Articles | Volume 16, issue 4
https://doi.org/10.5194/acp-16-2309-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-2309-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing
S. H. Jathar
Mechanical Engineering, Colorado State University, Fort Collins CO, USA
Civil and Environmental Engineering, University of California, Davis CA, USA
Civil and Environmental Engineering, University of California, Davis CA, USA
A. S. Wexler
Civil and Environmental Engineering, University of California, Davis CA, USA
J. H. Seinfeld
Chemical Engineering, California Institute of Technology, Pasadena CA, USA
M. J. Kleeman
CORRESPONDING AUTHOR
Civil and Environmental Engineering, University of California, Davis CA, USA
Related authors
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Michael Cheeseman, Bonne Ford, Zoey Rosen, Eric Wendt, Alex DesRosiers, Aaron J. Hill, Christian L'Orange, Casey Quinn, Marilee Long, Shantanu H. Jathar, John Volckens, and Jeffrey R. Pierce
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-751, https://doi.org/10.5194/acp-2021-751, 2021
Revised manuscript not accepted
Short summary
Short summary
This article predicts concentrations of airborne particulate matter over wintertime Denver, CO, USA, using meteorological and geographic information, as well as low-cost aerosol optical depth (AOD) measurements captured by citizen scientists. Machine learning methods revealed that low boundary layer heights and stagnant air were the best predictors of poor air quality, while AOD provided little skill in predicting particulate matter for this location and time period.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Anna L. Hodshire, Emily Ramnarine, Ali Akherati, Matthew L. Alvarado, Delphine K. Farmer, Shantanu H. Jathar, Sonia M. Kreidenweis, Chantelle R. Lonsdale, Timothy B. Onasch, Stephen R. Springston, Jian Wang, Yang Wang, Lawrence I. Kleinman, Arthur J. Sedlacek III, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 6839–6855, https://doi.org/10.5194/acp-21-6839-2021, https://doi.org/10.5194/acp-21-6839-2021, 2021
Short summary
Short summary
Biomass burning emits particles and vapors that can impact both health and climate. Here, we investigate the role of dilution in the evolution of aerosol size and composition in observed US wildfire smoke plumes. Centers of plumes dilute more slowly than edges. We see differences in concentrations and composition between the centers and edges both in the first measurement and in subsequent measurements. Our findings support the hypothesis that plume dilution influences smoke aging.
Bonne Ford, Jeffrey R. Pierce, Eric Wendt, Marilee Long, Shantanu Jathar, John Mehaffy, Jessica Tryner, Casey Quinn, Lizette van Zyl, Christian L'Orange, Daniel Miller-Lionberg, and John Volckens
Atmos. Meas. Tech., 12, 6385–6399, https://doi.org/10.5194/amt-12-6385-2019, https://doi.org/10.5194/amt-12-6385-2019, 2019
Short summary
Short summary
This study demonstrates the use of a low-cost sensor in a citizen-science network, Citizen-Enabled Aerosol Measurements for Satellites (CEAMS), to measure air quality in participants’ backyards. The pilot network was conducted in the fall and winter of 2017 in northern Colorado. Measurements of aerosols taken by the citizens are also compared to standard air quality instruments.
Eric A. Wendt, Casey W. Quinn, Daniel D. Miller-Lionberg, Jessica Tryner, Christian L'Orange, Bonne Ford, Azer P. Yalin, Jeffrey R. Pierce, Shantanu Jathar, and John Volckens
Atmos. Meas. Tech., 12, 5431–5441, https://doi.org/10.5194/amt-12-5431-2019, https://doi.org/10.5194/amt-12-5431-2019, 2019
Short summary
Short summary
We introduce a low-cost, compact device (aerosol mass and optical depth (AMOD) sampler) that can be used by citizen scientists to measure air quality. Our paper discusses the development and different components for measuring aerosols. It also shows that measurements made by the AMOD next to reference-grade monitors agreed within 10 %. Coupled with the cost of these instruments, this agreement demonstrates that the AMOD can be widely deployed to monitor air quality by citizen scientists.
Ali Akherati, Christopher D. Cappa, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, Stephen M. Griffith, Sebastien Dusanter, Philip S. Stevens, and Shantanu H. Jathar
Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, https://doi.org/10.5194/acp-19-4561-2019, 2019
Short summary
Short summary
Unburned and partially burned organic compounds emitted from fossil fuel and biomass combustion can react in the atmosphere in the presence of sunlight to form particles. In this work, we use an air pollution model to examine the influence of these organic compounds released by motor vehicles and fires on fine particle pollution in southern California.
Sailaja Eluri, Christopher D. Cappa, Beth Friedman, Delphine K. Farmer, and Shantanu H. Jathar
Atmos. Chem. Phys., 18, 13813–13838, https://doi.org/10.5194/acp-18-13813-2018, https://doi.org/10.5194/acp-18-13813-2018, 2018
Short summary
Short summary
As oxidation flow reactors (OFRs) are increasingly used to study aerosol formation and evolution in laboratory and field environments, there is a need to develop models that can be used to interpret OFR data. In this work, we evaluate two coupled chemistry and thermodynamic models to simulate secondary organic aerosol formation (SOA) from diluted diesel exhaust and explore the sources, pathways, and processes important to SOA formation.
Shantanu H. Jathar, Christopher Heppding, Michael F. Link, Delphine K. Farmer, Ali Akherati, Michael J. Kleeman, Joost A. de Gouw, Patrick R. Veres, and James M. Roberts
Atmos. Chem. Phys., 17, 8959–8970, https://doi.org/10.5194/acp-17-8959-2017, https://doi.org/10.5194/acp-17-8959-2017, 2017
Short summary
Short summary
Our work makes novel emissions measurements of isocyanic acid, a toxic gas, from a modern-day diesel engine and finds that diesel engines emit isocyanic acid but the emissions control devices do not enhance or destroy the isocyanic acid. Air quality model calculations suggest that diesel engines are possibly important sources of isocyanic acid in urban environments although the isocyanic acid levels are ten times lower than levels linked to adverse human health effects.
Qijing Bian, Shantanu H. Jathar, John K. Kodros, Kelley C. Barsanti, Lindsay E. Hatch, Andrew A. May, Sonia M. Kreidenweis, and Jeffrey R. Pierce
Atmos. Chem. Phys., 17, 5459–5475, https://doi.org/10.5194/acp-17-5459-2017, https://doi.org/10.5194/acp-17-5459-2017, 2017
Short summary
Short summary
In this paper, we perform simulations of the evolution of biomass-burning organic aerosol in laboratory smog-chamber experiments and ambient plumes. We find that in smog-chamber experiments, vapor wall losses lead to a large reduction in the apparent secondary organic aerosol formation. In ambient plumes, fire size and meteorology regulate the plume dilution rate, primary organic aerosol evaporation rate, and secondary organic aerosol formation rate.
Jianlin Hu, Shantanu Jathar, Hongliang Zhang, Qi Ying, Shu-Hua Chen, Christopher D. Cappa, and Michael J. Kleeman
Atmos. Chem. Phys., 17, 5379–5391, https://doi.org/10.5194/acp-17-5379-2017, https://doi.org/10.5194/acp-17-5379-2017, 2017
Short summary
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Shantanu H. Jathar, Matthew Woody, Havala O. T. Pye, Kirk R. Baker, and Allen L. Robinson
Atmos. Chem. Phys., 17, 4305–4318, https://doi.org/10.5194/acp-17-4305-2017, https://doi.org/10.5194/acp-17-4305-2017, 2017
Short summary
Short summary
Mobile sources such as cars and trucks are large sources of pollution in cities, but it is unclear what their relative contribution to organic particle pollution is. We used a numerical model along with recent data gathered from tests performed on cars and trucks to calculate organic particle levels in southern California. We found that model calculations agreed better with measurements and gasoline cars and trucks dominated the organic particle pollution.
Christopher D. Cappa, Shantanu H. Jathar, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, John H. Seinfeld, and Anthony S. Wexler
Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, https://doi.org/10.5194/acp-16-3041-2016, 2016
Short summary
Short summary
Losses of vapors to walls of chambers can negatively bias SOA formation measurements, consequently leading to low predicted SOA concentrations in air quality models. Here, we show that accounting for such vapor losses leads to substantial increases in the predicted amount of SOA formed from VOCs and to notable increases in the O : C atomic ratio in two US regions. Comparison with a variety of observational data suggests generally improved model performance when vapor wall losses are accounted for.
S. H. Jathar, C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman
Geosci. Model Dev., 8, 2553–2567, https://doi.org/10.5194/gmd-8-2553-2015, https://doi.org/10.5194/gmd-8-2553-2015, 2015
Short summary
Short summary
Multi-generational oxidation of organic vapors can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA). Here, we implement a semi-explicit, constrained multi-generational oxidation model of Cappa and Wilson (2012) in a 3-D air quality model. When compared with results from a current-generation SOA model, we predict similar mass concentrations of SOA but a different chemical composition. O:C ratios of SOA are in line with those measured globally.
M. C. Woody, J. J. West, S. H. Jathar, A. L. Robinson, and S. Arunachalam
Atmos. Chem. Phys., 15, 6929–6942, https://doi.org/10.5194/acp-15-6929-2015, https://doi.org/10.5194/acp-15-6929-2015, 2015
Short summary
Short summary
Utilizing an aircraft-specific parameterization based on smog chamber data in a regional AQM, contributions of non-traditional secondary organic aerosols (NTSOA) from aircraft emissions of semi-volatile and intermediate volatility organic compounds were assessed. NTSOA, a previously unaccounted component of PM2.5 in most AQMs, contributed up to 7.4% of aviation-attributable PM2.5 at the airport and rose to 17.9% downwind, suggesting its significance in aviation-attributed PM2.5 at all scales.
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
S. H. Jathar, N. M. Donahue, P. J. Adams, and A. L. Robinson
Atmos. Chem. Phys., 14, 5771–5780, https://doi.org/10.5194/acp-14-5771-2014, https://doi.org/10.5194/acp-14-5771-2014, 2014
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2482, https://doi.org/10.5194/egusphere-2024-2482, 2024
Short summary
Short summary
Quantifying the composition-dependent hygroscopicity of aerosol particles is essential for advancing our understanding of atmospheric processes. Existing methods do not integrate chemical composition with hygroscopicity. We developed a novel method to assess the water uptake of particles sampled on aerosol filters at relative humidity levels up to 97 % and link it with their composition. This approach allows for the separation of total water uptake into inorganic and organic components.
Kathryn A. Moore, Thomas C. J. Hill, Samantha Greeney, Chamika K. Madawala, Raymond J. Leibensperger III, Christopher D. Cappa, M. Dale Stokes, Grant B. Deane, Christopher Lee, Alexei V. Tivanski, Kimberly A. Prather, and Paul J. DeMott
EGUsphere, https://doi.org/10.5194/egusphere-2024-2159, https://doi.org/10.5194/egusphere-2024-2159, 2024
Short summary
Short summary
This article presents results from the first study in a new wind-wave channel at the Scripps Institution of Oceanography. The experiment tested how wind speed over the ocean surface influences production of sea spray particles, which are important for radiative forcing and cloud formation in the atmosphere. We found that particle concentration and chemical composition varied with winds speed, and the changes were driven by changes in wind and wave-breaking rather seawater biology or chemistry.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Ryan N. Farley, Sonya Collier, Christopher D. Cappa, Leah R. Williams, Timothy B. Onasch, Lynn M. Russell, Hwajin Kim, and Qi Zhang
Atmos. Chem. Phys., 23, 15039–15056, https://doi.org/10.5194/acp-23-15039-2023, https://doi.org/10.5194/acp-23-15039-2023, 2023
Short summary
Short summary
Soot particles, also known as black carbon (BC), have important implications for global climate and regional air quality. After the particles are emitted, BC can be coated with other material, impacting the aerosol properties. We selectively measured the composition of particles containing BC to explore their sources and chemical transformations in the atmosphere. We focus on a persistent, multiday fog event in order to study the effects of chemical reactions occurring within liquid droplets.
