Articles | Volume 18, issue 7
Atmos. Chem. Phys., 18, 4715–4735, 2018
https://doi.org/10.5194/acp-18-4715-2018
Atmos. Chem. Phys., 18, 4715–4735, 2018
https://doi.org/10.5194/acp-18-4715-2018
Research article
09 Apr 2018
Research article | 09 Apr 2018

Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations

Claire Pettersen et al.

Related authors

DeepPrecip: A deep neural network for precipitation retrievals
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
EGUsphere, https://doi.org/10.5194/egusphere-2022-497,https://doi.org/10.5194/egusphere-2022-497, 2022
Short summary
A Comparative Evaluation of Snowflake Particle Size and Shape Estimation Techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD)
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-427,https://doi.org/10.5194/amt-2021-427, 2022
Revised manuscript under review for AMT
Short summary
Controls on surface aerosol particle number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021,https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Satellite observations of snowfall regimes over the Greenland Ice Sheet
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020,https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Spatial and temporal variability of snowfall over Greenland from CloudSat observations
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019,https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022,https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022,https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Observing short-timescale cloud development to constrain aerosol–cloud interactions
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022,https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Exploring relations between cloud morphology, cloud phase, and cloud radiative properties in Southern Ocean's stratocumulus clouds
Jessica Danker, Odran Sourdeval, Isabel L. McCoy, Robert Wood, and Anna Possner
Atmos. Chem. Phys., 22, 10247–10265, https://doi.org/10.5194/acp-22-10247-2022,https://doi.org/10.5194/acp-22-10247-2022, 2022
Short summary
Observations of cold-cloud properties in the Norwegian Arctic using ground-based and spaceborne lidar
Britta Schäfer, Tim Carlsen, Ingrid Hanssen, Michael Gausa, and Trude Storelvmo
Atmos. Chem. Phys., 22, 9537–9551, https://doi.org/10.5194/acp-22-9537-2022,https://doi.org/10.5194/acp-22-9537-2022, 2022
Short summary

Cited articles

Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement Program, Phys. Today, 55, 39–44, 2003.
Appenzeller, C., Schwander, J., Sommer, S., and Stocker, T. F.: The North Atlantic Oscillation and its imprint on precipitation and ice accumulation in Greenland, Geophys. Res. Lett., 25, 1939–1942, 1998.
Bromwich, D. H., Cullather, R. I., Chen, Q., and Csatho, B. M.: Evaluation of recent precipitation studies for Greenland ice sheet, J. Geophys. Res.-Atmos., 103, 26007–26024, https://doi.org/10.1029/98jd02278, 1998.
Bromwich, D. H., Chen, Q. S., Li, Y., and Cullather, R. I.: Precipitation over Greenland and its relation to the North Atlantic Oscillation, J. Geophys. Res.-Atmos., 104, 22103–22115, 1999.
Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013.
Download
Short summary
A novel method for classifying Arctic precipitation using ground based remote sensors is presented. The classification reveals two distinct, primary regimes of precipitation over the central Greenland Ice Sheet: snowfall coupled to deep, fully glaciated ice clouds or to shallow, mixed-phase clouds. The ice clouds are associated with low-pressure storm systems from the southeast, while the mixed-phase clouds slowly propagate from the southwest along a quiescent flow.
Altmetrics
Final-revised paper
Preprint