Articles | Volume 18, issue 24
https://doi.org/10.5194/acp-18-17909-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-17909-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Photochemical box modelling of volcanic SO2 oxidation: isotopic constraints
Tommaso Galeazzo
CORRESPONDING AUTHOR
LATMOS/IPSL, Sorbonne Université, UVSQ, Université Paris-Saclay, CNRS, Paris, France
ISTeP, Sorbonne Université, CNRS, Paris, France
LATMOS/IPSL, Sorbonne Université, UVSQ, Université Paris-Saclay, CNRS, Paris, France
Erwan Martin
ISTeP, Sorbonne Université, CNRS, Paris, France
Joël Savarino
IGE, Univ. Grenoble Alpes, CNRS, IRD, INP-G, 38000 Grenoble, France
Stephen R. Arnold
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
Related authors
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2863, https://doi.org/10.5194/egusphere-2024-2863, 2024
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve Arnold, Andrea Baccarini, Mauricio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2421, https://doi.org/10.5194/egusphere-2024-2421, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed onboard a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, NOx) in Fairbanks during the winter of 2022. Data calibration with reference measurements and machine learning methods enabled to document pollution at the surface and power plant plumes aloft.
Aishah Shittu, Kirsty Pringle, Stephen Arnold, Richard Pope, Ailish Graham, Carly Reddington, Richard Rigby, and James McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-1685, https://doi.org/10.5194/egusphere-2024-1685, 2024
Short summary
Short summary
The study highlighted the importance of data cleaning in improving the raw Atmotube Pro PM2.5 data. The data cleaning method was successful in improving the inter-sensor variability among the Atmotube Pro sensors data. This study showed 62.5 % of the sensors used for the study exhibited greater precision in their measurements. The overall performance showed the sensors passed the base testing recommended by USEPA using one-hour averaged data.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
V. Holly L. Winton, Robert Mulvaney, Joel Savarino, Kyle R. Clem, and Markus M. Frey
Clim. Past, 20, 1213–1232, https://doi.org/10.5194/cp-20-1213-2024, https://doi.org/10.5194/cp-20-1213-2024, 2024
Short summary
Short summary
In 2018, a new 120 m ice core was drilled in a region located under the Antarctic ozone hole. We present the first results including a 1300-year record of snow accumulation and aerosol chemistry. We investigate the aerosol and moisture source regions and atmospheric processes related to the ice core record and discuss what this means for developing a record of past ultraviolet radiation and ozone depletion using the stable isotopic composition of nitrate measured in the same ice core.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Zhuang Jiang, Becky Alexander, Joel Savarino, and Lei Geng
Atmos. Chem. Phys., 24, 4895–4914, https://doi.org/10.5194/acp-24-4895-2024, https://doi.org/10.5194/acp-24-4895-2024, 2024
Short summary
Short summary
Ice-core nitrate could track the past atmospheric NOx and oxidant level, but its interpretation is hampered by the post-depositional processing. In this work, an inverse model was developed and tested against two polar sites and was shown to well reproduce the observed nitrate signals in snow and atmosphere, suggesting that the model can properly correct for the effect of post-depositional processing. This model offers a very useful tool for future studies on ice-core nitrate records.
Martyn P. Chipperfield and Slimane Bekki
Atmos. Chem. Phys., 24, 2783–2802, https://doi.org/10.5194/acp-24-2783-2024, https://doi.org/10.5194/acp-24-2783-2024, 2024
Short summary
Short summary
We give a personal perspective on recent issues related to the depletion of stratospheric ozone and some newly emerging challenges. We first provide a brief review of historic work on understanding the ozone layer and review ozone recovery from the effects of halogenated source gases and the Montreal Protocol. We then discuss the recent observations of ozone depletion from Australian fires in early 2020 and the Hunga Tonga–Hunga Ha'apai volcano in January 2022.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023, https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary
Short summary
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its emissions and how it reacts is a hot topic that can be addressed from the past. Stable isotopes (the mass of the molecule) measured in ice cores (glacial archives) can teach us a lot. However, the concentrations in ice cores are very small. We propose a protocol to limit the contamination and apply it to one ice core drilled in Mont Blanc, describing the opportunities our method brings.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Florent Tencé, Julien Jumelet, Marie Bouillon, David Cugnet, Slimane Bekki, Sarah Safieddine, Philippe Keckhut, and Alain Sarkissian
Atmos. Chem. Phys., 23, 431–451, https://doi.org/10.5194/acp-23-431-2023, https://doi.org/10.5194/acp-23-431-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) are critical precursors to stratospheric ozone depletion, and measurement-driven classifications remain a key to accurate cloud modelling. We present PSC lidar observations conducted at the French Antarctic station Dumont d'Urville between 2007 and 2020. This dataset is analyzed using typical PSC classification schemes. We present a PSC climatology along with a significant and slightly negative 14-year trend of PSC occurences of −4.6 PSC days per decade.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Albane Barbero, Roberto Grilli, Markus M. Frey, Camille Blouzon, Detlev Helmig, Nicolas Caillon, and Joël Savarino
Atmos. Chem. Phys., 22, 12025–12054, https://doi.org/10.5194/acp-22-12025-2022, https://doi.org/10.5194/acp-22-12025-2022, 2022
Short summary
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
Zhuang Jiang, Joel Savarino, Becky Alexander, Joseph Erbland, Jean-Luc Jaffrezo, and Lei Geng
The Cryosphere, 16, 2709–2724, https://doi.org/10.5194/tc-16-2709-2022, https://doi.org/10.5194/tc-16-2709-2022, 2022
Short summary
Short summary
A record of year-round atmospheric nitrate isotopic composition along with snow nitrate isotopic data from Summit, Greenland, revealed apparent enrichments in nitrogen isotopes in snow nitrate compared to atmospheric nitrate, in addition to a relatively smaller degree of changes in oxygen isotopes. The results suggest that at this site post-depositional processing takes effect, which should be taken into account when interpreting ice-core nitrate isotope records.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022, https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Short summary
Glyoxal is a ubiquitous reactive organic compound in the atmosphere, which may form organic aerosol and impact the atmosphere's oxidising capacity. There are limited measurements of glyoxal's abundance in the remote marine atmosphere. We made new measurements of glyoxal using a highly sensitive technique over two 4-week periods in the tropical Atlantic atmosphere. We show that daytime measurements are mostly consistent with our chemical understanding but a potential missing source at night.
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
Richard J. Pope, Rebecca Kelly, Eloise A. Marais, Ailish M. Graham, Chris Wilson, Jeremy J. Harrison, Savio J. A. Moniz, Mohamed Ghalaieny, Steve R. Arnold, and Martyn P. Chipperfield
Atmos. Chem. Phys., 22, 4323–4338, https://doi.org/10.5194/acp-22-4323-2022, https://doi.org/10.5194/acp-22-4323-2022, 2022
Short summary
Short summary
Nitrogen oxides (NOx) are potent air pollutants which directly impact on human health. In this study, we use satellite nitrogen dioxide (NO2) data to evaluate the spatial distribution and temporal evolution of the UK official NOx emissions inventory, with reasonable agreement. We also derived satellite-based NOx emissions for several UK cities. In the case of London and Birmingham, the NAEI NOx emissions are potentially too low by >50%.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Laura Crick, Andrea Burke, William Hutchison, Mika Kohno, Kathryn A. Moore, Joel Savarino, Emily A. Doyle, Sue Mahony, Sepp Kipfstuhl, James W. B. Rae, Robert C. J. Steele, R. Stephen J. Sparks, and Eric W. Wolff
Clim. Past, 17, 2119–2137, https://doi.org/10.5194/cp-17-2119-2021, https://doi.org/10.5194/cp-17-2119-2021, 2021
Short summary
Short summary
The ~ 74 ka eruption of Toba was one of the largest eruptions of the last 100 ka. We have measured the sulfur isotopic composition for 11 Toba eruption candidates in two Antarctic ice cores. Sulfur isotopes allow us to distinguish between large eruptions that have erupted material into the stratosphere and smaller ones that reach lower altitudes. Using this we have identified the events most likely to be Toba and place the eruption on the transition into a cold period in the Northern Hemisphere.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Zhuang Jiang, Becky Alexander, Joel Savarino, Joseph Erbland, and Lei Geng
The Cryosphere, 15, 4207–4220, https://doi.org/10.5194/tc-15-4207-2021, https://doi.org/10.5194/tc-15-4207-2021, 2021
Short summary
Short summary
We used a snow photochemistry model (TRANSITS) to simulate the seasonal nitrate snow profile at Summit, Greenland. Comparisons between model outputs and observations suggest that at Summit post-depositional processing is active and probably dominates the snowpack δ15N seasonality. We also used the model to assess the degree of snow nitrate loss and the consequences in its isotopes at present and in the past, which helps for quantitative interpretations of ice-core nitrate records.
Luke Surl, Tjarda Roberts, and Slimane Bekki
Atmos. Chem. Phys., 21, 12413–12441, https://doi.org/10.5194/acp-21-12413-2021, https://doi.org/10.5194/acp-21-12413-2021, 2021
Short summary
Short summary
Many different chemical reactions happen when the gases from a volcano mix with air, but what effects do they have? We present aircraft measurements which show that there is less ozone within the plume of Etna than outside it. We have also made a computer model of this chemistry. This model can reproduce the effects seen when halogens (bromine and chlorine) are included in the volcanic emissions.