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-2483, https://doi.org/10.5194/egusphere-2023-2483, 2023
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Bruno Debus, Andrew T. Weakley, Satoshi Takahama, Kathryn M. George, Anahita Amiri-Farahani, Bret Schichtel, Scott Copeland, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2685–2702, https://doi.org/10.5194/amt-15-2685-2022, https://doi.org/10.5194/amt-15-2685-2022, 2022
Short summary
Short summary
In the US, routine particulate matter composition is measured on samples collected on three types of filter media and analyzed using several techniques. We propose an alternate approach that uses one analytical technique, Fourier transform-infrared spectroscopy (FT-IR), and one filter type to measure the chemical composition of particulate matter in a major US monitoring network. This method could be used to add low-cost sites to the network, fill-in missing data, or for quality control.
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 15, 3417–3431, https://doi.org/10.5194/gmd-15-3417-2022, https://doi.org/10.5194/gmd-15-3417-2022, 2022
Short summary
Short summary
Large air quality and climate models require vast amounts of computational power. Machine learning tools like neural networks can be used to make these models more efficient, with the downside that their results might not make physical sense or be easy to interpret. This work develops a physically interpretable neural network that obeys scientific laws like conservation of mass and models atmospheric composition more accurately than a traditional neural network.
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022, https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
Short summary
Measuring emissions from stacks requires techniques to address a broad range of conditions and measurement challenges. Here we describe an instrument package held by a crane above a stack to characterize both wet droplet and dried aerosol emissions from cooling tower spray drift in situ. The instrument package characterizes the velocity, size distribution, and concentration of the wet droplet emissions and the mass concentration and elemental composition of the dried PM2.5 and PM10 emissions.
Shenglun Wu, Hyung Joo Lee, Andrea Anderson, Shang Liu, Toshihiro Kuwayama, John H. Seinfeld, and Michael J. Kleeman
Atmos. Chem. Phys., 22, 4929–4949, https://doi.org/10.5194/acp-22-4929-2022, https://doi.org/10.5194/acp-22-4929-2022, 2022
Short summary
Short summary
An ozone control experiment usually conducted in the laboratory was installed in a trailer and moved to the outdoor environment to directly confirm that we are controlling the right sources in order to lower ambient ozone concentrations. Adding small amounts of precursor oxides of nitrogen and volatile organic compounds to ambient air showed that the highest ozone concentrations are best controlled by reducing concentrations of oxides of nitrogen. The results confirm satellite measurements.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Sophia M. Charan, Yuanlong Huang, Reina S. Buenconsejo, Qi Li, David R. Cocker III, and John H. Seinfeld
Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, https://doi.org/10.5194/acp-22-917-2022, 2022
Short summary
Short summary
In this study, we investigate the secondary organic aerosol formation potential of decamethylcyclopentasiloxane (D5), which is used as a tracer for volatile chemical products and measured in high concentrations both outdoors and indoors. By performing experiments in different types of reactors, we find that D5’s aerosol formation is highly dependent on OH, and, at low OH concentrations or exposures, D5 forms little aerosol. We also reconcile results from other studies.
Elyse A. Pennington, Karl M. Seltzer, Benjamin N. Murphy, Momei Qin, John H. Seinfeld, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, https://doi.org/10.5194/acp-21-18247-2021, 2021
Short summary
Short summary
Volatile chemical products (VCPs) are commonly used consumer and industrial items that contribute to the formation of atmospheric aerosol. We implemented the emissions and chemistry of VCPs in a regional-scale model and compared predictions with measurements made in Los Angeles. Our results reduced model bias and suggest that VCPs may contribute up to half of anthropogenic secondary organic aerosol in Los Angeles and are an important source of human-influenced particular matter in urban areas.
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Short summary
This paper establishes a bottom-up approach to reveal a unique pattern of urban on-road vehicle emissions at a spatial resolution 1–3 orders of magnitude higher than current inventories. The results show that the hourly average on-road vehicle emissions of CO, NOx, HC, and PM2.5 are 74 kg, 40 kg, 8 kg, and 2 kg, respectively. Integrating our traffic-monitoring-based approach with urban measurements, we could address major data gaps between urban air pollutant emissions and concentrations.
Michael Cheeseman, Bonne Ford, Zoey Rosen, Eric Wendt, Alex DesRosiers, Aaron J. Hill, Christian L'Orange, Casey Quinn, Marilee Long, Shantanu H. Jathar, John Volckens, and Jeffrey R. Pierce
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-751, https://doi.org/10.5194/acp-2021-751, 2021
Revised manuscript not accepted
Short summary
Short summary
This article predicts concentrations of airborne particulate matter over wintertime Denver, CO, USA, using meteorological and geographic information, as well as low-cost aerosol optical depth (AOD) measurements captured by citizen scientists. Machine learning methods revealed that low boundary layer heights and stagnant air were the best predictors of poor air quality, while AOD provided little skill in predicting particulate matter for this location and time period.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021, https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
Short summary
We present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS has proven to be extremely powerful in examining atmospheric nucleation and the subsequent growth of nanoparticles in the CERN CLOUD experiment, which provides a valuable asset to study atmospheric nanoparticles and to evaluate their impact on climate.
Stavros Amanatidis, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021, https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Short summary
We assess the performance of a highly portable mobility analyzer, the Spider DMA, in measuring ambient aerosol particle size distributions, with specific attention to its moderate sizing resolution (R=3). Long-term field testing showed excellent correlation with a conventional mobility analyzer (R=10) over the 17–500 nm range, suggesting that moderate resolution may be sufficient to obtain key properties of ambient size distributions, enabling smaller instruments and better counting statistics.
Anna L. Hodshire, Emily Ramnarine, Ali Akherati, Matthew L. Alvarado, Delphine K. Farmer, Shantanu H. Jathar, Sonia M. Kreidenweis, Chantelle R. Lonsdale, Timothy B. Onasch, Stephen R. Springston, Jian Wang, Yang Wang, Lawrence I. Kleinman, Arthur J. Sedlacek III, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 6839–6855, https://doi.org/10.5194/acp-21-6839-2021, https://doi.org/10.5194/acp-21-6839-2021, 2021
Short summary
Short summary
Biomass burning emits particles and vapors that can impact both health and climate. Here, we investigate the role of dilution in the evolution of aerosol size and composition in observed US wildfire smoke plumes. Centers of plumes dilute more slowly than edges. We see differences in concentrations and composition between the centers and edges both in the first measurement and in subsequent measurements. Our findings support the hypothesis that plume dilution influences smoke aging.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020, https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
Short summary
Wildfires have become increasingly prevalent. Intense smoke consisting of particulate matter (PM) leads to an increased risk of morbidity and mortality. The record-breaking Camp Fire ravaged Northern California for two weeks in 2018. Here, we employ a comprehensive chemical transport model along with ground-based and satellite observations to characterize the PM concentrations across Northern California and to investigate the pollution sensitivity predictions to key parameters of the model.
Sophia M. Charan, Reina S. Buenconsejo, and John H. Seinfeld
Atmos. Chem. Phys., 20, 13167–13190, https://doi.org/10.5194/acp-20-13167-2020, https://doi.org/10.5194/acp-20-13167-2020, 2020
Short summary
Short summary
In urban areas, the emissions from volatile chemical products may be responsible for the formation of as much particulate matter as motor vehicles. Since exposure to particulate matter is a public health crisis, understanding its formation is critical. In this work, we investigate the secondary organic aerosol formation potential of benzyl alcohol, an important compound that is representative of some of these new emission sources, and find that more particulate matter forms than is expected.
Seyyed Ali Davari and Anthony S. Wexler
Atmos. Meas. Tech., 13, 5369–5377, https://doi.org/10.5194/amt-13-5369-2020, https://doi.org/10.5194/amt-13-5369-2020, 2020
Short summary
Short summary
Traditional instruments for detection and quantification of toxic metals in the atmosphere are expensive. In this study, we have designed, fabricated, and tested a low-cost instrument, which employs cheap components to detect and quantify toxic metals. Advanced machine learning (ML) techniques have been used to improve the instrument's performance. This study demonstrates how the combination of low-cost sensors with ML can address problems that traditionally have been too expensive to be solved.
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020, https://doi.org/10.5194/gmd-13-4435-2020, 2020
Short summary
Short summary
Large air quality and climate models calculate different physical and chemical phenomena in separate operators within the overall model, some of which are computationally intensive. Machine learning tools can memorize the behavior of these operators and replace them, but the replacements must still obey physical laws, like conservation principles. This work derives a mathematical framework for machine learning replacements that conserves properties, such as mass or energy, to machine precision.
Christopher D. Cappa, Christopher Y. Lim, David H. Hagan, Matthew Coggon, Abigail Koss, Kanako Sekimoto, Joost de Gouw, Timothy B. Onasch, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 20, 8511–8532, https://doi.org/10.5194/acp-20-8511-2020, https://doi.org/10.5194/acp-20-8511-2020, 2020
Short summary
Short summary
Smoke from combustion of a wide range of biomass fuels (e.g., leaves, twigs, logs, peat, and dung) was photochemically aged in a small chamber for up to 8 d of equivalent atmospheric aging. Upon aging, the particle chemical composition and ability to absorb sunlight changed owing to reactions in both the gas and particulate phases. We developed a model to explain the observations and used this to derive insights into the aging of smoke in the atmosphere.
Alexander B. MacDonald, Ali Hossein Mardi, Hossein Dadashazar, Mojtaba Azadi Aghdam, Ewan Crosbie, Haflidi H. Jonsson, Richard C. Flagan, John H. Seinfeld, and Armin Sorooshian
Atmos. Chem. Phys., 20, 7645–7665, https://doi.org/10.5194/acp-20-7645-2020, https://doi.org/10.5194/acp-20-7645-2020, 2020
Short summary
Short summary
Understanding how humans affect Earth's climate requires understanding of how particles in the air affect the number concentration of droplets in a cloud (Nd). We use the air-equivalent mass concentration of different chemical species contained in cloud water to predict Nd. In this study we found that the prediction of Nd is (1) best described by total sulfate; (2) improved when considering up to five species; and (3) dependent on factors like turbulence, smoke presence, and in-cloud height.
Ziyue Li, Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Jiumeng Liu, John E. Shilling, Joel A. Thornton, and Christopher D. Cappa
Atmos. Chem. Phys., 20, 2489–2512, https://doi.org/10.5194/acp-20-2489-2020, https://doi.org/10.5194/acp-20-2489-2020, 2020
Short summary
Short summary
We discuss the development and application of a robust clustering method for the interpretation of compound-specific organic aerosol thermal desorption profiles. We demonstrate the utility of clustering for analysis and interpretation of the composition and volatility of secondary organic aerosol. We show that the thermal desorption profiles are represented by only 9–13 distinct clusters, with the number of clusters obtained dependent on the precursor and formation conditions.
Khalid Mehmood, Yujie Wu, Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Weiping Liu, Yuesi Wang, Zirui Liu, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020, https://doi.org/10.5194/acp-20-2419-2020, 2020
Short summary
Short summary
We selected June 2014 as our study period, which exhibited a complete evolution process of open biomass burning (OBB) dominated by open crop straw burning (OCSB) over central and eastern China (CEC). We established a constraining method that integrates ground-based PM2.5 measurements with the two-way coupled WRF-CMAQ model to derive optimal OBB emissions. It was found that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period.
