Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-10007-2018
https://doi.org/10.5194/acp-18-10007-2018
Research article
 | 
13 Jul 2018
Research article |  | 13 Jul 2018

Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

Andrei Serafimovich, Stefan Metzger, Jörg Hartmann, Katrin Kohnert, Donatella Zona, and Torsten Sachs

Related authors

Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour
Astrid Lampert, Jörg Hartmann, Falk Pätzold, Lennart Lobitz, Peter Hecker, Katrin Kohnert, Eric Larmanou, Andrei Serafimovich, and Torsten Sachs
Atmos. Meas. Tech., 11, 2523–2536, https://doi.org/10.5194/amt-11-2523-2018,https://doi.org/10.5194/amt-11-2523-2018, 2018
Short summary
eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5
Stefan Metzger, David Durden, Cove Sturtevant, Hongyan Luo, Natchaya Pingintha-Durden, Torsten Sachs, Andrei Serafimovich, Jörg Hartmann, Jiahong Li, Ke Xu, and Ankur R. Desai
Geosci. Model Dev., 10, 3189–3206, https://doi.org/10.5194/gmd-10-3189-2017,https://doi.org/10.5194/gmd-10-3189-2017, 2017
Short summary
Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions
M. Riederer, A. Serafimovich, and T. Foken
Atmos. Meas. Tech., 7, 1057–1064, https://doi.org/10.5194/amt-7-1057-2014,https://doi.org/10.5194/amt-7-1057-2014, 2014

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023,https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer
Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli
Atmos. Chem. Phys., 23, 4045–4058, https://doi.org/10.5194/acp-23-4045-2023,https://doi.org/10.5194/acp-23-4045-2023, 2023
Short summary
Triggering effects of large topography and boundary layer turbulence on convection over the Tibetan Plateau
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023,https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023,https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022,https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary

Cited articles

Beljaars, A. C. M.: The parameterization of surface fluxes in large-scale models under free convection, Q. J. R. Meteorol. Soc., 121, 255–270, 1994. a
Beringer, J., Chapin III, F. S., Thompson, C. C., and McGuire, A. D.: Surface energy exchanges along a tundra-forest transition and feedbacks to climate, Agric. For. Meteorol., 131, 143–161, 2005. a
Bonan, G. B., Pollard, D., and Thompson, S. L.: Effects of boreal forest vegetation on global climate, Nature, 359, 716–718, 1992. a
Download
Short summary
In order to support the evaluation of coupled atmospheric–land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties and upscaled airborne flux measurements to high resolution flux maps. A machine learning technique allows us to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers.
Altmetrics
Final-revised paper
Preprint