We look closely at the simulation to discover how complicated halogen reactions cause ozone loss.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Joanna E. Dyson, Graham A. Boustead, Lauren T. Fleming, Mark Blitz, Daniel Stone, Stephen R. Arnold, Lisa K. Whalley, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 5755–5775, https://doi.org/10.5194/acp-21-5755-2021, https://doi.org/10.5194/acp-21-5755-2021, 2021
Short summary
Short summary
The hydroxyl radical (OH) dominates the removal of atmospheric pollutants, with nitrous acid (HONO) recognised as a major OH source. For remote regions HONO production through the action of sunlight on aerosol surfaces can provide a source of nitrogen oxides. In this study, HONO production rates at illuminated aerosol surfaces are measured under atmospheric conditions, a model consistent with the data is developed and aerosol production of HONO in the atmosphere is shown to be significant.
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021, https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary
Short summary
We compare modelled near-surface pollutants with surface and satellite observations to better understand the controls on the regional concentrations of pollution in western Siberia for late spring and summer in 2011. We find two commonly used emission inventories underestimate human emissions when compared to observations. Transport emissions are the main source of pollutants within the region during this period, whilst fire emissions peak during June and are only significant south of 60° N.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Ben Silver, Luke Conibear, Carly L. Reddington, Christoph Knote, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 20, 11683–11695, https://doi.org/10.5194/acp-20-11683-2020, https://doi.org/10.5194/acp-20-11683-2020, 2020
Short summary
Short summary
China suffers from serious air pollution, which is thought to cause millions of early deaths each year. Measurements on the ground show that overall air quality is improving. Air quality is also affected by weather conditions, which can vary from year to year. We conduct computer simulations to show it is the reduction of the amount of pollution emitted, rather than weather conditions, which caused air quality to improve during 2015–2017. We then estimate that 150 000 fewer people die early.
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
Albane Barbero, Camille Blouzon, Joël Savarino, Nicolas Caillon, Aurélien Dommergue, and Roberto Grilli
Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, https://doi.org/10.5194/amt-13-4317-2020, 2020
Short summary
Short summary
In this paper, we present a compact, affordable and robust instrument for in situ measurements of different trace gases: NOx, IO, CHOCHO and O3 with very low detection limits. The device weighs 15 kg and has a total electrical power consumption of < 300 W. Its very low detection limits and its design make it suitable for field applications to address different questions such as how to better constrain the oxidative capacity of the atmosphere and study the chemistry of highly reactive species.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
V. Holly L. Winton, Alison Ming, Nicolas Caillon, Lisa Hauge, Anna E. Jones, Joel Savarino, Xin Yang, and Markus M. Frey
Atmos. Chem. Phys., 20, 5861–5885, https://doi.org/10.5194/acp-20-5861-2020, https://doi.org/10.5194/acp-20-5861-2020, 2020
Short summary
Short summary
The transfer of the nitrogen stable isotopic composition in nitrate between the air and snow at low accumulation sites in Antarctica leaves an UV imprint in the snow. Quantifying how nitrate isotope values change allows us to interpret longer ice core records. Based on nitrate observations and modelling at Kohnen, East Antarctica, the dominant factors controlling the nitrate isotope signature in deep snow layers are the depth of light penetration into the snowpack and the snow accumulation rate.
Clara Orbe, David A. Plummer, Darryn W. Waugh, Huang Yang, Patrick Jöckel, Douglas E. Kinnison, Beatrice Josse, Virginie Marecal, Makoto Deushi, Nathan Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Wuhu Feng, and Slimane Bekki
Atmos. Chem. Phys., 20, 3809–3840, https://doi.org/10.5194/acp-20-3809-2020, https://doi.org/10.5194/acp-20-3809-2020, 2020
Short summary
Short summary
Atmospheric composition is strongly influenced by global-scale winds that are not always properly simulated in computer models. A common approach to correct for this bias is to relax or
nudgeto the observed winds. Here we systematically evaluate how well this technique performs across a large suite of chemistry–climate models in terms of its ability to reproduce key aspects of both the tropospheric and stratospheric circulations.
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary
Short summary
We present 15 months of trace gas observations from air withdrawn within the snowpack and from above the snow at Concordia Station in Antarctica. The data show occasional positive spikes, indicative of pollution from the station generator. The pollution signal can be seen in snowpack air shortly after it is observed above the snow surface, and lasting for up to several days, much longer than above the surface.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Carly L. Reddington, Luke Conibear, Christoph Knote, Ben J. Silver, Yong J. Li, Chak K. Chan, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 19, 11887–11910, https://doi.org/10.5194/acp-19-11887-2019, https://doi.org/10.5194/acp-19-11887-2019, 2019
Short summary
Short summary
We use a high-resolution model over South and East Asia to explore air quality and human health benefits of eliminating emissions from six man-made pollution sources. We find that preventing emissions from either residential energy use, industry, or open biomass burning yields the largest reductions in ground-level particulate matter pollution and its associated disease burden over this region. We also summarize previous estimates of the source-specific disease burden in China and India.
Laura Kiely, Dominick V. Spracklen, Christine Wiedinmyer, Luke Conibear, Carly L. Reddington, Scott Archer-Nicholls, Douglas Lowe, Stephen R. Arnold, Christoph Knote, Md Firoz Khan, Mohd Talib Latif, Mikinori Kuwata, Sri Hapsari Budisulistiorini, and Lailan Syaufina
Atmos. Chem. Phys., 19, 11105–11121, https://doi.org/10.5194/acp-19-11105-2019, https://doi.org/10.5194/acp-19-11105-2019, 2019
Short summary
Short summary
In 2015, a large fire episode occurred in Indonesia, reducing air quality. Fires occurred predominantly on peatland, where large uncertainties are associated with emissions. Current fire emissions datasets underestimate peat fire emissions. We created new fire emissions data, with data specific to Indonesian peat fires. Using these emissions in simulations of particulate matter and aerosol optical depth shows an improvement over simulations using current data, when compared with observations.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Matthew J. Rowlinson, Alexandru Rap, Stephen R. Arnold, Richard J. Pope, Martyn P. Chipperfield, Joe McNorton, Piers Forster, Hamish Gordon, Kirsty J. Pringle, Wuhu Feng, Brian J. Kerridge, Barry L. Latter, and Richard Siddans
Atmos. Chem. Phys., 19, 8669–8686, https://doi.org/10.5194/acp-19-8669-2019, https://doi.org/10.5194/acp-19-8669-2019, 2019
Short summary
Short summary
Wildfires and meteorology have a substantial effect on atmospheric concentrations of greenhouse gases such as methane and ozone. During the 1997 El Niño event, unusually large fire emissions indirectly increased global methane through carbon monoxide emission, which decreased the oxidation capacity of the atmosphere. There were also large regional changes to tropospheric ozone concentrations, but contrasting effects of fire and meteorology resulted in a small change to global radiative forcing.
Sophie Szopa, Rémi Thiéblemont, Slimane Bekki, Svetlana Botsyun, and Pierre Sepulchre
Clim. Past, 15, 1187–1203, https://doi.org/10.5194/cp-15-1187-2019, https://doi.org/10.5194/cp-15-1187-2019, 2019
Short summary
Short summary
The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Here, with a chemistry–climate model, we evaluate the potential role of stratospheric ozone chemistry in the case of Eocene hot conditions. Our results suggest that using stratospheric ozone calculated by the modeled Eocene conditions instead of the commonly specified preindustrial ozone distribution could change the simulated global surface air temperature by as much as 14 %.
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018, https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Short summary
Mercury is a trace metal with adverse health effects on human and wildlife. Its unique property makes it undergo long-range transport, and even remote Antarctica receives significant inputs. This paper presents the first model that aims to understand mercury behavior over the Antarctic Plateau. We find that mercury is quickly cycled between snow and air in the sunlit period, likely driven by bromine chemistry, and that several uncertain processes contribute to its behavior in the dark period.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Richard J. Pope, Martyn P. Chipperfield, Stephen R. Arnold, Norbert Glatthor, Wuhu Feng, Sandip S. Dhomse, Brian J. Kerridge, Barry G. Latter, and Richard Siddans
Atmos. Chem. Phys., 18, 8389–8408, https://doi.org/10.5194/acp-18-8389-2018, https://doi.org/10.5194/acp-18-8389-2018, 2018
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Dunya Alraddawi, Alain Sarkissian, Philippe Keckhut, Olivier Bock, Stefan Noël, Slimane Bekki, Abdenour Irbah, Mustapha Meftah, and Chantal Claud
Atmos. Meas. Tech., 11, 2949–2965, https://doi.org/10.5194/amt-11-2949-2018, https://doi.org/10.5194/amt-11-2949-2018, 2018
Short summary
Short summary
The current study provides intercomparisons of various water vapour measurements in the Arctic. It compares ground-based GPS observations with satellite measurements in the infrared (IR), near-infrared (NIR) and visible (VIS) through a specific method allowing us to quantify their uncertainties and limits.
Unlike IR, satellite observations in NIR and VIS bands are mostly sensible to cloud cover during summer and to albedo variability over canopy or polluted snow-covered surfaces in winter.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Christoph Kleinschmitt, Olivier Boucher, Slimane Bekki, François Lott, and Ulrich Platt
Geosci. Model Dev., 10, 3359–3378, https://doi.org/10.5194/gmd-10-3359-2017, https://doi.org/10.5194/gmd-10-3359-2017, 2017
Short summary
Short summary
Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget. In this article we present the newly developed LMDZ-S3A model and assess its performance against observations in periods of low and high aerosol loading. The model may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.