Crystal D. McClure, Christopher Y. Lim, David H. Hagan, Jesse H. Kroll, and Christopher D. Cappa
Atmos. Chem. Phys., 20, 1531–1547, https://doi.org/10.5194/acp-20-1531-2020, https://doi.org/10.5194/acp-20-1531-2020, 2020
Short summary
Short summary
We characterized various optical, chemical, and physical properties of particles produced from combustion of a variety of different biomass fuels, many representative of those found in the western US. We find that many properties scale with the ratio between bulk average organic aerosol and black carbon mass concentrations, although there are some properties that do not.
Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke
Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, https://doi.org/10.5194/acp-19-14875-2019, 2019
Short summary
Short summary
Wildfire emissions significantly contribute to adverse air quality; however, the chemical processes that lead to hazardous pollutants, such as ozone, are not fully understood. In this study, we describe laboratory experiments where we simulate the atmospheric chemistry of smoke emitted from a range of biomass fuels. We show that certain understudied compounds, such as furans and phenolic compounds, are significant contributors to pollutants formed as a result of typical atmospheric oxidation.
Xin Yu, Melissa Venecek, Anikender Kumar, Jianlin Hu, Saffet Tanrikulu, Su-Tzai Soon, Cuong Tran, David Fairley, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 14677–14702, https://doi.org/10.5194/acp-19-14677-2019, https://doi.org/10.5194/acp-19-14677-2019, 2019
Short summary
Short summary
Predictions and measurements of ultrafine particle number and mass concentrations were in overall good agreement at 14 sites across California in the years 2012, 2015, and 2016. On-road vehicles, food cooking, and aircraft were important sources of ultrafine particles as expected, but natural gas combustion was also a significant source at all locations across California. These results can be used to study the health effects of ultrafine particles.
Bonne Ford, Jeffrey R. Pierce, Eric Wendt, Marilee Long, Shantanu Jathar, John Mehaffy, Jessica Tryner, Casey Quinn, Lizette van Zyl, Christian L'Orange, Daniel Miller-Lionberg, and John Volckens
Atmos. Meas. Tech., 12, 6385–6399, https://doi.org/10.5194/amt-12-6385-2019, https://doi.org/10.5194/amt-12-6385-2019, 2019
Short summary
Short summary
This study demonstrates the use of a low-cost sensor in a citizen-science network, Citizen-Enabled Aerosol Measurements for Satellites (CEAMS), to measure air quality in participants’ backyards. The pilot network was conducted in the fall and winter of 2017 in northern Colorado. Measurements of aerosols taken by the citizens are also compared to standard air quality instruments.
Christopher Y. Lim, David H. Hagan, Matthew M. Coggon, Abigail R. Koss, Kanako Sekimoto, Joost de Gouw, Carsten Warneke, Christopher D. Cappa, and Jesse H. Kroll
Atmos. Chem. Phys., 19, 12797–12809, https://doi.org/10.5194/acp-19-12797-2019, https://doi.org/10.5194/acp-19-12797-2019, 2019
Short summary
Short summary
Wildfires are a large source of gases and particles to the atmosphere, both of which impact human health and climate. The amount and composition of particles from wildfires can change with time in the atmosphere; however, the impact of aging is not well understood. In a series of controlled laboratory experiments, we show that the particles are oxidized and a significant fraction of the gas-phase carbon (24 %–56 %) is converted to particle mass over the course of several days in the atmosphere.
Eric A. Wendt, Casey W. Quinn, Daniel D. Miller-Lionberg, Jessica Tryner, Christian L'Orange, Bonne Ford, Azer P. Yalin, Jeffrey R. Pierce, Shantanu Jathar, and John Volckens
Atmos. Meas. Tech., 12, 5431–5441, https://doi.org/10.5194/amt-12-5431-2019, https://doi.org/10.5194/amt-12-5431-2019, 2019
Short summary
Short summary
We introduce a low-cost, compact device (aerosol mass and optical depth (AMOD) sampler) that can be used by citizen scientists to measure air quality. Our paper discusses the development and different components for measuring aerosols. It also shows that measurements made by the AMOD next to reference-grade monitors agreed within 10 %. Coupled with the cost of these instruments, this agreement demonstrates that the AMOD can be widely deployed to monitor air quality by citizen scientists.
Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Ben H. Lee, Jiumeng Liu, Alla Zelenyuk, David Bell, Christopher D. Cappa, Taylor Helgestad, Ziyue Li, Alex Guenther, Jian Wang, Matthew Wise, Ryan Caylor, Jason D. Surratt, Theran Riedel, Noora Hyttinen, Vili-Taneli Salo, Galib Hasan, Theo Kurtén, John E. Shilling, and Joel A. Thornton
Atmos. Chem. Phys., 19, 11253–11265, https://doi.org/10.5194/acp-19-11253-2019, https://doi.org/10.5194/acp-19-11253-2019, 2019
Short summary
Short summary
Isoprene is the most abundantly emitted reactive organic gas globally, and thus it is important to understand its fate and role in aerosol formation and growth. A major product of its oxidation is an epoxydiol, IEPOX, which can be efficiently taken up by acidic aerosol to generate substantial amounts of secondary organic aerosol (SOA). We present chamber experiments exploring the properties of IEPOX SOA and reconcile discrepancies between field, laboratory, and model studies of this process.
Ingeborg E. Nielsen, Henrik Skov, Andreas Massling, Axel C. Eriksson, Manuel Dall'Osto, Heikki Junninen, Nina Sarnela, Robert Lange, Sonya Collier, Qi Zhang, Christopher D. Cappa, and Jacob K. Nøjgaard
Atmos. Chem. Phys., 19, 10239–10256, https://doi.org/10.5194/acp-19-10239-2019, https://doi.org/10.5194/acp-19-10239-2019, 2019
Short summary
Short summary
Measurements of the chemical composition of sub-micrometer aerosols were carried out in northern Greenland during the Arctic haze (February–May) where concentrations are high due to favorable conditions for long-range transport. Sulfate was the dominant aerosol (66 %), followed by organic matter (24 %). The highest black carbon concentrations where observed in February. Source apportionment yielded three factors: a primary factor (12 %), an Arctic haze factor (64 %) and a marine factor (22 %).
Melissa A. Venecek, Xin Yu, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 9399–9412, https://doi.org/10.5194/acp-19-9399-2019, https://doi.org/10.5194/acp-19-9399-2019, 2019
Short summary
Short summary
Atmospheric ultrafine particles with a diameter < 100 nm are more toxic than larger particles. There are no measurement networks for ultrafine particles, but concentrations can be predicted using models. On-road vehicles, cooking, and aircraft are important sources of ultrafine particles as expected, but natural gas combustion was also found to be a significant source in cities across the United States. Results like this may support future health-effects studies on ultrafine particles.
Brigitte Rooney, Ran Zhao, Yuan Wang, Kelvin H. Bates, Ajay Pillarisetti, Sumit Sharma, Seema Kundu, Tami C. Bond, Nicholas L. Lam, Bora Ozaltun, Li Xu, Varun Goel, Lauren T. Fleming, Robert Weltman, Simone Meinardi, Donald R. Blake, Sergey A. Nizkorodov, Rufus D. Edwards, Ankit Yadav, Narendra K. Arora, Kirk R. Smith, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, https://doi.org/10.5194/acp-19-7719-2019, 2019
Short summary
Short summary
Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues, that are often combusted in inefficient cookstoves. Here, we simulate the distribution of the two major health-damaging outdoor pollution species (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India.
Rebecca H. Schwantes, Sophia M. Charan, Kelvin H. Bates, Yuanlong Huang, Tran B. Nguyen, Huajun Mai, Weimeng Kong, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7255–7278, https://doi.org/10.5194/acp-19-7255-2019, https://doi.org/10.5194/acp-19-7255-2019, 2019
Short summary
Short summary
Oxidation of isoprene, the dominant non-methane biogenic volatile organic compound emitted into the atmosphere, is a significant source of secondary organic aerosol (SOA). Here formation of SOA from isoprene oxidation by the hydroxyl radical (OH) under high-NO conditions is measured. This work improves our understanding of isoprene SOA formation by demonstrating that low-volatility compounds formed under high-NO conditions produce significantly more aerosol than previously thought.
Ali Akherati, Christopher D. Cappa, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, Stephen M. Griffith, Sebastien Dusanter, Philip S. Stevens, and Shantanu H. Jathar
Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, https://doi.org/10.5194/acp-19-4561-2019, 2019
Short summary
Short summary
Unburned and partially burned organic compounds emitted from fossil fuel and biomass combustion can react in the atmosphere in the presence of sunlight to form particles. In this work, we use an air pollution model to examine the influence of these organic compounds released by motor vehicles and fires on fine particle pollution in southern California.
Satoshi Takahama, Ann M. Dillner, Andrew T. Weakley, Matteo Reggente, Charlotte Bürki, Mária Lbadaoui-Darvas, Bruno Debus, Adele Kuzmiakova, and Anthony S. Wexler
Atmos. Meas. Tech., 12, 525–567, https://doi.org/10.5194/amt-12-525-2019, https://doi.org/10.5194/amt-12-525-2019, 2019
Short summary
Short summary
Mid-infrared spectra of particulate matter (PM) samples are complex but chemically informative and present an opportunity for cost-effective measurement of PM provided that quantitative calibration models can be built. We review an emerging strategy for building statistical calibration models using collocated measurements, interpreting the physical bases for such models and evaluating the suitability of existing calibration models to new samples.
Ziyue Li, Katherine A. Smith, and Christopher D. Cappa
Atmos. Chem. Phys., 18, 14585–14608, https://doi.org/10.5194/acp-18-14585-2018, https://doi.org/10.5194/acp-18-14585-2018, 2018
Short summary
Short summary
We investigated the influence of relative humidity (RH) on the heterogeneous oxidation of secondary organic aerosol (SOA) particles by OH radicals. We observed significantly faster volume loss and compositional change of SOA at high RH, showing that viscosity differences determine compositional changes, but variability in either the uptake coefficient or the fragmentation probability are required to explain the difference in volume loss between low and high RH.
Sailaja Eluri, Christopher D. Cappa, Beth Friedman, Delphine K. Farmer, and Shantanu H. Jathar
Atmos. Chem. Phys., 18, 13813–13838, https://doi.org/10.5194/acp-18-13813-2018, https://doi.org/10.5194/acp-18-13813-2018, 2018
Short summary
Short summary
As oxidation flow reactors (OFRs) are increasingly used to study aerosol formation and evolution in laboratory and field environments, there is a need to develop models that can be used to interpret OFR data. In this work, we evaluate two coupled chemistry and thermodynamic models to simulate secondary organic aerosol formation (SOA) from diluted diesel exhaust and explore the sources, pathways, and processes important to SOA formation.
Sara D. Forestieri, Taylor M. Helgestad, Andrew T. Lambe, Lindsay Renbaum-Wolff, Daniel A. Lack, Paola Massoli, Eben S. Cross, Manvendra K. Dubey, Claudio Mazzoleni, Jason S. Olfert, Arthur J. Sedlacek III, Andrew Freedman, Paul Davidovits, Timothy B. Onasch, and Christopher D. Cappa
Atmos. Chem. Phys., 18, 12141–12159, https://doi.org/10.5194/acp-18-12141-2018, https://doi.org/10.5194/acp-18-12141-2018, 2018
Short summary
Short summary
We characterized optical properties of flame-derived black carbon particles and interpret our observations through the use of Mie theory and Rayleigh–Debye–Gans theory. We determined that the mass absorption coefficient is independent of particle collapse and use this to derive theory- and wavelength-specific refractive indices for black carbon (BC). We demonstrate the inadequacy of Mie theory and suggest an alternative approach for atmospheric models to better represent light absorption by BC.
