Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 5
Atmos. Chem. Phys., 15, 2327–2340, 2015
https://doi.org/10.5194/acp-15-2327-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 2327–2340, 2015
https://doi.org/10.5194/acp-15-2327-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Mar 2015

Research article | 04 Mar 2015

Oxidant production from source-oriented particulate matter – Part 1: Oxidative potential using the dithiothreitol (DTT) assay

J. G. Charrier1, N. K. Richards-Henderson1, K. J. Bein2,3, A. S. McFall1, A. S. Wexler1,2,4, and C. Anastasio1 J. G. Charrier et al.
  • 1Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
  • 2Air Quality Research Center, University of California, Davis, CA 95616, USA
  • 3Center for Health and the Environment, University of California, Davis, CA 95616, USA
  • 4Department of Mechanical and Aeronautical~Engineering, University of California, Davis, CA 95616, USA

Abstract. Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these end points are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species in the body, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA, using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single-particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions – ultrafine Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) – and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a factor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular emissions, regional source mix, commute hours, daytime mixed layer, and nighttime inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other organics, account for 30%. During nighttime, soluble copper and manganese largely explain the oxidative potential of PM, while daytime has a larger contribution from unknown (likely organic) species.

Publications Copernicus
Download
Short summary
We measured the oxidative potential of airborne particles – a property that has been linked to health problems caused by particles – from different emission source mixtures in Fresno, CA. Copper was responsible for the majority of the oxidative potential (as measured by the DTT assay), followed by unknown species (likely organics) and manganese. Sources of copper-rich particles, including vehicles, had higher oxidative potentials.
We measured the oxidative potential of airborne particles – a property that has been linked to...
Citation