.1029/2004GL021048, 2004.
Rose, T., Crewell, S., Löhnert, U., and Simmer, C.: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere, Atmos. Res., 75, 183–200, 2005.
Schuenemann, K. C., Cassano, J. J., and Finnis, J.: Synoptic forcing of precipitation over Greenland: Climatology for 1961–99, J. Hydrometeorol., 10, 60–78, 2009.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., and Horwath, M.: A reconciled estimate of ice-sheet mass balance, Science, 338, 1183–1189, 2012.
Sheppard, B. E. and Joe, P. I.: Performance of the precipitation occurrence sensor system as a precipitation gauge, J. Atmos. Ocean. Tech., 25, 196–212, 2008.
Shupe, M.: Millimeter Cloud Radar measurements taken at Summit Station, Greenland, 2010, urn:node:ARCTIC, https://doi.org/10.18739/A2G74F, 2010.
Shupe, M.: Millimeter Cloud Radar measurements taken at Summit Station, Greenland, 2011, urn:node:ARCTIC, https://doi.org/10.18739/A2M17R, 2011a.
Shupe, M.: Precipitation Occurrence Sensor System measurements taken at Summit Station, Greenland, 2011, Arctic Data Center, https://doi.org/10.18739/A2H20H, 2011b.
Shupe, M.: Millimeter Cloud Radar measurements taken at Summit Station, Greenland, 2012, Arctic Data Center, https://doi.org/10.18739/A2BJ3X, 2012a.
Shupe, M.: Precipitation Occurrence Sensor System measurements taken at Summit Station, Greenland, 2012, urn:node:ARCTIC, https://doi.org/10.18739/A2CB7P, 2012b.
Shupe, M.: Millimeter Cloud Radar measurements taken at Summit Station, Greenland, 2013, urn:node:ARCTIC, https://doi.org/10.18739/A2318G, 2013a.
Shupe, M.: Precipitation Occurrence Sensor System measurements taken at Summit Station, Greenland, 2013, urn:node:ARCTIC, https://doi.org/10.18739/A27J64, 2013b.
Shupe, M.: Millimeter Cloud Radar measurements taken at Summit Station, Greenland, 2014, urn:node:ARCTIC, https://doi.org/10.18739/A2121J, 2014a.
Shupe, M.: Precipitation Occurrence Sensor System measurements taken at Summit Station, Greenland, 2014, Arctic Data Center, https://doi.org/10.18739/A2020V, 2014b.
Shupe, M.: Precipitation Occurrence Sensor System measurements taken at Summit Station, Greenland, 2015, Arctic Data Center, https://doi.org/10.18739/A2VB8D, 2015.
Shupe, M. D., Kollias, P., Persson, P. O. G., and McFarquhar, G. M.: Vertical motions in Arctic mixed-phase stratiform clouds, J. Atmos. Sci., 65, 1304–1322, 2006.
Shupe, M. D., Daniel, J. S., De Boer, G., Eloranta, E. W., Kollias, P., Luke, E. P., Long, C. N., Turner, D. D., and Verlinde, J.: A focus on mixed-phase clouds: The status of ground-based observational methods, B. Am. Meteorol. Soc., 89, 1549–1562, 2008.
Shupe, M. D., Turner, D. D., Walden, V. P., Bennartz, R., Cadeddu, M., Castellani, B. B., Cox, C. J., Hudak, D. R., Kulie, M. S., Miller, N. B., Neely, R. R., Neff, W. D., and Rowe, P. M.: High and Dry: New Observations of Tropospheric and Cloud Properties above the Greenland Ice Sheet, B. Am. Meteorol. Soc., 94, 169–186, 2013.
Spencer, R. W., Goodman, H. M., and Hood, R. E.: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal, J. Atmos. Ocean. Tech., 6, 254–273, 1989.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system, B. Am. Meteorol. Soc., 96, 2059–2077, 2015.
Thomas, R., Atkins, T., Csatho, B., Fahnestock, M., Gogineni, P., Kim, C., and Sonntag, J.: Mass balance of the Greenland Ice Sheet at high elevations, Science, 289, 426–428, 2000.
Turner, D. and Bennartz, R.: Microwave Radiometer measurements of sky brightness temperature taken at Summit Station, Greenland, 2010, Arctic Data Center, https://doi.org/10.18739/A2R79T, 2010.
Turner, D. and Bennartz, R.: Microwave Radiometer measurements of sky brightness temperature taken at Summit Station, Greenland, 2011, Arctic Data Center, https://doi.org/10.18739/A27795, 2011.