Sara D. Forestieri, Sean M. Staudt, Thomas M. Kuborn, Katharine Faber, Christopher R. Ruehl, Timothy H. Bertram, and Christopher D. Cappa
Atmos. Chem. Phys., 18, 10985–11005, https://doi.org/10.5194/acp-18-10985-2018, https://doi.org/10.5194/acp-18-10985-2018, 2018
Short summary
Short summary
Our work establishes how surface tension reduction influences droplet growth and activation of simple sea spray mimics (NaCl coated with fatty acids). Fatty acids can substantially reduce droplet surface tension near activation but have limited impact on activation. Coating of NaCl by palmitic acid (a wax) impedes water uptake, but this impedance is removed if oleic acid (a liquid) is mixed in. The properties that surface-active compounds need to impact activation are theoretically examined.
Dean B. Atkinson, Mikhail Pekour, Duli Chand, James G. Radney, Katheryn R. Kolesar, Qi Zhang, Ari Setyan, Norman T. O'Neill, and Christopher D. Cappa
Atmos. Chem. Phys., 18, 5499–5514, https://doi.org/10.5194/acp-18-5499-2018, https://doi.org/10.5194/acp-18-5499-2018, 2018
Short summary
Short summary
We use in situ measurements of particle light extinction to assess the performance of a typical aerosol remote retrieval method. The retrieved fine-mode fraction of extinction, a property commonly used to characterize the anthropogenic influence on the aerosol optical depth, compares well with the in situ measurements as does the retrieved effective fine-mode radius, which characterizes the average size of the particles that contribute most to scattering.
Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman
Geosci. Model Dev., 11, 1293–1320, https://doi.org/10.5194/gmd-11-1293-2018, https://doi.org/10.5194/gmd-11-1293-2018, 2018
Short summary
Short summary
The CA-REMARQUE emissions model translates policies designed for climate change mitigation into inputs needed for air pollution analysis in California. The model captures the complicated trade-offs associated with changing fuels and technologies that sometimes increase air pollution emissions in some areas while decreasing emissions in other areas. These detailed calculations are needed in highly populated regions like California where simple emissions controls have already been applied.
Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman
Atmos. Chem. Phys., 18, 4817–4830, https://doi.org/10.5194/acp-18-4817-2018, https://doi.org/10.5194/acp-18-4817-2018, 2018
Short summary
Short summary
California's greenhouse gas reduction programs will require adoption of low-carbon energy sources across all economic sectors. We selected the least-cost portfolio of new energy sources using an energy–economic model. We then specified new air pollution emissions and simulated air quality with 4 km spatial resolution across the entire state. We find that the adoption of low-carbon energy reduced air pollution deaths 24–26 %, providing USD 11.4–20.4 billion per year of economic benefits.
Alex K. Y. Lee, Chia-Li Chen, Jun Liu, Derek J. Price, Raghu Betha, Lynn M. Russell, Xiaolu Zhang, and Christopher D. Cappa
Atmos. Chem. Phys., 17, 15055–15067, https://doi.org/10.5194/acp-17-15055-2017, https://doi.org/10.5194/acp-17-15055-2017, 2017
Short summary
Short summary
Understanding the mixing state of ambient black carbon (BC) and the chemical characteristics of its associated coatings is important to evaluate BC fate and environmental impacts. This study reports fresh secondary organic aerosol (SOA) formation near traffic emissions during daytime. Our observations suggest that BC was unlikely the major condensation sink of SOA, and a portion of SOA condensed on BC surface was chemically different from other SOA particles that were externally mixed with BC.
Gouri Prabhakar, Caroline L. Parworth, Xiaolu Zhang, Hwajin Kim, Dominique E. Young, Andreas J. Beyersdorf, Luke D. Ziemba, John B. Nowak, Timothy H. Bertram, Ian C. Faloona, Qi Zhang, and Christopher D. Cappa
Atmos. Chem. Phys., 17, 14747–14770, https://doi.org/10.5194/acp-17-14747-2017, https://doi.org/10.5194/acp-17-14747-2017, 2017
Short summary
Short summary
This work assesses the processes that control the ambient concentrations of particulate nitrate in the the wintertime San Joaquin Valley of California through a combination of aircraft and surface measurements made during the DISCOVER-AQ study. We provide an observational demonstration of how nocturnal production and advection in aloft layers combines with daytime production and loss from entrainment and deposition to give rise to a distinct diurnal profile in surface nitrate concentrations.
Shantanu H. Jathar, Christopher Heppding, Michael F. Link, Delphine K. Farmer, Ali Akherati, Michael J. Kleeman, Joost A. de Gouw, Patrick R. Veres, and James M. Roberts
Atmos. Chem. Phys., 17, 8959–8970, https://doi.org/10.5194/acp-17-8959-2017, https://doi.org/10.5194/acp-17-8959-2017, 2017
Short summary
Short summary
Our work makes novel emissions measurements of isocyanic acid, a toxic gas, from a modern-day diesel engine and finds that diesel engines emit isocyanic acid but the emissions control devices do not enhance or destroy the isocyanic acid. Air quality model calculations suggest that diesel engines are possibly important sources of isocyanic acid in urban environments although the isocyanic acid levels are ten times lower than levels linked to adverse human health effects.
Qijing Bian, Shantanu H. Jathar, John K. Kodros, Kelley C. Barsanti, Lindsay E. Hatch, Andrew A. May, Sonia M. Kreidenweis, and Jeffrey R. Pierce
Atmos. Chem. Phys., 17, 5459–5475, https://doi.org/10.5194/acp-17-5459-2017, https://doi.org/10.5194/acp-17-5459-2017, 2017
Short summary
Short summary
In this paper, we perform simulations of the evolution of biomass-burning organic aerosol in laboratory smog-chamber experiments and ambient plumes. We find that in smog-chamber experiments, vapor wall losses lead to a large reduction in the apparent secondary organic aerosol formation. In ambient plumes, fire size and meteorology regulate the plume dilution rate, primary organic aerosol evaporation rate, and secondary organic aerosol formation rate.
Jianlin Hu, Shantanu Jathar, Hongliang Zhang, Qi Ying, Shu-Hua Chen, Christopher D. Cappa, and Michael J. Kleeman
Atmos. Chem. Phys., 17, 5379–5391, https://doi.org/10.5194/acp-17-5379-2017, https://doi.org/10.5194/acp-17-5379-2017, 2017
Short summary
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Shantanu H. Jathar, Matthew Woody, Havala O. T. Pye, Kirk R. Baker, and Allen L. Robinson
Atmos. Chem. Phys., 17, 4305–4318, https://doi.org/10.5194/acp-17-4305-2017, https://doi.org/10.5194/acp-17-4305-2017, 2017
Short summary
Short summary
Mobile sources such as cars and trucks are large sources of pollution in cities, but it is unclear what their relative contribution to organic particle pollution is. We used a numerical model along with recent data gathered from tests performed on cars and trucks to calculate organic particle levels in southern California. We found that model calculations agreed better with measurements and gasoline cars and trucks dominated the organic particle pollution.
Rebecca H. Schwantes, Katherine A. Schilling, Renee C. McVay, Hanna Lignell, Matthew M. Coggon, Xuan Zhang, Paul O. Wennberg, and John H. Seinfeld
Atmos. Chem. Phys., 17, 3453–3474, https://doi.org/10.5194/acp-17-3453-2017, https://doi.org/10.5194/acp-17-3453-2017, 2017
Short summary
Short summary
Toluene, one of the principle aromatic compounds present in the atmosphere, is oxidized by OH to produce cresol and other products. Here later-generation low-volatility oxygenated products from cresol oxidation by OH are detected in the gas and particle phases. This work identifies a simple and significant mechanism for toluene secondary organic aerosol formation through the cresol pathway. Likely the phenolic pathway of other aromatic compounds is also important for secondary organic aerosol.
Yuanlong Huang, Matthew M. Coggon, Ran Zhao, Hanna Lignell, Michael U. Bauer, Richard C. Flagan, and John H. Seinfeld
Atmos. Meas. Tech., 10, 839–867, https://doi.org/10.5194/amt-10-839-2017, https://doi.org/10.5194/amt-10-839-2017, 2017
Short summary
Short summary
We report on the development of a new laminar flow tube reactor for the study of gas-phase atmospheric chemistry and secondary organic aerosol formation. The present paper is devoted to the design and fluid dynamical characterization of the reactor. The results of gas and particle residence time distribution experiments in the reactor, together with an evaluation of the effect of non-isothermal conditions, are reported.
Theodora Nah, Renee C. McVay, Jeffrey R. Pierce, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 17, 2297–2310, https://doi.org/10.5194/acp-17-2297-2017, https://doi.org/10.5194/acp-17-2297-2017, 2017
Short summary
Short summary
We present a model framework that accounts for coagulation in chamber studies where high seed aerosol surface area concentrations are used. The uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments are also assessed. We show that SOA mass yields calculated by the four methods can deviate significantly in studies where high seed aerosol surface area concentrations are used.
Natasha Hodas, Andreas Zuend, Katherine Schilling, Thomas Berkemeier, Manabu Shiraiwa, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016, https://doi.org/10.5194/acp-16-12767-2016, 2016
Short summary
Short summary
Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. This work explores the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors.
M. Dale Stokes, Grant Deane, Douglas B. Collins, Christopher Cappa, Timothy Bertram, Abigail Dommer, Steven Schill, Sara Forestieri, and Mathew Survilo
Atmos. Meas. Tech., 9, 4257–4267, https://doi.org/10.5194/amt-9-4257-2016, https://doi.org/10.5194/amt-9-4257-2016, 2016
Short summary
Short summary
A small breaking wave and foam simulator has been fabricated that allows the continuous analysis of the produced marine aerosols. Based on the original Marine Aerosol Reference Tank (MART) the miniature version allows the culturing of delicate planktonic organisms because it operates without a large, sheer-inducing pump. This allows the study of marine aerosol production and the effects of biologically controlled seawater chemistry under controlled and repeatable experimental conditions.
Theodora Nah, Renee C. McVay, Xuan Zhang, Christopher M. Boyd, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 16, 9361–9379, https://doi.org/10.5194/acp-16-9361-2016, https://doi.org/10.5194/acp-16-9361-2016, 2016
Short summary
Short summary
The influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis is studied. SOA growth rate and mass yields are independent of seed surface area, consistent with the condensation of SOA-forming vapors being dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations, indicating that a faster α-pinene oxidation rate leads to rapidly produced SOA-forming oxidation products.
Sara D. Forestieri, Gavin C. Cornwell, Taylor M. Helgestad, Kathryn A. Moore, Christopher Lee, Gordon A. Novak, Camille M. Sultana, Xiaofei Wang, Timothy H. Bertram, Kimberly A. Prather, and Christopher D. Cappa
Atmos. Chem. Phys., 16, 9003–9018, https://doi.org/10.5194/acp-16-9003-2016, https://doi.org/10.5194/acp-16-9003-2016, 2016
Short summary
Short summary
Hygroscopic growth factors at 85 % relative humidity (GF(85 %)) were quantified along with particle composition for primary sea spray aerosol (SSA) particles generated in marine aerosol reference tanks (MARTs) from seawater in which two independent phytoplankton blooms were induced. The observed 5 to 15 % depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM) comprising the SSA.