Rémi Thiéblemont, Marion Marchand, Slimane Bekki, Sébastien Bossay, Franck Lefèvre, Mustapha Meftah, and Alain Hauchecorne
Atmos. Chem. Phys., 17, 9897–9916, https://doi.org/10.5194/acp-17-9897-2017, https://doi.org/10.5194/acp-17-9897-2017, 2017
Sarah A. Monks, Stephen R. Arnold, Michael J. Hollaway, Richard J. Pope, Chris Wilson, Wuhu Feng, Kathryn M. Emmerson, Brian J. Kerridge, Barry L. Latter, Georgina M. Miles, Richard Siddans, and Martyn P. Chipperfield
Geosci. Model Dev., 10, 3025–3057, https://doi.org/10.5194/gmd-10-3025-2017, https://doi.org/10.5194/gmd-10-3025-2017, 2017
Short summary
Short summary
The TOMCAT chemical transport model has been updated with the chemical degradation of ethene, propene, toluene, butane and monoterpenes. The tropospheric chemical mechanism is documented and the model is evaluated against surface, balloon, aircraft and satellite data. The model is generally able to capture the main spatial and seasonal features of carbon monoxide, ozone, volatile organic compounds and reactive nitrogen. However,
some model biases are found that require further investigation.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, John J. Remedios, Carsten Warneke, James M. Roberts, Glenn S. Diskin, Lewis G. Huey, Armin Wisthaler, Eric C. Apel, Peter F. Bernath, and Wuhu Feng
Atmos. Chem. Phys., 16, 13541–13559, https://doi.org/10.5194/acp-16-13541-2016, https://doi.org/10.5194/acp-16-13541-2016, 2016
Josué Bock, Joël Savarino, and Ghislain Picard
Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, https://doi.org/10.5194/acp-16-12531-2016, 2016
Short summary
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Zarashpe Z. Kapadia, Dominick V. Spracklen, Steve R. Arnold, Duncan J. Borman, Graham W. Mann, Kirsty J. Pringle, Sarah A. Monks, Carly L. Reddington, François Benduhn, Alexandru Rap, Catherine E. Scott, Edward W. Butt, and Masaru Yoshioka
Atmos. Chem. Phys., 16, 10521–10541, https://doi.org/10.5194/acp-16-10521-2016, https://doi.org/10.5194/acp-16-10521-2016, 2016
Short summary
Short summary
Using a coupled tropospheric chemistry-aerosol microphysics model this research paper investigates the effect of variations in aviation fuel sulfur content (FSC) on surface PM2.5 concentrations, increases in aviation-induced premature mortalities, low-level cloud condensation nuclei and radiative effect.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Michel Legrand, Susanne Preunkert, Joël Savarino, Markus M. Frey, Alexandre Kukui, Detlev Helmig, Bruno Jourdain, Anna E. Jones, Rolf Weller, Neil Brough, and Hubert Gallée
Atmos. Chem. Phys., 16, 8053–8069, https://doi.org/10.5194/acp-16-8053-2016, https://doi.org/10.5194/acp-16-8053-2016, 2016
Short summary
Short summary
Surface ozone, the most abundant atmospheric oxidant, has been measured since 2004 at the coastal East Antarctic site of Dumont d’Urville, and since 2007 at the Concordia station located on the high East Antarctic plateau. Long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites are discussed. Influences like sea ice extent and outflow from inland Antarctica are discussed.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016, https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Short summary
The relationship between water isotope ratios and temperature is investigated in precipitation snow at Vostok and Dome C, as well as in surface snow along traverses. The temporal slope of the linear regression for the precipitation is smaller than the geographical slope. Thus, using the latter could lead to an underestimation of past temperature changes. The processes active at remote sites (best glacial analogs) are explored through a combination of water isotopes in short snow pits.
Joël Savarino, William C. Vicars, Michel Legrand, Suzanne Preunkert, Bruno Jourdain, Markus M. Frey, Alexandre Kukui, Nicolas Caillon, and Jaime Gil Roca
Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, https://doi.org/10.5194/acp-16-2659-2016, 2016
Short summary
Short summary
Atmospheric nitrate is collected on the East Antarctic ice sheet. Nitrogen and oxygen stable isotopes and concentrations of nitrate are measured. Using a box model, we show that there is s systematic discrepancy between observations and model results. We suggest that this discrepancy probably results from unknown NOx chemistry above the Antarctic ice sheet. However, possible misconception in the stable isotope mass balance is not completely excluded.
E. Gautier, J. Savarino, J. Erbland, A. Lanciki, and P. Possenti
Clim. Past, 12, 103–113, https://doi.org/10.5194/cp-12-103-2016, https://doi.org/10.5194/cp-12-103-2016, 2016
Short summary
Short summary
We evaluate the local-scale variability of a sulfate profile at a low-accumulation site (Dome C, Antarctica) to assess the representativeness of one ice core for volcanic reconstructions. Peak statistical occurrence, depth and flux variability are evaluated from five cores. Due to local-scale variability, 64 volcanic peaks can be identified by a five-cores analysis, while only half of them can be assessed from two cores. Using five cores, the uncertainty of the mean flux is reduced to 29 %.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
S. Preunkert, M. Legrand, M. M. Frey, A. Kukui, J. Savarino, H. Gallée, M. King, B. Jourdain, W. Vicars, and D. Helmig
Atmos. Chem. Phys., 15, 6689–6705, https://doi.org/10.5194/acp-15-6689-2015, https://doi.org/10.5194/acp-15-6689-2015, 2015
Short summary
Short summary
During two austral summers HCHO was investigated in air, snow, and interstitial air at the Concordia site located on the East Antarctic Plateau. Snow emission fluxes were estimated to be around 1 to 2 and 3 to 5 x 10^12 molecules m-2 s-1 at night and at noon, respectively. Shading experiments suggest that the photochemical HCHO production in the snowpack at Concordia remains negligible. The mean HCHO level of 130pptv observed at 1m above the surface is quite well reproduced by 1-D simulations.
S. R. Arnold, L. K. Emmons, S. A. Monks, K. S. Law, D. A. Ridley, S. Turquety, S. Tilmes, J. L. Thomas, I. Bouarar, J. Flemming, V. Huijnen, J. Mao, B. N. Duncan, S. Steenrod, Y. Yoshida, J. Langner, and Y. Long
Atmos. Chem. Phys., 15, 6047–6068, https://doi.org/10.5194/acp-15-6047-2015, https://doi.org/10.5194/acp-15-6047-2015, 2015
Short summary
Short summary
The extent to which forest fires produce the air pollutant and greenhouse gas ozone (O3) in the atmosphere at high latitudes in not well understood. We have compared how fire emissions produce O3 and its precursors in several models of atmospheric chemistry. We find enhancements in O3 in air dominated by fires in all models, which increase on average as fire emissions age. We also find that in situ O3 production in the Arctic is sensitive to details of organic chemistry and vertical lifting.
S. Tilmes, J.-F. Lamarque, L. K. Emmons, D. E. Kinnison, P.-L. Ma, X. Liu, S. Ghan, C. Bardeen, S. Arnold, M. Deeter, F. Vitt, T. Ryerson, J. W. Elkins, F. Moore, J. R. Spackman, and M. Val Martin
Geosci. Model Dev., 8, 1395–1426, https://doi.org/10.5194/gmd-8-1395-2015, https://doi.org/10.5194/gmd-8-1395-2015, 2015
Short summary
Short summary
The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric chemistry modeling studies in the troposphere and lower stratosphere.
S. A. Monks, S. R. Arnold, L. K. Emmons, K. S. Law, S. Turquety, B. N. Duncan, J. Flemming, V. Huijnen, S. Tilmes, J. Langner, J. Mao, Y. Long, J. L. Thomas, S. D. Steenrod, J. C. Raut, C. Wilson, M. P. Chipperfield, G. S. Diskin, A. Weinheimer, H. Schlager, and G. Ancellet
Atmos. Chem. Phys., 15, 3575–3603, https://doi.org/10.5194/acp-15-3575-2015, https://doi.org/10.5194/acp-15-3575-2015, 2015
Short summary
Short summary
Multi-model simulations of Arctic CO, O3 and OH are evaluated using observations. Models show highly variable concentrations but the relative importance of emission regions and types is robust across the models, demonstrating the importance of biomass burning as a source. Idealised tracer experiments suggest that some of the model spread is due to variations in simulated transport from Europe in winter and from Asia throughout the year.
L. Geng, J. Cole-Dai, B. Alexander, J. Erbland, J. Savarino, A. J. Schauer, E. J. Steig, P. Lin, Q. Fu, and M. C. Zatko
Atmos. Chem. Phys., 14, 13361–13376, https://doi.org/10.5194/acp-14-13361-2014, https://doi.org/10.5194/acp-14-13361-2014, 2014
Short summary
Short summary
Examinations on snowpit and firn core results from Summit, Greenland suggest that there are two mechanisms leading to the observed double nitrate peaks in some years in the industrial era: 1) long-rang transport of nitrate and 2) enhanced local photochemical production of nitrate. Both of these mechanisms are related to pollution transport, as the additional nitrate from either direct transport or enhanced local photochemistry requires enhanced nitrogen sources from anthropogenic emissions.
J.-C. Gallet, F. Domine, J. Savarino, M. Dumont, and E. Brun
The Cryosphere, 8, 1205–1215, https://doi.org/10.5194/tc-8-1205-2014, https://doi.org/10.5194/tc-8-1205-2014, 2014
N. A. D. Richards, S. R. Arnold, M. P. Chipperfield, G. Miles, A. Rap, R. Siddans, S. A. Monks, and M. J. Hollaway
Atmos. Chem. Phys., 13, 2331–2345, https://doi.org/10.5194/acp-13-2331-2013, https://doi.org/10.5194/acp-13-2331-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine
Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic
Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations
Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor
Uncertainties of fluxes and 13C ∕ 12C ratios of atmospheric reactive-gas emissions
Using δ13C-CH4 and δD-CH4 to constrain Arctic methane emissions
Air–snow transfer of nitrate on the East Antarctic Plateau – Part 2: An isotopic model for the interpretation of deep ice-core records
Interannual variability of isotopic composition in water vapor over western Africa and its relationship to ENSO
Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2
Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model
Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species
The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ17O(SO42–)
Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate
Sarah A. Strode, James S. Wang, Michael Manyin, Bryan Duncan, Ryan Hossaini, Christoph A. Keller, Sylvia E. Michel, and James W. C. White
Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, https://doi.org/10.5194/acp-20-8405-2020, 2020
Short summary
Short summary
The 13C : 12C isotopic ratio in methane (CH4) provides information about CH4 sources, but loss of CH4 by reaction with OH and chlorine (Cl) also affects this ratio. Tropospheric Cl provides a small and uncertain sink for CH4 but has a large effect on its isotopic ratio. We use the GEOS model with several different Cl fields to test the sensitivity of methane's isotopic composition to tropospheric Cl. Cl affects the global mean, hemispheric gradient, and seasonal cycle of the isotopic ratio.