Turner, D. and Bennartz, R.: Microwave Radiometer measurements of sky brightness temperature taken at Summit Station, Greenland, 2012, Arctic Data Center, https://doi.org/10.18739/A2ZR3K, 2012.
Turner, D. and Bennartz, R.: Microwave Radiometer measurements of sky brightness temperature taken at Summit Station, Greenland, 2013, urn:node:ARCTIC, https://doi.org/10.18739/A22J6K, 2013.
Turner D. and Bennartz, R.: Microwave Radiometer measurements of sky brightness temperature taken at Summit Station, Greenland, 2014, Arctic Data Center., https://doi.org/10.18739/A2HJ57, 2014.
Turner, D. and Bennartz, R.: Microwave Radiometer measurements of sky brightness temperature taken at Summit Station, Greenland, 2015, Arctic Data Center, https://doi.org/10.18739/A24B8W, 2015.
Turner, D. D., Clough, S. A., Liljegren, J. C., Clothiaux, E. E., Cady-Pereira, K., and Gaustad, K. L.: Retrieving Liquid Water Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers, IEEE Transactions on Geoscience and Remote Sensing, 45, 3680–3690, 2007.
Turner, D. D., Loehnert, U., Cadeddu, M., Crewell, S., and Vogelmann, A.: Modifications to the water vapor continuum in the microwave suggested by ground-based 150 GHz observations, IEEE T. Geosci. Remote Sens., 47, 3326–3337, https://doi.org/10.1109/TGRS.2009.2022262, 2009.
Turner, D. D., Kneifel, S., and Cadeddu, M. P.: An improved liquid water absorption model at microwave frequencies for supercooled liquid water clouds. J. Atmos. Ocean. Tech., 33, 33–44, https://doi.org/10.1175/JTECH-D-15-0074.1, 2016.
Uttal, T., Starkweather, S., Drummond, J. R., et al.: International Arctic systems for observing the atmosphere (IASOA): An international polar year legacy consortium, B. Am. Meteorol. Soc., 97, 1033–1056, https://doi.org/10.1175/BAMS-D-14-00145.1, 2015.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning recent Greenland mass loss, Science, 326, 984–986, 2009.
Verlinde, J., Harrington, J. Y., Yannuzzi, V. T., Avramov, A., Greenberg, S., Richardson, S. J., Bahrmann, C. P., McFarquhar, G. M., Zhang, G., Johnson, N., and Poellot, M. R.: The mixed-phase Arctic cloud experiment, B. Am. Meteorol. Soc., 88, 205–221, 2007.
Walden, V. P. and Shupe, M.: Radiosonde temperature and humidity profiles taken at Summit Station, Greenland, 2010, urn:node:ARCTIC, https://doi.org/10.18739/A2F490, 2010.
Walden, V. P. and Shupe, M.: Radiosonde temperature and humidity profiles taken at Summit Station, Greenland, 2011, urn:node:ARCTIC, https://doi.org/10.18739/A25N4S, 2011.
Walden, V. P. and Shupe, M.: Radiosonde temperature and humidity profiles taken at Summit Station, Greenland, 2012, urn:node:ARCTIC, https://doi.org/10.18739/A2X508, 2012.
Walden, V. P. and Shupe, M.: Radiosonde temperature and humidity profiles taken at Summit Station, Greenland, 2013, Arctic Data Center, https://doi.org/10.18739/A2NN44, 2013.
Walden, V. P. and Shupe, M.: Radiosonde temperature and humidity profiles taken at Summit Station, Greenland, 2014, urn:node:ARCTIC, https://doi.org/10.18739/A2WZ18, 2014.
Walden, V. P. and Shupe, M.: Radiosonde temperature and humidity profiles taken at Summit Station, Greenland, 2015, urn:node:ARCTIC, https://doi.org/10.18739/A2GZ1J, 2015.
Short summary
A novel method for classifying Arctic precipitation using ground based remote sensors is presented. The classification reveals two distinct, primary regimes of precipitation over the central Greenland Ice Sheet: snowfall coupled to deep, fully glaciated ice clouds or to shallow, mixed-phase clouds. The ice clouds are associated with low-pressure storm systems from the southeast, while the mixed-phase clouds slowly propagate from the southwest along a quiescent flow.
A novel method for classifying Arctic precipitation using ground based remote sensors is...
Altmetrics
Final-revised paper
Preprint