Hsiang-He Lee, Shu-Hua Chen, Michael J. Kleeman, Hongliang Zhang, Steven P. DeNero, and David K. Joe
Atmos. Chem. Phys., 16, 8353–8374, https://doi.org/10.5194/acp-16-8353-2016, https://doi.org/10.5194/acp-16-8353-2016, 2016
Short summary
Short summary
A source-oriented CCN module was implemented in a source-oriented chemistry model to study the effect of aerosol mixing state on fog formation. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. The internal mixture model predicted greater CCN activation than the source-oriented model due to artificial coating of hydrophobic particles with hygroscopic components.
Alma Hodzic, Prasad S. Kasibhatla, Duseong S. Jo, Christopher D. Cappa, Jose L. Jimenez, Sasha Madronich, and Rokjin J. Park
Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016, https://doi.org/10.5194/acp-16-7917-2016, 2016
Short summary
Short summary
The global budget and spatial distribution of secondary organic aerosol (SOA) are highly uncertain in chemistry-climate models, which reflects our inability to characterize all phases of the OA lifecycle. We have performed global model simulations with the newly proposed formation and removal processes (photolysis and heterogeneous chemistry) and shown that SOA is a far more dynamic system, with 4 times stronger production rates and more efficient removal mechanisms, than assumed in models.
Christopher D. Cappa, Katheryn R. Kolesar, Xiaolu Zhang, Dean B. Atkinson, Mikhail S. Pekour, Rahul A. Zaveri, Alla Zelenyuk, and Qi Zhang
Atmos. Chem. Phys., 16, 6511–6535, https://doi.org/10.5194/acp-16-6511-2016, https://doi.org/10.5194/acp-16-6511-2016, 2016
Short summary
Short summary
Measurements of size-dependent aerosol optical properties at visible wavelengths made during the 2010 CARES study are reported on, with a special focus on the characterization of supermicron particles. The relationships with and dependence upon particle composition, particle size, photochemical aging, water uptake and heating are discussed, along with broader implications of these in situ measurements for the interpretation of remote sensing products.
Dominique E. Young, Hwajin Kim, Caroline Parworth, Shan Zhou, Xiaolu Zhang, Christopher D. Cappa, Roger Seco, Saewung Kim, and Qi Zhang
Atmos. Chem. Phys., 16, 5427–5451, https://doi.org/10.5194/acp-16-5427-2016, https://doi.org/10.5194/acp-16-5427-2016, 2016
Short summary
Short summary
Aerosol chemistry and the sources and processes driving the observed temporal and diurnal variations of PM were studied in a polluted urban environment during winter 2013. These results were compared to a similar campaign from winter 2010. Meteorology strongly influenced PM composition, both directly and indirectly. Nighttime reactions played a more important role in 2013 and the influence from a nighttime formed residual layer that mixed down in the morning was also much more intense in 2013.
Christopher D. Cappa, Shantanu H. Jathar, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, John H. Seinfeld, and Anthony S. Wexler
Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, https://doi.org/10.5194/acp-16-3041-2016, 2016
Short summary
Short summary
Losses of vapors to walls of chambers can negatively bias SOA formation measurements, consequently leading to low predicted SOA concentrations in air quality models. Here, we show that accounting for such vapor losses leads to substantial increases in the predicted amount of SOA formed from VOCs and to notable increases in the O : C atomic ratio in two US regions. Comparison with a variety of observational data suggests generally improved model performance when vapor wall losses are accounted for.
Renee C. McVay, Xuan Zhang, Bernard Aumont, Richard Valorso, Marie Camredon, Yuyi S. La, Paul O. Wennberg, and John H. Seinfeld
Atmos. Chem. Phys., 16, 2785–2802, https://doi.org/10.5194/acp-16-2785-2016, https://doi.org/10.5194/acp-16-2785-2016, 2016
Short summary
Short summary
Secondary organic aerosol (SOA) affects climate change, human health, and cloud formation. We examine SOA formation from the biogenic hydrocarbon α-pinene and observe unexpected experimental results that run contrary to model predictions. Various processes are explored via modeling to rationalize the observations. The paper identifies the importance of further constraining via experiments various steps in the chemical mechanism in order to accurately predict SOA worldwide.
C. R. Hoyle, C. Fuchs, E. Järvinen, H. Saathoff, A. Dias, I. El Haddad, M. Gysel, S. C. Coburn, J. Tröstl, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, J. C. Corbin, J. Craven, N. M. Donahue, J. Duplissy, S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman, T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer, A. C. Wagner, R. Wagner, A. S. Wexler, C. Williamson, P. M. Winkler, C. Yan, A. Amorim, J. Dommen, J. Curtius, M. W. Gallagher, R. C. Flagan, A. Hansel, J. Kirkby, M. Kulmala, O. Möhler, F. Stratmann, D. R. Worsnop, and U. Baltensperger
Atmos. Chem. Phys., 16, 1693–1712, https://doi.org/10.5194/acp-16-1693-2016, https://doi.org/10.5194/acp-16-1693-2016, 2016
Short summary
Short summary
A significant portion of sulphate, an important constituent of atmospheric aerosols, is formed via the aqueous phase oxidation of sulphur dioxide by ozone. The rate of this reaction has previously only been measured over a relatively small temperature range. Here, we use the state of the art CLOUD chamber at CERN to perform the first measurements of this reaction rate in super-cooled droplets, confirming that the existing extrapolation of the reaction rate to sub-zero temperatures is accurate.
K. R. Kolesar, C. Chen, D. Johnson, and C. D. Cappa
Atmos. Chem. Phys., 15, 9327–9343, https://doi.org/10.5194/acp-15-9327-2015, https://doi.org/10.5194/acp-15-9327-2015, 2015
Short summary
Short summary
Secondary organic aerosol from the dark ozonolysis of α‑pinene was formed at a range of mass loadings from 1 to 800μg m-3. The amount of mass loss during evaporation in a thermodenuder was found to be independent of mass loading. A kinetic model of evaporation was fit to the observations and good agreement was obtained when the particle was either composed of dimers that decompose into semi-volatile monomers or when it was composed of low-volatility compounds that evaporate directly.
S. H. Jathar, C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman
Geosci. Model Dev., 8, 2553–2567, https://doi.org/10.5194/gmd-8-2553-2015, https://doi.org/10.5194/gmd-8-2553-2015, 2015
Short summary
Short summary
Multi-generational oxidation of organic vapors can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA). Here, we implement a semi-explicit, constrained multi-generational oxidation model of Cappa and Wilson (2012) in a 3-D air quality model. When compared with results from a current-generation SOA model, we predict similar mass concentrations of SOA but a different chemical composition. O:C ratios of SOA are in line with those measured globally.
M. C. Woody, J. J. West, S. H. Jathar, A. L. Robinson, and S. Arunachalam
Atmos. Chem. Phys., 15, 6929–6942, https://doi.org/10.5194/acp-15-6929-2015, https://doi.org/10.5194/acp-15-6929-2015, 2015
Short summary
Short summary
Utilizing an aircraft-specific parameterization based on smog chamber data in a regional AQM, contributions of non-traditional secondary organic aerosols (NTSOA) from aircraft emissions of semi-volatile and intermediate volatility organic compounds were assessed. NTSOA, a previously unaccounted component of PM2.5 in most AQMs, contributed up to 7.4% of aviation-attributable PM2.5 at the airport and rose to 17.9% downwind, suggesting its significance in aviation-attributed PM2.5 at all scales.
M. J. Alvarado, C. R. Lonsdale, R. J. Yokelson, S. K. Akagi, H. Coe, J. S. Craven, E. V. Fischer, G. R. McMeeking, J. H. Seinfeld, T. Soni, J. W. Taylor, D. R. Weise, and C. E. Wold
Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, https://doi.org/10.5194/acp-15-6667-2015, 2015
Short summary
Short summary
Being able to understand and simulate the chemical evolution of biomass burning smoke plumes under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use an improved model of this chemistry to simulate the evolution of ozone and secondary organic aerosol within a young biomass burning smoke plume from the Williams prescribed burn in chaparral, which was sampled over California in November 2009.
E. Jung, B. A. Albrecht, H. H. Jonsson, Y.-C. Chen, J. H. Seinfeld, A. Sorooshian, A. R. Metcalf, S. Song, M. Fang, and L. M. Russell
Atmos. Chem. Phys., 15, 5645–5658, https://doi.org/10.5194/acp-15-5645-2015, https://doi.org/10.5194/acp-15-5645-2015, 2015
Short summary
Short summary
To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 µm diameter salt particles were released from an aircraft while flying near the cloud top off the central coast of California. The analyses suggest that GCCN result in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout.
N. Hodas, A. Zuend, W. Mui, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 15, 5027–5045, https://doi.org/10.5194/acp-15-5027-2015, https://doi.org/10.5194/acp-15-5027-2015, 2015
X. Zhang, R. H. Schwantes, R. C. McVay, H. Lignell, M. M. Coggon, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 15, 4197–4214, https://doi.org/10.5194/acp-15-4197-2015, https://doi.org/10.5194/acp-15-4197-2015, 2015
Short summary
Short summary
We present an experimental protocol to constrain the nature of organic vapor--wall deposition in Teflon chambers and develop an empirical model to predict the wall-induced deposition rate of intermediate/semi/non-volatility organic vapors in chambers.
D. B. Atkinson, J. G. Radney, J. Lum, K. R. Kolesar, D. J. Cziczo, M. S. Pekour, Q. Zhang, A. Setyan, A. Zelenyuk, and C. D. Cappa
Atmos. Chem. Phys., 15, 4045–4061, https://doi.org/10.5194/acp-15-4045-2015, https://doi.org/10.5194/acp-15-4045-2015, 2015
Short summary
Short summary
This work describes an analysis of measurements of the influence of water uptake on the light-scattering properties of sub- and supermicron-sized particles as observed in the Sacramento, CA, USA region during the 2010 CARES field campaign. The observations are used to derive campaign-average effective hygroscopicity parameters for submicron oxygenated organic aerosol and for supermicron particles, and the influence of chloride displacement reactions on particle hygroscopicity is examined.
J. Hu, H. Zhang, Q. Ying, S.-H. Chen, F. Vandenberghe, and M. J. Kleeman
Atmos. Chem. Phys., 15, 3445–3461, https://doi.org/10.5194/acp-15-3445-2015, https://doi.org/10.5194/acp-15-3445-2015, 2015
Short summary
Short summary
Air quality model simulations have been conducted for California from 2000 to 2009 with 4km spatial resolution to provide exposure data for health effect studies. Comprehensive analysis shows that predicted concentrations for many pollutants are in agreement with measurements at monitoring stations, building confidence that the fields may be useful at times and locations where measurements are not available. Data can be downloaded for free at http://faculty.engineering.ucdavis.edu/kleeman/.
J. G. Charrier, N. K. Richards-Henderson, K. J. Bein, A. S. McFall, A. S. Wexler, and C. Anastasio
Atmos. Chem. Phys., 15, 2327–2340, https://doi.org/10.5194/acp-15-2327-2015, https://doi.org/10.5194/acp-15-2327-2015, 2015
Short summary
Short summary
We measured the oxidative potential of airborne particles – a property that has been linked to health problems caused by particles – from different emission source mixtures in Fresno, CA. Copper was responsible for the majority of the oxidative potential (as measured by the DTT assay), followed by unknown species (likely organics) and manganese. Sources of copper-rich particles, including vehicles, had higher oxidative potentials.