Antoine Berchet, Isabelle Pison, Patrick M. Crill, Brett Thornton, Philippe Bousquet, Thibaud Thonat, Thomas Hocking, Joël Thanwerdas, Jean-Daniel Paris, and Marielle Saunois
Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, https://doi.org/10.5194/acp-20-3987-2020, 2020
Short summary
Short summary
Methane isotopes in the atmosphere can help us differentiate between emission processes. A large variety of natural and anthropogenic emission types are active in the Arctic and are unsatisfactorily understood and documented up to now. A ship-based campaign was carried out in summer 2014, providing a unique dataset of isotopic measurements in the Arctic Ocean. Using a chemistry-transport model, we link these measurements to circumpolar emissions and retrieve information about their signature.
Becky Alexander, Tomás Sherwen, Christopher D. Holmes, Jenny A. Fisher, Qianjie Chen, Mat J. Evans, and Prasad Kasibhatla
Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, https://doi.org/10.5194/acp-20-3859-2020, 2020
Short summary
Short summary
Nitrogen oxides are important for the formation of tropospheric oxidants and are removed from the atmosphere mainly through the formation of nitrate. We compare observations of the oxygen isotopes of nitrate with a global model to test our understanding of the chemistry nitrate formation. We use the model to quantify nitrate formation pathways in the atmosphere and identify key uncertainties and their relevance for the oxidation capacity of the atmosphere.
Xiahong Feng, Eric S. Posmentier, Leslie J. Sonder, and Naixin Fan
Atmos. Chem. Phys., 19, 4005–4024, https://doi.org/10.5194/acp-19-4005-2019, https://doi.org/10.5194/acp-19-4005-2019, 2019
Short summary
Short summary
We present a 1-D model to simulate H2O isotopologues of vapor and their vertical fluxes in the first kilometer above the sea surface. The model includes two processes not in earlier Craig–Gordon isotope evaporation models: height-dependent diffusion/mixing and ascending/converging air. Calculated isotopic ratios compare well with data from seven cruises. The model explains how sea surface meteorology can affect atmospheric vapor, precipitation isotope ratios, and paleoisotope records.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017, https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary
Short summary
We revisit the proxies/uncertainties for the 13C/12C ratios of emissions of reactive C into the atmosphere. Our main findings are (i) a factor of 2 less uncertain estimate of tropospheric CO surface sources δ13C, (ii) a confirmed disagreement between the bottom-up and top-down 13CO-inclusive emission estimates, and (iii) a novel estimate of the δ13C signatures of a range of NMHCs/VOCs to be used in modelling studies. Results are based on the EMAC model emission set-up evaluated for 2000.
Nicola J. Warwick, Michelle L. Cain, Rebecca Fisher, James L. France, David Lowry, Sylvia E. Michel, Euan G. Nisbet, Bruce H. Vaughn, James W. C. White, and John A. Pyle
Atmos. Chem. Phys., 16, 14891–14908, https://doi.org/10.5194/acp-16-14891-2016, https://doi.org/10.5194/acp-16-14891-2016, 2016
Short summary
Short summary
Methane is an important greenhouse gas. Methane emissions from Arctic wetlands are poorly quantified and may increase in a warming climate. Using a global atmospheric model and atmospheric observations of methane and its isotopologues, we find that isotopologue data are useful in constraining Arctic wetland emissions. Our results suggest that the seasonal cycle of these emissions may be incorrectly simulated in land process models, with implications for our understanding of future emissions.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
A. Okazaki, Y. Satoh, G. Tremoy, F. Vimeux, R. Scheepmaker, and K. Yoshimura
Atmos. Chem. Phys., 15, 3193–3204, https://doi.org/10.5194/acp-15-3193-2015, https://doi.org/10.5194/acp-15-3193-2015, 2015
H. D. Graven and N. Gruber
Atmos. Chem. Phys., 11, 12339–12349, https://doi.org/10.5194/acp-11-12339-2011, https://doi.org/10.5194/acp-11-12339-2011, 2011
G. Pieterse, M. C. Krol, A. M. Batenburg, L. P. Steele, P. B. Krummel, R. L. Langenfelds, and T. Röckmann
Atmos. Chem. Phys., 11, 7001–7026, https://doi.org/10.5194/acp-11-7001-2011, https://doi.org/10.5194/acp-11-7001-2011, 2011
S. Morin, R. Sander, and J. Savarino
Atmos. Chem. Phys., 11, 3653–3671, https://doi.org/10.5194/acp-11-3653-2011, https://doi.org/10.5194/acp-11-3653-2011, 2011
E. D. Sofen, B. Alexander, and S. A. Kunasek
Atmos. Chem. Phys., 11, 3565–3578, https://doi.org/10.5194/acp-11-3565-2011, https://doi.org/10.5194/acp-11-3565-2011, 2011
B. Alexander, M. G. Hastings, D. J. Allman, J. Dachs, J. A. Thornton, and S. A. Kunasek
Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, https://doi.org/10.5194/acp-9-5043-2009, 2009
Cited articles
Aiuppa, A.: Degassing of halogens from basaltic volcanism: Insights from
volcanic gas observations, Chem. Geol., 263, 99–109,
https://doi.org/10.1016/j.chemgeo.2008.08.022, 2009.
Aiuppa, A., Inguaggiato, S., McGonigle, A. J., O'Dwyer, M., Oppenheimer, C.,
Padgett, M. J., Rouwet, D., and Valenza, M.: H2S fluxes from Mt. Etna,
Stromboli, and Vulcano (Italy) and implications for the sulfur budget at
volcanoes, Geochim. Cosmochim. Ac., 69, 1861–1871,
https://doi.org/10.1016/j.gca.2004.09.018, 2005.
Aiuppa, A., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., Shinohara, H.,
Favarra, R., and Valenza, M.: Rates of carbon dioxide plume degassing from
Mount Etna volcano, J. Geophys. Res.-Sol. Ea., 111, 1–8,
https://doi.org/10.1029/2006JB004307, 2006.
Aiuppa, A., Franco, A., von Glasow, R., Allen, A. G., D'Alessandro, W., Mather, T. A.,
Pyle, D. M., and Valenza, M.: The tropospheric processing of acidic gases
and hydrogen sulphide in volcanic gas plumes as inferred from field and model
investigations, Atmos. Chem. Phys., 7, 1441–1450, https://doi.org/10.5194/acp-7-1441-2007, 2007.
Alexander, B., Savarino, J., Barkov, N. I., Delmas, R. J., and Thiemens, M. H.:
Climate driven changes in the oxidation pathways of atmospheric sulfur,
Geophys. Res. Lett., 29, 30–1–30–4, https://doi.org/10.1029/2002GL014879, 2002.
Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino,
J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt
aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos., 110,
1–12, https://doi.org/10.1029/2004JD005659, 2005.
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition
metal-catalyzed oxidation of atmospheric sulfur: Global implications for the
sulfur budget, J. Geophys. Res.-Atmos., 114, 1–13,
https://doi.org/10.1029/2008JD010486, 2009.
Allen, A. G., Oppenheimer, C., Ferm, M., Baxter, P. J., Horrocks, L. A., Galle,
B., McGonigle, A. J. S., and Duffell, H. J.: Primary sulfate aerosol and
associated emissions from Masaya Volcano, Nicaragua, J. Geophys. Res.-Atmos., 107, 4682, https://doi.org/10.1029/2002JD002120, 2002.
Andres, R. J. and Kasgnoc, a. D.: A time-averaged inventory of subaerial
volcanic sulfur emissions, J. Geophys. Res., 103, 25251,
https://doi.org/10.1029/98JD02091, 1998.
Arnold, S. R., Methven, J., Evans, M. J., Chipperfield, M. P., Lewis, A. C.,
Hopkins, J. R., McQuaid, J. B., Watson, N., Purvis, R. M., Lee, J. D., Atlas,
E. L., Blake, D. R., and Rappenglück, B.: Statistical inference of OH
concentrations and air mass dilution rates from successive observations of
nonmethane hydrocarbons in single air masses, J. Geophys. Res.-Atmos., 112,
1–15, https://doi.org/10.1029/2006JD007594, 2007.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F.,
Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic
and photochemical data for atmospheric chemistry: Volume I – gas phase
reactions of Ox, HOx, NOx and SOx species,
Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Ayris, P. and Delmelle, P.: Volcanic and atmospheric controls on ash iron
solubility: A review, Phys. Chem. Earth, 45-46, 103–112,
https://doi.org/10.1016/j.pce.2011.04.013, 2012.
Bao, H.: Sulfate : A time capsule for Earth' s O2, O3, and H2O, Chem. Geol.,
395, 108–118, https://doi.org/10.1016/j.chemgeo.2014.11.025, 2015.