T. B. Nguyen, J. D. Crounse, R. H. Schwantes, A. P. Teng, K. H. Bates, X. Zhang, J. M. St. Clair, W. H. Brune, G. S. Tyndall, F. N. Keutsch, J. H. Seinfeld, and P. O. Wennberg
Atmos. Chem. Phys., 14, 13531–13549, https://doi.org/10.5194/acp-14-13531-2014, https://doi.org/10.5194/acp-14-13531-2014, 2014
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
J. D. Fast, J. Allan, R. Bahreini, J. Craven, L. Emmons, R. Ferrare, P. L. Hayes, A. Hodzic, J. Holloway, C. Hostetler, J. L. Jimenez, H. Jonsson, S. Liu, Y. Liu, A. Metcalf, A. Middlebrook, J. Nowak, M. Pekour, A. Perring, L. Russell, A. Sedlacek, J. Seinfeld, A. Setyan, J. Shilling, M. Shrivastava, S. Springston, C. Song, R. Subramanian, J. W. Taylor, V. Vinoj, Q. Yang, R. A. Zaveri, and Q. Zhang
Atmos. Chem. Phys., 14, 10013–10060, https://doi.org/10.5194/acp-14-10013-2014, https://doi.org/10.5194/acp-14-10013-2014, 2014
M. Shiraiwa, T. Berkemeier, K. A. Schilling-Fahnestock, J. H. Seinfeld, and U. Pöschl
Atmos. Chem. Phys., 14, 8323–8341, https://doi.org/10.5194/acp-14-8323-2014, https://doi.org/10.5194/acp-14-8323-2014, 2014
S. H. Jathar, N. M. Donahue, P. J. Adams, and A. L. Robinson
Atmos. Chem. Phys., 14, 5771–5780, https://doi.org/10.5194/acp-14-5771-2014, https://doi.org/10.5194/acp-14-5771-2014, 2014
R. A. Zaveri, R. C. Easter, J. E. Shilling, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 5153–5181, https://doi.org/10.5194/acp-14-5153-2014, https://doi.org/10.5194/acp-14-5153-2014, 2014
T. B. Nguyen, M. M. Coggon, K. H. Bates, X. Zhang, R. H. Schwantes, K. A. Schilling, C. L. Loza, R. C. Flagan, P. O. Wennberg, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 3497–3510, https://doi.org/10.5194/acp-14-3497-2014, https://doi.org/10.5194/acp-14-3497-2014, 2014
J. J. Ensberg, P. L. Hayes, J. L. Jimenez, J. B. Gilman, W. C. Kuster, J. A. de Gouw, J. S. Holloway, T. D. Gordon, S. Jathar, A. L. Robinson, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 2383–2397, https://doi.org/10.5194/acp-14-2383-2014, https://doi.org/10.5194/acp-14-2383-2014, 2014
G. M. Buffaloe, D. A. Lack, E. J. Williams, D. Coffman, K. L. Hayden, B. M. Lerner, S.-M. Li, I. Nuaaman, P. Massoli, T. B. Onasch, P. K. Quinn, and C. D. Cappa
Atmos. Chem. Phys., 14, 1881–1896, https://doi.org/10.5194/acp-14-1881-2014, https://doi.org/10.5194/acp-14-1881-2014, 2014
X. Zhang, R. H. Schwantes, M. M. Coggon, C. L. Loza, K. A. Schilling, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 1733–1753, https://doi.org/10.5194/acp-14-1733-2014, https://doi.org/10.5194/acp-14-1733-2014, 2014
C. L. Loza, J. S. Craven, L. D. Yee, M. M. Coggon, R. H. Schwantes, M. Shiraiwa, X. Zhang, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 1423–1439, https://doi.org/10.5194/acp-14-1423-2014, https://doi.org/10.5194/acp-14-1423-2014, 2014
C. D. Cappa, E. J. Williams, D. A. Lack, G. M. Buffaloe, D. Coffman, K. L. Hayden, S. C. Herndon, B. M. Lerner, S.-M. Li, P. Massoli, R. McLaren, I. Nuaaman, T. B. Onasch, and P. K. Quinn
Atmos. Chem. Phys., 14, 1337–1352, https://doi.org/10.5194/acp-14-1337-2014, https://doi.org/10.5194/acp-14-1337-2014, 2014
H. Zhang, S. P. DeNero, D. K. Joe, H.-H. Lee, S.-H. Chen, J. Michalakes, and M. J. Kleeman
Atmos. Chem. Phys., 14, 485–503, https://doi.org/10.5194/acp-14-485-2014, https://doi.org/10.5194/acp-14-485-2014, 2014
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
L. D. Yee, J. S. Craven, C. L. Loza, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 11121–11140, https://doi.org/10.5194/acp-13-11121-2013, https://doi.org/10.5194/acp-13-11121-2013, 2013
A. Wonaschütz, M. Coggon, A. Sorooshian, R. Modini, A. A. Frossard, L. Ahlm, J. Mülmenstädt, G. C. Roberts, L. M. Russell, S. Dey, F. J. Brechtel, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 9819–9835, https://doi.org/10.5194/acp-13-9819-2013, https://doi.org/10.5194/acp-13-9819-2013, 2013
L. D. Yee, K. E. Kautzman, C. L. Loza, K. A. Schilling, M. M. Coggon, P. S. Chhabra, M. N. Chan, A. W. H. Chan, S. P. Hersey, J. D. Crounse, P. O. Wennberg, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 8019–8043, https://doi.org/10.5194/acp-13-8019-2013, https://doi.org/10.5194/acp-13-8019-2013, 2013
H. Jiang, H. Liao, H. O. T. Pye, S. Wu, L. J. Mickley, J. H. Seinfeld, and X. Y. Zhang
Atmos. Chem. Phys., 13, 7937–7960, https://doi.org/10.5194/acp-13-7937-2013, https://doi.org/10.5194/acp-13-7937-2013, 2013
X. Zhang and J. H. Seinfeld
Atmos. Chem. Phys., 13, 5907–5926, https://doi.org/10.5194/acp-13-5907-2013, https://doi.org/10.5194/acp-13-5907-2013, 2013
C. D. Cappa, X. Zhang, C. L. Loza, J. S. Craven, L. D. Yee, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 1591–1606, https://doi.org/10.5194/acp-13-1591-2013, https://doi.org/10.5194/acp-13-1591-2013, 2013
J. S. Craven, L. D. Yee, N. L. Ng, M. R. Canagaratna, C. L. Loza, K. A. Schilling, R. L. N. Yatavelli, J. A. Thornton, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 12, 11795–11817, https://doi.org/10.5194/acp-12-11795-2012, https://doi.org/10.5194/acp-12-11795-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Rapid oxidation of phenolic compounds by O3 and HO●: effects of the air–water interface and mineral dust in tropospheric chemical processes
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
The surface tension and CCN activation of sea spray aerosol particles
Impacts of meteorology and emission reductions on haze pollution during the lockdown in the North China Plain: Insights from six-year simulations
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Exploring the processes controlling secondary inorganic aerosol: Evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Critical Load Exceedances for North America and Europe using an Ensemble of Models and an Investigation of Causes for Environmental Impact Estimate Variability: An AQMEII4 Study
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks, Alaska, the N. Hemisphere, and the Contiguous United States
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
An updated modeling framework to simulate Los Angeles air quality – Part 1: Model development, evaluation, and source apportionment
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption
pH regulates the formation of organosulfates and inorganic sulfate from organic peroxide reaction with dissolved SO2 in aquatic media
Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method
Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Impact of urbanization on fine particulate matter concentrations over central Europe
Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024, https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024, https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry–climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024, https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Short summary
This work found that the air–water (A–W) interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees compared with the gas phase and bulk water. Some byproducts are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in O3/HO• + PhC experiments at the A–W interface and in mineral dust.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024, https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Short summary
Models were used to study ways to reduce particulate matter (PM) pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective at mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied environment in Taiwan.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2838, https://doi.org/10.5194/egusphere-2024-2838, 2024
Short summary
Short summary
We model the CCN activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updrafts.
Lang Liu, Xin Long, Yi Li, Zengliang Zang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2704, https://doi.org/10.5194/egusphere-2024-2704, 2024
Short summary
Short summary
This study use the WRF-Chem model to assess how meteorological conditions and unexpected emission reductions affected PM2.5 in the North China Plain (NCP). It highlights regional disparities: in the Northern NCP, adverse weather negated emission reduction effects. In contrast, the Southern NCP with PM2.5 decrease due to favorable weather and emission reductions. The research highlighted the interaction between emissions, meteorology and air quality.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Olivia G. Norman, Colette L. Heald, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2296, https://doi.org/10.5194/egusphere-2024-2296, 2024
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz-Ozdemir, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Iannis Koutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark Shephard, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2226, https://doi.org/10.5194/egusphere-2024-2226, 2024
Short summary
Short summary
The large range of sulphur and nitrogen deposition estimates from air-quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulphur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by droplets, rain, snow, etc., aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, and gas deposition via plant cuticles and soil.
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Sara Louise Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, and Kathleen Fahey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1550, https://doi.org/10.5194/egusphere-2024-1550, 2024
Short summary
Short summary
In this work we implement heterogeneous sulfur chemistry into the Community Multiscale Air Quality (CMAQ) model. This new chemistry accounts for the formation of sulfate via aqueous oxidation of SO2 in aerosol liquid water and the formation of hydroxymethanesulfonate (HMS) – often confused by measurement techniques as sulfate. Model performance in predicting sulfur PM2.5 in Fairbanks, Alaska, and other places that experience dark and cold winters, is improved.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1579, https://doi.org/10.5194/egusphere-2024-1579, 2024
Short summary
Short summary
This study investigates the impact of dust on the global radiative effect of nitrate aerosols. The results indicate both positive and negative regional shortwave and longwave radiative effects due to aerosol-radiation interactions and cloud adjustments. The global average net REari and REaci of nitrate aerosols are -0.11 and +0.17 W/m², respectively, mainly affecting the shortwave spectrum. Sensitivity simulations evaluated the influence of mineral dust composition and emissions on the results.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Angelo Riccio and Elena Chianese
Atmos. Chem. Phys., 24, 1673–1689, https://doi.org/10.5194/acp-24-1673-2024, https://doi.org/10.5194/acp-24-1673-2024, 2024
Short summary
Short summary
Starting from the Copernicus Atmosphere Monitoring Service (CAMS), we provided a novel ensemble statistical post-processing approach to improve their air quality predictions. Our approach is able to provide reliable short-term forecasts of pollutant concentrations, which is a key challenge in supporting national authorities in their tasks related to EU Air Quality Directives, such as planning and reporting the state of air quality to the citizens.
Stella E. I. Manavi and Spyros N. Pandis
Atmos. Chem. Phys., 24, 891–909, https://doi.org/10.5194/acp-24-891-2024, https://doi.org/10.5194/acp-24-891-2024, 2024
Short summary
Short summary
Organic vapors of intermediate volatility have often been neglected as sources of atmospheric organic aerosol. In this work we use a new approach for their simulation and quantify the contribution of these compounds emitted by transportation sources (gasoline and diesel vehicles) to particulate matter over Europe. The estimated secondary organic aerosol levels are on average 60 % higher than predicted by previous approaches. However, these estimates are probably lower limits.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023, https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Short summary
Annual PM2.5 emissions in China consistently decreased by about 3% to 5% from 2017 to 2020 with spatial variations and seasonal dependencies. High-temporal-resolution and dynamics-based PM2.5 emission estimates provide quantitative diurnal variations for each season. Significant reductions in PM2.5 emissions in the North China Plain and northeast of China in 2020 were caused by COVID-19.
Cited articles
Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A.
M., de Gouw, J. A., Meagher, J., Hsie, E. Y., Edgerton, E., Shaw, S., and
Trainer, M.: A volatility basis set model for summertime secondary organic
aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos.,
117, D06301, https://doi.org/10.1029/2011JD016831, 2012.
Baek, J., Hu, Y., Odman, M. T., and Russell, A. G.: Modeling secondary
organic aerosol in CMAQ using multigenerational oxidation of semi-volatile
organic compounds, J. Geophys. Res.-Atmos., 116, D22204,
https://doi.org/10.1029/2011JD015911,
2011.
Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Bernstein, J. A.,
Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S. M., and Williams, P. B.:
Health effects of air pollution, J. Allergy Clin. Immun., 114, 1116–1123,
2004.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models, Atmos.
Environ., 40, 4946–4959, 2006.
Cappa, C. D.: A model of aerosol evaporation kinetics in a thermodenuder,
Atmos. Meas. Tech., 3, 579–592, https://doi.org/10.5194/amt-3-579-2010, 2010.
Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of
ambient organic aerosol, Atmos. Chem. Phys., 10, 5409–5424,
https://doi.org/10.5194/acp-10-5409-2010, 2010.
Cappa, C. D. and Wilson, K. R.: Multi-generation gas-phase oxidation,
equilibrium partitioning, and the formation and evolution of secondary
organic aerosol, Atmos. Chem. Phys., 12, 9505–9528,
https://doi.org/10.5194/acp-12-9505-2012, 2012.
Cappa, C. D., Zhang, X., Loza, C. L., Craven, J. S., Yee, L. D., and
Seinfeld, J. H.: Application of the Statistical Oxidation Model (SOM) to
Secondary Organic Aerosol formation from photooxidation of C12 alkanes,
Atmos. Chem. Phys., 13, 1591–1606, https://doi.org/10.5194/acp-13-1591-2013, 2013.
Cappa, C. D., Jathar, S. H., Kleeman, M. J., Docherty, K. S., Jimenez, J. L.,
Seinfeld, J. H., and Wexler, A. S.: Simulating secondary organic aerosol in a
regional air quality model using the statistical oxidation model – Part 2:
Assessing the influence of vapor wall losses, Atmos. Chem. Phys. Discuss.,
15, 30081–30126, https://doi.org/10.5194/acpd-15-30081-2015, 2015.
Carlton, A. G., Pinder, R. W., Bhave, P. V., and Pouliot, G. A.: To what
extent can biogenic SOA be controlled?, Environ. Sci. Technol., 44,
3376–3380, 2007.
Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar, G.,
Pinder, R. W., Pouliot, G. A., and Houyoux, M.: Model representation of
secondary organic aerosol in CMAQv4.7, Environ. Sci. Technol., 44,
8553–8560, 2010.
Carter, W. P. and Heo, G.: Development of revised SAPRC aromatics mechanisms,
Atmos. Environ., 77, 404–414, 2013.
Chacon-Madrid, H. J. and Donahue, N. M.: Fragmentation vs. functionalization:
chemical aging and organic aerosol formation, Atmos. Chem. Phys., 11,
10553–10563, https://doi.org/10.5194/acp-11-10553-2011, 2011.
Chacon-Madrid, H. J., Presto, A. A., and Donahue, N. M.: Functionalization
vs. fragmentation: n-aldehyde oxidation mechanisms and secondary organic
aerosol formation, Phys. Chem. Chem. Phys., 12, 13975–13982,
https://doi.org/10.1039/c0cp00200c, 2010.
Chacon-Madrid, H. J., Henry, K. M., and Donahue, N. M.: Photo-oxidation of
pinonaldehyde at low NOx: from chemistry to organic aerosol formation,
Atmos. Chem. Phys., 13, 3227–3236, https://doi.org/10.5194/acp-13-3227-2013, 2013.
Chen, J., Mao, H., Talbot, R. W., and Griffin, R. J.: Application of the CACM
and MPMPO modules using the CMAQ model for the eastern United States, J.
Geophys. Res.-Atmos. (1984–2012), 111, D23S25, https://doi.org/10.1029/2006JD007603, 2006.
Chhabra, P. S., Ng, N. L., Canagaratna, M. R., Corrigan, A. L., Russell, L.
M., Worsnop, D. R., Flagan, R. C., and Seinfeld, J. H.: Elemental composition
and oxidation of chamber organic aerosol, Atmos. Chem. Phys., 11, 8827–8845,
https://doi.org/10.5194/acp-11-8827-2011, 2011.
Chirico, R., DeCarlo, P. F., Heringa, M. F., Tritscher, T., Richter, R.,
Prévôt, A. S. H., Dommen, J., Weingartner, E., Wehrle, G., Gysel, M.,
Laborde, M., and Baltensperger, U.: Impact of aftertreatment devices on
primary emissions and secondary organic aerosol formation potential from
in-use diesel vehicles: results from smog chamber experiments, Atmos. Chem.
Phys., 10, 11545–11563, https://doi.org/10.5194/acp-10-11545-2010, 2010.
Donahue, N., Robinson, A., Stanier, C., and Pandis, S.: Coupled partitioning,
dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol,
40, 2635–2643, https://doi.org/10.1021/es052297c, 2006.
Donahue, N. M., Henry, K. M., Mentel, T. F., Kiendler-Scharr, A., Spindler,
C., Bohn, B., Brauers, T., Dorn, H. P., Fuchs, H., and Tillmann, R.: Aging of
biogenic secondary organic aerosol via gas-phase OH radical reactions, P.
Natl. Acad. Sci., 109, 13503–13508, 2012.
Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M.,
Zhang, Q., Cappa, C. D., Ziemann, P. J., and Jimenez, J. L.: Evaluation of
recently-proposed secondary organic aerosol models for a case study in Mexico
City, Atmos. Chem. Phys., 9, 5681–5709, https://doi.org/10.5194/acp-9-5681-2009, 2009.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G.,
Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando,
J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.:
Description and evaluation of the Model for Ozone and Related chemical
Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,
https://doi.org/10.5194/gmd-3-43-2010, 2010.
Epstein, S. A., Riipinen, I., and Donahue, N. M.: A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol, Environ. Sci. Technol., 44, 743–748, https://doi.org/10.1021/es902497z, 2009.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol
formation in cloud droplets and aqueous particles (aqSOA): a review of
laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102,
https://doi.org/10.5194/acp-11-11069-2011, 2011.
Farina, S. C., Adams, P. J., and Pandis, S. N.: Modeling global secondary
organic aerosol formation and processing with the volatility basis set:
Implications for anthropogenic secondary organic aerosol, J. Geophys. Res.,
115, D09202, https://doi.org/10.1029/2009JD013046, 2010.
Fast, J. D., Allan, J., Bahreini, R., Craven, J., Emmons, L., Ferrare, R.,
Hayes, P. L., Hodzic, A., Holloway, J., Hostetler, C., Jimenez, J. L.,
Jonsson, H., Liu, S., Liu, Y., Metcalf, A., Middlebrook, A., Nowak, J.,
Pekour, M., Perring, A., Russell, L., Sedlacek, A., Seinfeld, J., Setyan, A.,
Shilling, J., Shrivastava, M., Springston, S., Song, C., Subramanian, R.,
Taylor, J. W., Vinoj, V., Yang, Q., Zaveri, R. A., and Zhang, Q.: Modeling
regional aerosol and aerosol precursor variability over California and its
sensitivity to emissions and long-range transport during the 2010 CalNex and
CARES campaigns, Atmos. Chem. Phys., 14, 10013–10060,
https://doi.org/10.5194/acp-14-10013-2014, 2014.
Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic
constituents in the earth's atmosphere, Environ. Sci. Technol., 41,
1514–1521, https://doi.org/10.1021/es072476p, 2007.
Gordon, T. D., Tkacik, D. S., Presto, A. A., Zhang, M., Jathar, S. H.,
Nguyen, N. T., Massetti, J., Truong, T., Cicero-Fernandez, P., Maddox, C.,
Rieger, P., Chattopadhyay, S., Maldonado, H., Maricq, M. M., and Robinson, A.
L.: Primary Gas- and Particle-Phase Emissions and Secondary Organic Aerosol
Production from Gasoline and Diesel Off-Road Engines, Environ. Sci. Technol.,
47, 14137–14146, 2013.
Gordon, T. D., Presto, A. A., May, A. A., Nguyen, N. T., Lipsky, E. M.,
Donahue, N. M., Gutierrez, A., Zhang, M., Maddox, C., Rieger, P.,
Chattopadhyay, S., Maldonado, H., Maricq, M. M., and Robinson, A. L.:
Secondary organic aerosol formation exceeds primary particulate matter
emissions for light-duty gasoline vehicles, Atmos. Chem. Phys., 14,
4661–4678, https://doi.org/10.5194/acp-14-4661-2014, 2014a.
Gordon, T. D., Presto, A. A., Nguyen, N. T., Robertson, W. H., Na, K., Sahay,
K. N., Zhang, M., Maddox, C., Rieger, P., Chattopadhyay, S., Maldonado, H.,
Maricq, M. M., and Robinson, A. L.: Secondary organic aerosol production from
diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving
cycle, Atmos. Chem. Phys., 14, 4643–4659, https://doi.org/10.5194/acp-14-4643-2014,
2014b.
Grieshop, A. P., Donahue, N. M., and Robinson, A. L.: Laboratory
investigation of photochemical oxidation of organic aerosol from wood fires
2: analysis of aerosol mass spectrometer data, Atmos. Chem. Phys., 9,
2227–2240, https://doi.org/10.5194/acp-9-2227-2009, 2009a.
Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.:
Laboratory investigation of photochemical oxidation of organic aerosol from
wood fires 1: measurement and simulation of organic aerosol evolution, Atmos.
Chem. Phys., 9, 1263–1277, https://doi.org/10.5194/acp-9-1263-2009, 2009b.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron,
C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of
Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6,
3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A.
A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao,
W.-M., Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., Collett
Jr., J. L., Kreidenweis, S. M., and Robinson, A. L.: Chemical and physical
transformations of organic aerosol from the photo-oxidation of open biomass
burning emissions in an environmental chamber, Atmos. Chem. Phys., 11,
7669–7686, https://doi.org/10.5194/acp-11-7669-2011, 2011.
Henry, K. M. and Donahue, N. M.: Photochemical aging of α-pinene
secondary organic aerosol: effects of OH radical sources and photolysis, J.
Phys. Chem. A, 116, 5932–5940, 2012.
Henze, D. K., Seinfeld, J. H., Ng, N. L., Kroll, J. H., Fu, T.-M., Jacob, D.
J., and Heald, C. L.: Global modeling of secondary organic aerosol formation
from aromatic hydrocarbons: high- vs. low-yield pathways, Atmos. Chem. Phys.,
8, 2405–2420, https://doi.org/10.5194/acp-8-2405-2008, 2008.
Heringa, M. F., DeCarlo, P. F., Chirico, R., Tritscher, T., Dommen, J.,
Weingartner, E., Richter, R., Wehrle, G., Prévôt, A. S. H., and
Baltensperger, U.: Investigations of primary and secondary particulate matter
of different wood combustion appliances with a high-resolution time-of-flight
aerosol mass spectrometer, Atmos. Chem. Phys., 11, 5945–5957,
https://doi.org/10.5194/acp-11-5945-2011, 2011.
Huffman, J., Docherty, K., Mohr, C., Cubison, M., Ulbrich, I., Ziemann, P.,
Onasch, T., and Jimenez, J.: Chemically-resolved volatility measurements of
organic aerosol fom different sources, Environ. Sci. Technol., 43,
5351–5357, 2009.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G. K., Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van Ypserle, J. P.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pachauri, R. K., and Meyer, L., IPCC, Geneva, Switzerland, 151 pp., 2014.