Bao, H., Thiemens, M. H., Farquhar, J., Campbell, D. A., Lee, C. C.-W., Heine,
K., and Loope, D. B.: Anomalous 17O compositions in massive sulphate
deposits on the Earth, Nature, 406, 176–178, https://doi.org/10.1038/35018052, 2000.
Bao, H., Thiemens, M. H., Loope, D. B., and Yuan, X. L.: Sulfate oxygen-17
anomaly in an Oligocene ash bed in mid-North America: Was it the dry fogs?,
Geophys. Res. Lett., 30, 1843, https://doi.org/10.1029/2003GL016869, 2003.
Barkan, E. and Luz, B.: High-precision measurements of 17O/16O
and 18O/16O of O2 and O2/Ar ratio in air,
Rapid Commun. Mass Spectrom., 17, 2809–2814, https://doi.org/10.1002/rcm.1267, 2003.
Baroni, M., Thiemens, M. H., Delmas, R. J., and Savarino, J.: Mass-Independent
Sulfur Isotopic Compositions in Stratospheric Volcanic Eruptions, Science, 315, 84–87, https://doi.org/10.1126/science.1131754, 2007.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., and Stoiber, R. E.:
Sulfur emissions to the atmosphere from natural sources, J. Atmos. Chem.,
14, 315–337, https://doi.org/10.1007/BF00115242, 1992.
Beilke, S. and Gravenhorst, G.: Heterogeneous SO2-oxidation in the droplet
phase, Atmos. Environ., 12, 231–239, https://doi.org/10.1016/0004-6981(78)90203-2,
1978.
Bekki, S.: Oxidation of volcanic SO2: A sink for stratospheric OH
andH2O, Geophys. Res. Lett., 22, 913–916,
https://doi.org/10.1029/95GL00534, 1995.
Berglen, T. F., Berntsen, T. K., Isaksen, I. S. A., and Sundet, J. K.: A
global model of the coupled sulfur/oxidant chemistry in the troposphere: The
sulfur cycle, J. Geophys. Res.-Atmos., 109, D19310, https://doi.org/10.1029/2003JD003948, 2004.
Bhattacharya, S. K., Pandey, A., and Savarino, J.: Determination of
intramolecular isotope distribution of ozone by oxidation reaction with
silver metal, J. Geophys. Res., 113, D03303, https://doi.org/10.1029/2006JD008309,
2008.
Bindeman, I. N., Eiler, J. M., Wing, B. A., and Farquhar, J.: Rare sulfur and
triple oxygen isotope geochemistry of volcanogenic sulfate aerosols,
Geochim. Cosmochim. Ac., 71, 2326–2343, https://doi.org/10.1016/j.gca.2007.01.026,
2007.
Bobrowski, N. and Platt, U.: SO2/BrO ratios studied in five volcanic
plumes, J. Volcanol. Geotherm. Res., 166, 147–160,
https://doi.org/10.1016/j.jvolgeores.2007.07.003, 2007.
Bobrowski, N., Hönninger, G., Galle, B., and Platt, U.: Detection of
bromine monoxide in a volcanic plume, Nature, 423, 273–276,
https://doi.org/10.1038/nature01625, 2003.
Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I.,
Ibrahim, O. W., and Platt, U.: Reactive halogen chemistry in volcanic
plumes, J. Geophys. Res.-Atmos., 112, 1–17, https://doi.org/10.1029/2006JD007206,
2007.
Brandt, C. and van Eldik, R.: Transition Metal-Catalyzed Oxidation of
Sulfur(IV) Oxides. Atmospheric-Relevant Processes and Mechanisms, Chem.
Rev., 95, 119–190, https://doi.org/10.1021/cr00033a006, 1995.
Brandt, C., Fábián, I., and van Eldik, R.: Kinetics and Mechanism
of the Iron(III)-catalyzed Autoxidation of Sulfur(IV) Oxides in Aqueous
Solution. Evidence for the Redox Cycling of Iron in the Presence of Oxygen
and Modeling of the Overall Reaction Mechanism, Inorg. Chem., 33, 687–701,
https://doi.org/10.1021/ic00082a012, 1994.
Brenninkmeijer, C. A. M., Janssen, C., Kaiser, J., Röckmann, T., Rhee,
T. S., and Assonov, S. S.: Isotope effects in the chemistry of atmospheric
trace compounds., Chem. Rev., 103, 5125–5162, https://doi.org/10.1021/cr020644k, 2003.
Calvert, J. G., Su, F., Bottenheim, J. W., and Strausz, O. P.: Mechanism of
the homogeneous oxidation of sulfur dioxide in the troposphere, Atmos.
Environ., 12, 197–226, https://doi.org/10.1016/0004-6981(78)90201-9, 1978.
Carey, L. D., Niu, J., Yang, P., Kankiewicz, J. A., Larson, V. E., and Vonder
Haar, T. H.: The vertical profile of liquid and ice water content in
midlatitude mixed-phase altocumulus clouds, J. Appl. Meteorol. Climatol.,
47, 2487–2495, https://doi.org/10.1175/2008JAMC1885.1, 2008.
Carn, S. A., Froyd, K. D., Anderson, B. E., Wennberg, P., Crounse, J., Spencer,
K., Dibb, J. E., Krotkov, N. A., Browell, E. V., Hair, J. W., Diskin, G.,
Sachse, G., and Vay, S. A.: In situ measurements of tropospheric volcanic
plumes in Ecuador and Colombia during TC4, J. Geophys. Res.-Atmos.,
116, 1–24, https://doi.org/10.1029/2010JD014718, 2011.
Chandler, A. S., Choularton, T. W., Dollard, G. J., Eggleton, A. E. J., Gay,
M. J., Hill, T. A., Jones, B. M. R., Tyler, B. J., Bandy, B. J., and Penkett,
S. A.: Measurements of H2O2 and SO2 in clouds and
estimates of their reaction rate, Nature, 336, 562–565,
https://doi.org/10.1038/336562a0, 1988.
Chen, Q., Geng, L., Schmidt, J. A., Xie, Z., Kang, H., Dachs, J., Cole-Dai, J.,
Schauer, A. J., Camp, M. G., and Alexander, B.: Isotopic constraints on the role
of hypohalous acids in sulfate aerosol formation in the remote marine boundary
layer, Atmos. Chem. Phys., 16, 11433–11450, https://doi.org/10.5194/acp-16-11433-2016, 2016.
Chen, Q., Schmidt, J. A., Shah, V., Jaeglé, L., Sherwen, T., and
Alexander, B.: Sulfate production by reactive bromine: Implications for the
global sulfur and reactive bromine budgets, Geophys. Res. Lett., 44,
7069–7078, https://doi.org/10.1002/2017GL073812, 2017.
Chin, M. and Jacob, D. J.: Anthropogenic and natural contributions to
tropospheric sulfate: A global model analysis, J. Geophys. Res.-Atmos., 101,
18691–18699, https://doi.org/10.1029/96JD01222, 1996.
Dahneke, B.: Simple Kinetic Theory of Brownian Diffusion in Vapors and
Aerosols, in: Theory Dispersed Multiph. Flow, edited by: R.E. Meyer, 97–133, Elsevier,
New York, https://doi.org/10.1016/B978-0-12-493120-6.50011-8, 1983.
Daum, P. H., Kleinman, L. I., Hills, A. J., Lazrus, A. L., Leslie, A. C. D.,
Busness, K., and Boatman, J.: Measurement and Interpretation of
Concentrations of H202 and Related Species in the Upper Midwest During
Summer, 95, 9857–9871, https://doi.org/10.1029/JD095iD07p09857, 1990.
De Moor, J. M., Fischer, T. P., Sharp, Z. D., King, P. L., Wilke, M.,
Botcharnikov, R. E., Cottrell, E., Zelenski, M., Marty, B., Klimm, K.,
Rivard, C., Ayalew, D., Ramirez, C., and Kelley, K. A.: Sulfur degassing at
Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: Implications for
degassing processes and oxygen fugacities of basaltic systems, Geochemistry,
Geophys. Geosystems, 14, 4076–4108, https://doi.org/10.1002/ggge.20255, 2013.
Delmelle, P.: Environmental impacts of tropospheric volcanic gas plumes,
Geol. Soc. London, Spec. Publ., 213, 381–399,
https://doi.org/10.1144/GSL.SP.2003.213.01.23, 2003.
Desboeufs, K. V., Losno, R., Vimeux, F., and Cholbi, S.: The pH-dependent
dissolution of wind-transported Saharan dust, J. Geophys. Res.-Atmos., 104,
21287–21299, https://doi.org/10.1029/1999JD900236, 1999.
Desboeufs, K. V., Losno, R., and Colin, J. L.: Factors influencing aerosol
solubility during cloud processes, Atmos. Environ., 35, 3529–3537,
https://doi.org/10.1016/S1352-2310(00)00472-6, 2001.
Dole, M.: The Relative Atomic Weight of Oxygen in Water and in Air A
Discussion of the Atmospheric Distribution of the Oxygen Isotopes and of the
Chemical Standard of Atomic Weights, J. Chem. Phys., 4, 268,
https://doi.org/10.1063/1.1749834, 1936.
Dubey, M. K., Mohrschladt, R., Donahue, N. M., and Anderson, J. G.: Isotope
Specific Kinetics of Hydroxyl Radical (OH) with Water (H2O):
Testing Models of Reactivity and Atmospheric Fractionation, J. Phys. Chem.
A, 101, 1494–1500, https://doi.org/10.1021/jp962332p, 1997.
Eiler, J. M.: Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle
Rocks, Rev. Mineral. Geochemistry, 43, 319–364,
https://doi.org/10.2138/gsrmg.43.1.319, 2001.
Evans, M., Shallcross, D., Law, K., Wild, J., Simmonds, P., Spain, T.,
Berrisford, P., Methven, J., Lewis, A., McQuaid, J., Pilling, M., Bandy, B.,
Penkett, S., and Pyle, J.: Evaluation of a Lagrangian box model using field
measurements from EASE (Eastern Atlantic Summer Experiment) 1996, Atmos.
Environ., 34, 3843–3863, https://doi.org/10.1016/S1352-2310(00)00184-9, 2000.
Gerlach, T. M.: Volcanic sources of tropospheric ozone-depleting trace gases,
Geochemistry, Geophys. Geosystems, 5, https://doi.org/10.1029/2004GC000747, 2004.
Gervat, G. P., Clark, P. A., Marsh, A. R. W., Teasdale, I., Chandler, A. S.,
Choularton, T. W., Gay, M. J., Hill, M. K., and Hill, T. A.: Field evidence
for the oxidation of SO2 by H2O2 in cap clouds, Nature,
333, 241–243, https://doi.org/10.1038/333241a0, 1988.
Goto, D., Nakajima, T., Takemura, T., and Sudo, K.: A study of uncertainties
in the sulfate distribution and its radiative forcing associated with sulfur
chemistry in a global aerosol model, Atmos. Chem. Phys., 11, 10889–10910,
https://doi.org/10.5194/acp-11-10889-2011, 2011.
Graedel, T. E. and Weschler, C. J.: Chemistry within aqueous atmospheric
aerosols and raindrops, 19, https://doi.org/10.1029/RG019i004p00505, 1981.
Graf, H. F., Langmann, B., and Feichter, J.: The contribution of Earth
degassing to the atmospheric sulfur budget, Chem. Geol., 147, 131–145,
https://doi.org/10.1016/S0009-2541(97)00177-0, 1998.
Gromov, S., Jöckel, P., Sander, R., and Brenninkmeijer, C. A. M.: A kinetic
chemistry tagging technique and its application to modelling the stable isotopic
composition of atmospheric trace gases, Geosci. Model Dev., 3, 337–364, https://doi.org/10.5194/gmd-3-337-2010, 2010.
Harris, E., Sinha, B., Hoppe, P., and Ono, S.: High-precision measurements of
(33)S and (34)S fractionation during SO2 oxidation
reveal causes of seasonality in SO2 and sulfate isotopic
composition, Environ. Sci. Technol., 47, 12174–12183,
https://doi.org/10.1021/es402824c, 2013.
Heidenreich III, J. E., Thiemens, M. H., Heidenreich, J. E., and Thiemens,
M. H.: A non-mass-dependent oxygen isotope effect in the production of ozone
from molecular oxygen: The role of molecular symmetry in isotope chemistry,
J. Chem. Phys., 84, 2129–2136, https://doi.org/10.1063/1.450373, 1986.
Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner,
R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric
chemistry, J. Atmos. Chem., 36, 231–284, https://doi.org/10.1023/A:1006318622743,
2000.
Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur
dioxide by ozone, Atmos. Environ., 20, 1145–1154,
https://doi.org/10.1016/0004-6981(86)90147-2, 1986.
Holt, B. D., Kumar, R., and Cunningham, P. T.: Oxygen-18 study of the
aqueous-phase oxidation of sulfur dioxide, Atmos. Environ., 15, 557–566,
https://doi.org/10.1016/0004-6981(81)90186-4, 1981.
Hoshyaripour, G., Hort, M., Langmann, B., and Delmelle, P.: Volcanic controls
on ash iron solubility: New insights from high-temperature gas-ash
interaction modeling, J. Volcanol. Geotherm. Res., 286, 67–77,
https://doi.org/10.1016/j.jvolgeores.2014.09.005, 2014.
Hoshyaripour, G. A., Hort, M., and Langmann, B.: Ash iron mobilization
through physicochemical processing in volcanic eruption plumes: a numerical
modeling approach, Atmos. Chem. Phys., 15, 9361–9379,
https://doi.org/10.5194/acp-15-9361-2015, 2015.
Ilyinskaya, E., Schmidt, A., Mather, T. A., Pope, F. D., Witham, C., Baxter,
P., Jóhannsson, T., Pfeffer, M., Barsotti, S., Singh, A., Sanderson,
P., Bergsson, B., McCormick Kilbride, B., Donovan, A., Peters, N.,
Oppenheimer, C., and Edmonds, M.: Understanding the environmental impacts of
large fissure eruptions: Aerosol and gas emissions from the 2014-2015
Holuhraun eruption (Iceland), Earth Planet. Sci. Lett., 472, 309–322,
https://doi.org/10.1016/j.epsl.2017.05.025, 2017.
Janssen, C.: Intramolecular isotope distribution in heavy ozone
(16O18O16O and 16O16O18O), J.
Geophys. Res.-Atmos., 110, D08308, https://doi.org/10.1029/2004JD005479, 2005.
Jeong, D., Kim, K., and Choi, W.: Accelerated dissolution of iron
oxides in ice, Atmos. Chem. Phys., 12, 11125–11133, https://doi.org/10.5194/acp-12-11125-2012, 2012.
Johnston, J. C. and Thiemens, M. H.: The isotopic composition of tropospheric
ozone in three environments, J. Geophys. Res.-Atmos., 102, 25395–25404,
https://doi.org/10.1029/97JD02075, 1997.
Jourdain, L., Roberts, T. J., Pirre, M., and Josse, B.: Modeling the reactive halogen
plume from Ambrym and its impact on the troposphere with the CCATT-BRAMS mesoscale
model, Atmos. Chem. Phys., 16, 12099–12125, https://doi.org/10.5194/acp-16-12099-2016, 2016.
Korolev, A. V., Isaac, G. A., Strapp, J. W., Cober, S. G., and Barker, H. W.:
In situ measurements of liquid water content profiles in midlatitude
stratiform clouds, Q. J. R. Meteorol. Soc., 133, 1693–1699,
https://doi.org/10.1002/qj.147, 2007.
Krankowsky, D., Bartecki, F., Klees, G. G., Mauersberger, K., Schellenbach, K.,
and Stehr, J.: Measurement of heavy isotope enrichment in tropospheric
ozone, Geophys. Res. Lett., 22, 1713–1716, https://doi.org/10.1029/95GL01436, 1995.
Kristiansen, N. I., Stohl, A., Olivié, D. J. L., Croft, B., Søvde, O. A., Klein, H.,
Christoudias, T., Kunkel, D., Leadbetter, S. J., Lee, Y. H., Zhang, K., Tsigaridis, K.,
Bergman, T., Evangeliou, N., Wang, H., Ma, P.-L., Easter, R. C., Rasch, P. J., Liu, X.,
Pitari, G., Di Genova, G., Zhao, S. Y., Balkanski, Y., Bauer, S. E., Faluvegi, G. S.,
Kokkola, H., Martin, R. V., Pierce, J. R., Schulz, M., Shindell, D., Tost, H., and
Zhang, H.: Evaluation of observed and modelled aerosol lifetimes using radioactive
tracers of opportunity and an ensemble of 19 global models, Atmos. Chem. Phys., 16,
3525–3561, https://doi.org/10.5194/acp-16-3525-2016, 2016. .
Laj, P., Fuzzi, S., Facchini, M. C., Lind, J. A., Orsi, G., Preiss, M., Maser,
R., Jaeschke, W., Seyffer, E., Helas, G., Acker, K., Wieprecht, W., Moller,
D., Arends, B. G., Mols, J. J., Colvile, R. N., Gallagher, M. W., Beswick,
K. M., and Hargreaves, K. J.: Cloud processing of soluble gases, Atmos.
Environ., 31, 2589–2598, https://doi.org/10.1016/S1352-2310(97)00040-X, 1997.
Langmann, B.: On the role of climate forcing by volcanic sulphate and volcanic
ash, Adv. Meteorol., 2014, https://doi.org/10.1155/2014/340123, 2014.
Lee, C. C.-W. and Thiemens, M. H.: The delta δ17O and
δ18O measurements of atmospheric sulfate from a coastal and high
alpine region: A mass-independent isotopic anomaly, J. Geophys. Res.-Atmos.,
106, 17359–17373, https://doi.org/10.1029/2000JD900805, 2001.
Lee, C. C. W., Savarino, J., and Thiemens, M. H.: Mass independent oxygen
isotopic composition of atmospheric sulfate: Origin and implications for the
present and past atmosphere of Earth and Mars, Geophys. Res. Lett., 28,
1783–1786, https://doi.org/10.1029/2000GL011826, 2001.
Luz, B., Barkan, E., and Bender, M. L.: Triple-isotope composition of
atmospheric oxygen as a tracer of biosphere productivity, Nature, 400,
547–550, https://doi.org/10.1038/22987, 1999.
Lyons, J. R.: Transfer of mass-independent fractionation in ozone to other
oxygen-containing radicals in the atmosphere, Geophys. Res. Lett., 28,
3231–3234, https://doi.org/10.1029/2000GL012791, 2001.
Marcus, R. A.: Theory of mass-independent fractionation of isotopes, phase
space accessibility, and a role of isotopic symmetry, Proc. Natl. Acad.
Sci., 110, 17703–17707, https://doi.org/10.1073/pnas.1213080110, 2013.
Martin, E.: Volcanic Plume Impact on the Atmosphere and Climate : O- and
S-Isotope Insight into Sulfate Aerosol Formation, 1991, 1–23,
https://doi.org/10.3390/geosciences8060198, 2018.
Martin, E., Bekki, S., Ninin, C., and Bindeman, I.: Volcanic sulfate aerosol
formation in the troposphere, J. Geophys. Res.-Atmos., 119, 12660–12673,
https://doi.org/10.1002/2014JD021915, 2014.