Jathar, S. H., Farina, S. C., Robinson, A. L., and Adams, P. J.: The
influence of semi-volatile and reactive primary emissions on the abundance
and properties of global organic aerosol, Atmos. Chem. Phys., 11, 7727–7746,
https://doi.org/10.5194/acp-11-7727-2011, 2011.
Jathar, S. H., Cappa, C. D., Wexler, A. S., Seinfeld, J. H., and Kleeman, M.
J.: Multi-generational oxidation model to simulate secondary organic aerosol
in a 3-D air quality model, Geosci. Model Dev., 8, 2553–2567,
https://doi.org/10.5194/gmd-8-2553-2015, 2015.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A.
C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
E, Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger,
U., and Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere,
Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Johnson, D., Utembe, S. R., Jenkin, M. E., Derwent, R. G., Hayman, G. D.,
Alfarra, M. R., Coe, H., and McFiggans, G.: Simulating regional scale
secondary organic aerosol formation during the TORCH 2003 campaign in the
southern UK, Atmos. Chem. Phys., 6, 403–418, https://doi.org/10.5194/acp-6-403-2006,
2006.
Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A.
S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and
Baltensperger, U.: Identification of polymers as major components of
atmospheric organic aerosols, Science, 303, 1659–1662,
https://doi.org/10.1126/science.1092185, 2004.
Kleeman, M. J. and Cass, G. R.: A 3-D Eulerian source-oriented model for an
externally mixed aerosol, Environ. Sci. Technol., 35, 4834–4848, 2001.
Koo, B., Knipping, E., and Yarwood, G.: 1.5-Dimensional volatility basis set
approach for modeling organic aerosol in CAMx and CMAQ, Atmos. Environ., 95,
158–164, 2014.
Lambe, A. T., Onasch, T. B., Croasdale, D. R., Wright, J. P., Martin, A. T.,
Franklin, J. P., Massoli, P., Kroll, J. H., Canagaratna, M. R., and Brune, W.
H.: Transitions from functionalization to fragmentation reactions of
laboratory secondary organic aerosol (SOA) generated from the OH oxidation of
alkane precursors, Environ. Sci. Technol., 46, 5430–5437, 2012.
Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic
aerosol formation using the volatility basis-set approach in a chemical
transport model, Atmos. Environ., 42, 7439–7451, 2008.
Lee, B. H., Kostenidou, E., Hildebrandt, L., Riipinen, I., Engelhart, G. J.,
Mohr, C., DeCarlo, P. F., Mihalopoulos, N., Prevot, A. S. H., Baltensperger,
U., and Pandis, S. N.: Measurement of the ambient organic aerosol volatility
distribution: application during the Finokalia Aerosol Measurement Experiment
(FAME-2008), Atmos. Chem. Phys., 10, 12149–12160,
https://doi.org/10.5194/acp-10-12149-2010, 2010.
Lee-Taylor, J., Madronich, S., Aumont, B., Baker, A., Camredon, M., Hodzic,
A., Tyndall, G. S., Apel, E., and Zaveri, R. A.: Explicit modeling of organic
chemistry and secondary organic aerosol partitioning for Mexico City and its
outflow plume, Atmos. Chem. Phys., 11, 13219–13241,
https://doi.org/10.5194/acp-11-13219-2011, 2011.
Liggio, J., Li, S. M., and McLaren, R.: Reactive uptake of glyoxal by
particulate matter, J. Geophys. Res.-Atmos. (1984–2012), 110, D10304,
https://doi.org/10.1029/2004JD005113, 2005.
Lin, G., Penner, J. E., Sillman, S., Taraborrelli, D., and Lelieveld, J.:
Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates
and peroxides, Atmos. Chem. Phys., 12, 4743–4774,
https://doi.org/10.5194/acp-12-4743-2012, 2012.
Loza, C. L., Craven, J. S., Yee, L. D., Coggon, M. M., Schwantes, R. H.,
Shiraiwa, M., Zhang, X., Schilling, K. A., Ng, N. L., Canagaratna, M. R.,
Ziemann, P. J., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol
yields of 12-carbon alkanes, Atmos. Chem. Phys., 14, 1423–1439,
https://doi.org/10.5194/acp-14-1423-2014, 2014.
Matsunaga, A. and Ziemann, P. J.: Gas-wall partitioning of organic compounds
in a Teflon film chamber and potential effects on reaction product and
aerosol yield measurements, Aerosol Sci. Tech., 44, 881–892, 2010.
McVay, R. C., Cappa, C. D., and Seinfeld, J. H.: Vapor–Wall Deposition in
Chambers: Theoretical Considerations, Environ. Sci. Technol., 48,
10251–10258, 2014.
Miracolo, M. A., Hennigan, C. J., Ranjan, M., Nguyen, N. T., Gordon, T. D.,
Lipsky, E. M., Presto, A. A., Donahue, N. M., and Robinson, A. L.: Secondary
aerosol formation from photochemical aging of aircraft exhaust in a smog
chamber, Atmos. Chem. Phys., 11, 4135–4147, https://doi.org/10.5194/acp-11-4135-2011,
2011.
Miracolo, M. A., Drozd, G. T., Jathar, S., Presto, A. A., Lipsky, E.,
Corporan, E., and Robinson, A.: Fuel composition and secondary organic
aerosol formation: gas-turbine exhaust and alternative aviation fuels,
Environ. Sci. Technol., 46, 8493–8501, https://doi.org/10.1021/es300350c, 2012.
Murphy, B. and Pandis, S.: Simulating the formation of semivolatile primary
and secondary organic aerosol in a regional chemical transport model,
Environ. Sci. Technol., 43, 4722–4728, https://doi.org/10.1021/es803168a, 2009.
Nordin, E. Z., Eriksson, A. C., Roldin, P., Nilsson, P. T., Carlsson, J. E.,
Kajos, M. K., Hellén, H., Wittbom, C., Rissler, J., Löndahl, J.,
Swietlicki, E., Svenningsson, B., Bohgard, M., Kulmala, M., Hallquist, M.,
and Pagels, J. H.: Secondary organic aerosol formation from idling gasoline
passenger vehicle emissions investigated in a smog chamber, Atmos. Chem.
Phys., 13, 6101–6116, https://doi.org/10.5194/acp-13-6101-2013, 2013.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and
Seinfeld, J. H.: Gas/particle partitioning and secondary organic aerosol
yields, Environ. Sci. Technol., 30, 2580–2585, 1996.
Platt, S. M., El Haddad, I., Zardini, A. A., Clairotte, M., Astorga, C.,
Wolf, R., Slowik, J. G., Temime-Roussel, B., Marchand, N., Ježek, I.,
Drinovec, L., Mocnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi,
F., Baltensperger, U., and Prévôt, A. S. H.: Secondary organic
aerosol formation from gasoline vehicle emissions in a new mobile
environmental reaction chamber, Atmos. Chem. Phys., 13, 9141–9158,
https://doi.org/10.5194/acp-13-9141-2013, 2013.
Platt, S. M., Haddad, I. E., Pieber, S. M., Huang, R. J., Zardini, A. A.,
Clairotte, M., Suarez-Bertoa, R., Barmet, P., Pfaffenberger, L., Wolf, R.,
Slowik, J. G., Fuller, S. J., Kalberer, M., Chirico, R., Dommen, J., Astorga,
C., Zimmermann, R., Marchand, N., Hellebust, S., Temime-Roussel, B.,
Baltensperger, U., and Prévôt, A. S. H.: Two-stroke scooters are a
dominant source of air pollution in many cities, Nature communications, 5,
3749,
https://doi.org/10.1038/ncomms4749,
2014.
Pye, H. O. T. and Seinfeld, J. H.: A global perspective on aerosol from
low-volatility organic compounds, Atmos. Chem. Phys., 10, 4377–4401,
https://doi.org/10.5194/acp-10-4377-2010, 2010.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,
A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:
Rethinking organic aerosols: Semivolatile emissions and photochemical aging,
Science, 315, 1259–1262, 2007.
Shiraiwa, M., Yee, L. D., Schilling, K. A., Loza, C. L., Craven, J. S.,
Zuend, A., Ziemann, P. J., and Seinfeld, J. H.: Size distribution dynamics
reveal particle-phase chemistry in organic aerosol formation, P. Natl. Acad.
Sci., 110, 11746–11750, 2013.
Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson,
A. L.: Effects of gas particle partitioning and aging of primary emissions on
urban and regional organic aerosol concentrations, J. Geophys. Res.-Atmos.,
113, D18301, https://doi.org/10.1029/2007JD009735, 2008.
Simon, H. and Bhave, P. V.: Simulating the degree of oxidation in atmospheric
organic particles, Environ. Sci. Technol., 46, 331–339, 2011.
Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T.
E., Edney, E. O., and Seinfeld, J. H.: Effect of acidity on secondary organic
aerosol formation from isoprene, Environ. Sci. Technol., 41, 5363–5369,
2007.
Tkacik, D. S., Lambe, A. T., Jathar, S., Li, X., Presto, A. A., Zhao, Y.,
Blake, D., Meinardi, S., Jayne, J. T., Croteau, P. L., and Robinson, A. L.:
Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using
a Potential Aerosol Mass Reactor, Environ. Sci. Technol., 48, 11235–11242,
https://doi.org/10.1021/es502239v, 2014.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I.
M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set
approach for the simulation of organic aerosol formation in the Mexico City
metropolitan area, Atmos. Chem. Phys., 10, 525–546,
https://doi.org/10.5194/acp-10-525-2010, 2010.
Utembe, S. R., Cooke, M. C., Archibald, A. T., Shallcross, D. E., Derwent, R.
G., and Jenkin, M. E.: Simulating secondary organic aerosol in a 3-D
Lagrangian chemistry transport model using the reduced Common Representative
Intermediates mechanism (CRI v2-R5), Atmos. Environ., 45, 1604–1614, 2011.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J.
A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a
high resolution global model to estimate the emissions from open burning,
Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Wilson, K. R., Smith, J. D., Kessler, S. H., and Kroll, J. H.: The
statistical evolution of multiple generations of oxidation products in the
photochemical aging of chemically reduced organic aerosol, Phys. Chem. Chem.
Phys., 14, 1468–1479, 2012.
Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M.,
Chhabra, P. S., Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J. D.,
Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic
aerosol formation from biomass burning intermediates: phenol and
methoxyphenols, Atmos. Chem. Phys., 13, 8019–8043,
https://doi.org/10.5194/acp-13-8019-2013, 2013.
Ying, Q. and Li, J.: Implementation and initial application of the
near-explicit Master Chemical Mechanism in the 3-D Community Multiscale Air
Quality (CMAQ) model, Atmos. Environ., 45, 3244–3256, 2011.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in
laboratory chambers on yields of secondary organic aerosol, P. Natl. Acad.
Sci., 111, 5802–5807, 2014.
Zhao, B., Wang, S., Donahue, N. M., Chuang, W., Hildebrandt Ruiz, L., Ng, N.
L., Wang, Y., and Hao, J.: Evaluation of One-Dimensional and Two-Dimensional
Volatility Basis Sets in Simulating the Aging of Secondary Organic Aerosol
with Smog-Chamber Experiments, Environ. Sci. Technol., 49, 2245–2254,
https://doi.org/10.1021/es5048914, 2015.
Short summary
Multi-generational chemistry schemes applied in regional models do not increase secondary organic aerosol (SOA) mass production relative to traditional "two-product" schemes when both models are fitted to the same chamber data. The multi-generational chemistry schemes do change the predicted composition of SOA and the source attribution of SOA.
Multi-generational chemistry schemes applied in regional models do not increase secondary...
Altmetrics
Final-revised paper
Preprint