Martin, L. and Good, T. W.: Catalyzed oxidation of sulfur dioxide in solution:
The iron-manganese synergism, Atmos. Environ. Part A. Gen. Top., 25,
2395–2399, https://doi.org/10.1016/0960-1686(91)90113-L, 1991.
Martin, L. R.: Kinetic studies of sulfite oxidation in aqueous solution. In
SO2, NO and NO2 Oxidation Mechanisms:
Atmospheric Considerations, 63–100, 1984.
Maters, E. C., Delmelle, P., and Bonneville, S.: Atmospheric Processing of
Volcanic Glass: Effects on Iron Solubility and Redox Speciation, Environ.
Sci. Technol., 50, 5033–5040, https://doi.org/10.1021/acs.est.5b06281, 2016.
Maters, E. C., Delmelle, P., and Gunnlaugsson, H. P.: Controls on iron
mobilisation from volcanic ash at low pH: Insights from dissolution
experiments and Mössbauer spectroscopy, Chem. Geol., 449, 73–81,
https://doi.org/10.1016/j.chemgeo.2016.11.036, 2017.
Mather, T., Pyle, D. M., and Oppenheimer, C.: Tropospheric volcanic aerosol,
Volcanism and the Earth's Atmosphere, 189–212, https://doi.org/10.1029/139GM12,
2003.
Mather, T. A., McCabe, J. R., Rai, V. K., Thiemens, M. H., Pyle, D. M., Heaton,
T. H. E., Sloane, H. J., and Fern, G. R.: Oxygen and sulfur isotopic
composition of volcanic sulfate aerosol at the point of emission, J.
Geophys. Res.-Atmos., 111, 1–9, https://doi.org/10.1029/2005JD006584, 2006.
Mather, T. A., Witt, M. L., Pyle, D. M., Quayle, B. M., Aiuppa, A., Bagnato,
E., Martin, R. S., Sims, K. W., Edmonds, M., Sutton, A. J., and Ilyinskaya,
E.: Halogens and trace metal emissions from the ongoing 2008 summit eruption
of Kilauea volcano, Hawai'i, Geochim. Cosmochim. Ac., 83, 292–323,
https://doi.org/10.1016/j.gca.2011.11.029, 2012.
McArdle, J. V. and Hoffmann, M. R.: Kinetics and mechanism of the oxidation of
aquated sulfur dioxide by hydrogen peroxide at low pH, J. Phys. Chem., 87,
5425–5429, https://doi.org/10.1021/j150644a024, 1983.
Methven, J., Arnold, S. R., Stohl, A., Evans, M. J., Avery, M., Law, K., Lewis,
A. C., Monks, P. S., Parrish, D. D., Reeves, C. E., Schlager, H., Atlas,
E. L., Blake, D. R., Coe, H., Crosier, J., Flocke, F. M., Holloway, J. S.,
Hopkins, J. R., McQuaid, J., Purvis, R., Rappenglück, B., Singh, H. B.,
Watson, N. M., Whalley, L. K., and Williams, P. I.: Establishing Lagrangian
connections between observations within air masses crossing the Atlantic
during the International Consortium for Atmospheric Research on Transport and
Transformation experiment, J. Geophys. Res.-Atmos., 111, 1–21,
https://doi.org/10.1029/2006JD007540, 2006.
Michalski, G. and Xu, F.: Isotope modeling of nitric acid formation in the
atmosphere using ISO-RACM: testing the importance of NO oxidation,
heterogeneous reactions, and trace gas chemistry, Atmos. Chem. Phys.
Discuss., 10, 6829–6869, https://doi.org/10.5194/acpd-10-6829-2010, 2010.
Michalski, G., Scott, Z., Kabiling, M., and Thiemens, M. H.: First
measurements and modeling of Δ17O in atmospheric nitrate,
Geophys. Res. Lett., 30, 1870, https://doi.org/10.1029/2003GL017015, 2003.
Millard, G. A., Mather, T. A., Pyle, D. M., Rose, W. I., and Thornton, B.:
Halogen emissions from a small volcanic eruption: Modeling the peak
concentrations, dispersion, and volcanically induced ozone loss in the
stratosphere, Geophys. Res. Lett., 33, 6–11, https://doi.org/10.1029/2006GL026959,
2006.
Miller, M. F.: Isotopic fractionation and the quantification of 17O
anomalies in the oxygen three-isotope system: An appraisal and geochemical
significance, Geochim. Cosmochim. Ac., 66, 1881–1889,
https://doi.org/10.1016/S0016-7037(02)00832-3, 2002.
Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J. W.:
Signature of Arctic surface ozone depletion events in the isotope anomaly
(Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 7, 1451–1469, https://doi.org/10.5194/acp-7-1451-2007, 2007.
Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W.,
and Martins, J. M. F.: Tracing the origin and fate of NOx in the
Arctic atmosphere using stable isotopes in nitrate., Science, 322, 730–732,
https://doi.org/10.1126/science.1161910, 2008.
Morin, S., Sander, R., and Savarino, J.: Simulation of the diurnal variations of
the oxygen isotope anomaly (Δ17O) of reactive atmospheric species, Atmos. Chem. Phys.,
11, 3653–3671, https://doi.org/10.5194/acp-11-3653-2011, 2011.
Oppenheimer, C., Fischer, T. P., and Scaillet, B.: Volcanic Degassing: Process
and Impact, 4, 2013.
Pack, A., Toulouse, C., and Przybilla, R.: Determination of oxygen triple
isotope ratios of silicates without cryogenic separation of NF3 – technique with
application to analyses of technical O2 gas and
meteorite classification, Rapid Commun. Mass Spectrom., 21, 3721–3728,
https://doi.org/10.1002/rcm.3269, 2007.
Parazols, M., Marinoni, A., Amato, P., Abida, O., Laj, P., and Mailhot, G.:
Speciation and role of iron in cloud droplets at the puy de Dôme
station, J. Atmos. Chem., 54, 267–281, https://doi.org/10.1007/s10874-006-9026-x,
2006.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.:
Natural and transboundary pollution influences on sulfate-nitrate-ammonium
aerosols in the United States: Implications for policy, J. Geophys. Res.-Atmos.,
109, https://doi.org/10.1029/2003JD004473, 2004.
Pope III, C. A.: Lung Cancer, Cardiopulmonary Mortality, and Long-term
Exposure to Fine Particulate Air Pollution, Jama, 287, 1132,
https://doi.org/10.1001/jama.287.9.1132, 2002.
Pruppacher, H. R., Klett, J. D., and Wang, P. K.: Microphysics of Clouds and
Precipitation, Aerosol Sci. Technol., 28, 381–382,
https://doi.org/10.1080/02786829808965531, 1998.
Pugh, T. A. M., Cain, M., Methven, J., Wild, O., Arnold, S. R., Real, E., Law, K. S.,
Emmerson, K. M., Owen, S. M., Pyle, J. A., Hewitt, C. N., and MacKenzie, A. R.: A
Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble:
the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT)
version 4.2, Geosci. Model Dev., 5, 193–221, https://doi.org/10.5194/gmd-5-193-2012, 2012.
Real, E., Law, K. S., Weinzierl, B., Fiebig, M., Petzold, A., Wild, O.,
Methven, J., Arnold, S., Stohl, A., Huntrieser, H., Roiger, A., Schlager, H.,
Stewart, D., Avery, M., Sachse, G., Browell, E., Ferrare, R., and Blake, D.:
Processes influencing ozone levels in Alaskan forest fire plumes during
long-range transport over the North Atlantic, J. Geophys. Res.-Atmos., 112,
D10S41, https://doi.org/10.1029/2006JD007576, 2007.
Redlich, O.: The Dissociation of Strong Electrolytes., Chem. Rev., 39,
333–356, https://doi.org/10.1021/cr60123a005, 1946.
Ridley, D. A., Cain, M., Methven, J., and Arnold, S. R.: Sensitivity of
tropospheric ozone to chemical kinetic uncertainties in air masses influenced
by anthropogenic and biomass burning emissions, Geophys. Res. Lett., 44,
7472–7481, https://doi.org/10.1002/2017GL073802, 2017.
Roberts, T. J., Braban, C. F., Martin, R. S., Oppenheimer, C., Adams, J. W.,
Cox, R. A., Jones, R. L., and Griffiths, P. T.: Modelling reactive halogen
formation and ozone depletion in volcanic plumes, Chem. Geol., 263,
151–163, https://doi.org/10.1016/j.chemgeo.2008.11.012, 2009.
Roberts, T. J., Braban, C. F., Oppenheimer, C., Martin, R. S., Freshwater,
R. A., Dawson, D. H., Griffiths, P. T., Cox, R. A., Saffell, J. R., and
Jones, R. L.: Electrochemical sensing of volcanic gases, Chem. Geol.,
332–333, 74–91, https://doi.org/10.1016/j.chemgeo.2012.08.027, 2012.
Roberts, T. J., Martin, R. S., and Jourdain, L.: Reactive bromine chemistry in
Mount Etna's volcanic plume: the influence of total Br, high-temperature processing,
aerosol loading and plume-air mixing, Atmos. Chem. Phys., 14, 11201–11219, https://doi.org/10.5194/acp-14-11201-2014, 2014.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
https://doi.org/10.1029/1998RG000054, 2000.
Röckmann, T.: Mass-Independent Oxygen Isotope Fractionation in Atmospheric
CO as a Result of the Reaction CO+OH, Science, 281, 544–546,
https://doi.org/10.1126/science.281.5376.544, 1998.
Rose, W. I. and Durant, A. J.: Fine ash content of explosive eruptions, J.
Volcanol. Geotherm. Res., 186, 32–39,
https://doi.org/10.1016/j.jvolgeores.2009.01.010, 2009.
Rose, W. I., Millard, G. A., Mather, T. A., Hunton, D. E., Anderson, B.,
Oppenheimer, C., Thornton, B. F., Gerlach, T. M., Viggiano, A. A., Kondo, Y.,
Miller, T. M., and Ballenthin, J. O.: Atmospheric chemistry of a 33-34 hour
old volcanic cloud from Hekla Volcano (Iceland): Insights from direct
sampling and the application of chemical box modeling, J. Geophys. Res. Atmos., 111, 1–17, https://doi.org/10.1029/2005JD006872, 2006.
Rosenfeld, D. and Lensky, I. M.: Satellite-Based Insights into Precipitation
Formation Processes in Continental and Maritime Convective Clouds, Bull. Am.
Meteorol. Soc., 79, 2457–2476,
https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2, 1998.
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K.,
Wine, P. H., Ravishankara, a. R., Kolb, C. E., Molina, M. J., Diego, S.,
Jolla, L., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and
Photochemical Data for Use in Atmospheric Studies Evaluation Number 15,
Cross Sect., California, 1–153, https://doi.org/10.1002/kin.550171010, 2006.
Savarino, J. and Thiemens, M. H.: Mass-independent oxygen isotope (16O,
17O, 18O) fractionation found in Hx, Ox
reactions, J. Phys. Chem. A, 103, 9221–9229, https://doi.org/10.1021/jp991221y,
1999a.
Savarino, J. and Thiemens, M. H.: Analytical procedure to determine both
δ18O and δ17O of H2O2 in natural water and
first measurements, Atmos. Environ., 33, 3683–3690,
https://doi.org/10.1016/S1352-2310(99)00122-3, 1999b.
Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Laboratory oxygen isotopic
study of sulfur (IV) oxidation: Origin of the mass-independent oxygen
isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on
Earth, J. Geophys. Res.-Atmos., 105, 29079–29088,
https://doi.org/10.1029/2000JD900456, 2000.
Savarino, J., Bekki, S., Cole-Dai, J., and Thiemens, M. H.: Evidence from
sulfate mass independent oxygen isotopic compositions of dramatic changes in
atmospheric oxidation following massive volcanic eruptions, J. Geophys. Res.-Atmos.,
108, 1–6, https://doi.org/10.1029/2003JD003737, 2003.
Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.:
Nitrogen and oxygen isotopic constraints on the origin of atmospheric
nitrate in coastal Antarctica, Atmos. Chem. Phys., 7, 1925–1945,
https://doi.org/10.5194/acp-7-1925-2007, 2007.
Savarino, J., Bhattacharya, S. K., Morin, S., Baroni, M., and Doussin, J.-F.:
The NO+O3 reaction: a triple oxygen isotope perspective on
the reaction dynamics and atmospheric implications for the transfer of the
ozone isotope anomaly., J. Chem. Phys., 128, 194303,
https://doi.org/10.1063/1.2917581, 2008.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air
pollution to climate change, 3 Edn., https://doi.org/10.1021/ja985605y, 2016.
Sheppard, M. G. and Walker, R. B.: Wigner method studies of ozone
photodissociation, J. Chem. Phys., 78, 7191–7199, https://doi.org/10.1063/1.444760,
1983.
Shi, Z., Krom, M. D., Jickells, T. D., Bonneville, S., Carslaw, K. S.,
Mihalopoulos, N., Baker, A. R., and Benning, L. G.: Impacts on iron
solubility in the mineral dust by processes in the source region and the
atmosphere: A review, Aeolian Res., 5, 21–42,
https://doi.org/10.1016/j.aeolia.2012.03.001, 2012.
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.:
Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 11, 1101–1116,
https://doi.org/10.5194/acp-11-1101-2011, 2011.
Solmon, F., Chuang, P. Y., Meskhidze, N., and Chen, Y.: Acidic processing of
mineral dust iron by anthropogenic compounds over the north Pacific Ocean,
J. Geophys. Res.-Atmos., 114, 1–20, https://doi.org/10.1029/2008JD010417, 2009.
Stefánsson, A., Stefánsdóttir, G., Keller, N. S., Barsotti,
S., Sigurdsson, Á., Thorláksdóttir, S. B., Pfeffer, M. A.,
Eiríksdóttir, E. S., Jónasdóttir, E. B., von
Löwis, S., and Gíslason, S. R.: Major impact of volcanic gases
on the chemical composition of precipitation in Iceland during the 2014-2015
Holuhraun eruption, J. Geophys. Res.-Atmos., 122, 1971–1982,
https://doi.org/10.1002/2015JD024093, 2017.
Stevenson, D. S., Johnson, C. E., Collins, W. J., and Derwent, R. G.: The
tropospheric sulphur cycle and the role of volcanic SO2, Geol.
Soc. London, Spec. Publ., 213, 295–305, https://doi.org/10.1144/GSL.SP.2003.213.01.18,
2003a.
Highwood, E.-J. and Stevenson, D. S.: Atmospheric impact of the 1783–1784 Laki Eruption:
Part II Climatic effect of sulphate aerosol, Atmos. Chem. Phys., 3, 1177–1189,
https://doi.org/10.5194/acp-3-1177-2003, 2003b.
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., Midgley, P., et al.: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, 5th,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324, 2013.
Tabazadeh, A. and Turco, R. P.: Stratospheric Chlorine Injection by Volcanic
Eruptions: HCI Scavenging and Implications for Ozone, Science, 260,
1082–1086, https://doi.org/10.1126/science.260.5111.1082, 1993.
Textor, C., Graf, H.-F., Timmreck, C., and Robock, A.: Emissions from
volcanoes, in: Emiss. Atmos. trace Compd., 269–303, 2004.
Thiemens, M. H.: History and applications of mass-independent isotope
effects, Annu. Rev. Earth Planet. Sci., 34, 217–262,
https://doi.org/10.1146/annurev.earth.34.031405.125026, 2006.
Thomason, L. and Peter, T., ed.: SPARC Assessment of Stratospheric Aerosol
Properties (ASAP), SPARC Office, no. 4 Edn., available at: http://www.sparc-climate.org/publications/sparc-reports/ (last access: February 2016),
2006.
Uemura, R., Barkan, E., Abe, O., and Luz, B.: Triple isotope composition of
oxygen in atmospheric water vapor, Geophys. Res. Lett., 37, L04402, https://doi.org/10.1029/2009GL041960, 2010.
Vicars, W. C. and Savarino, J.: Quantitative constraints on the
17O-excess (Δ17O) signature of surface ozone: Ambient
measurements from 50° N to 50° S using the nitrite-coated filter technique,
Geochim. Cosmochim. Ac., 135, 270–287, https://doi.org/10.1016/j.gca.2014.03.023,
2014.
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from
sea-salt aerosol in the remote marine boundary layer, 383, 327–330,
https://doi.org/10.1038/383327a0, 1996.
Voigt, C., Jessberger, P., Jurkat, T., Kaufmann, S., Baumann, R., Schlager, H.,
Bobrowski, N., Giuffrida, G., and Salerno, G.: Evolution of CO2,
SO2, HCl, and HNO3 in the volcanic plumes from
Etna, Geophys. Res. Lett., 41, 2196–2203, https://doi.org/10.1002/2013GL058974, 2014.
von Glasow, R.: Atmospheric chemistry in volcanic plumes, Proc. Natl. Acad.
Sci., 107, 6594–6599, https://doi.org/10.1073/pnas.0913164107, 2010.
von Glasow, R. and Crutzen, P. J.: Tropospheric Halogen Chemistry, Treatise
Geochemistry Second Ed., 5, 19–69, https://doi.org/10.1016/B978-0-08-095975-7.00402-2,
2013.
von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen
chemistry in the marine boundary layer 2. Interactions with sulfur and the
cloud-covered MBL, J. Geophys. Res.-Atmos., 107, 1–13,
https://doi.org/10.1029/2001JD000943, 2002.
Wardell, L. J., Kyle, P. R., and Chaffin, C.: Carbon dioxide and carbon
monoxide emission rates from an alkaline intra-plate volcano: Mt. Erebus,
Antarctica, J. Volcanol. Geotherm. Res., 131, 109–121,
https://doi.org/10.1016/S0377-0273(03)00320-2, 2004.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in- and
below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37,
245–282, https://doi.org/10.1023/A:1006415919030, 2000.
World Health Organization: The European Health Report 2009 – Health and
health systems, 1–191, 2009.
Young, E. D., Galy, A., and Nagahara, H.: Kinetic and equilibrium
mass-dependant isotope fractionation laws in nature and their geochemical and
cosmochemical significance, Geochim. Cosmochim. Ac., 66, 1095–1104,
https://doi.org/10.1016/S0016-7037(01)00832-8, 2002.
Young, E. D., Yeung, L. Y., and Kohl, I. E.: On the δ17O budget of
atmospheric O2, Geochim. Cosmochim. Ac., 135, 102–125,
https://doi.org/10.1016/j.gca.2014.03.026, 2014.
Zuo, Y. and Hoigne, J.: Evidence for Photochemical Formation of
H2O2 and Oxidation of SO2 in Authentic Fog Water,
Science, 260, 71–73, https://doi.org/10.1126/science.260.5104.71, 1993.
Short summary
Volcanic sulfur can have climatic impacts for the planet via sulfate aerosol formation, leading also to pollution events. We provide model constraints on tropospheric volcanic sulfate formation, with implications for its lifetime and impacts on regional air quality. Oxygen isotope investigations from our model suggest that in the poor tropospheric plumes of halogens, the O2/TMI sulfur oxidation pathway might significantly control sulfate production. The produced sulfate has no isotopic anomaly.
Volcanic sulfur can have climatic impacts for the planet via sulfate aerosol formation, leading...
Altmetrics
Final-revised paper
Preprint