Articles | Volume 15, issue 5
https://doi.org/10.5194/acp-15-2327-2015
https://doi.org/10.5194/acp-15-2327-2015
Research article
 | 
04 Mar 2015
Research article |  | 04 Mar 2015

Oxidant production from source-oriented particulate matter – Part 1: Oxidative potential using the dithiothreitol (DTT) assay

J. G. Charrier, N. K. Richards-Henderson, K. J. Bein, A. S. McFall, A. S. Wexler, and C. Anastasio

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jessica Charrier on behalf of the Authors (30 Dec 2014)  Author's response    Manuscript
ED: Reconsider after minor revisions (Editor review) (03 Feb 2015) by Alex Huffman
AR by Jessica Charrier on behalf of the Authors (10 Feb 2015)  Author's response    Manuscript
ED: Publish as is (10 Feb 2015) by Alex Huffman
Download
Short summary
We measured the oxidative potential of airborne particles – a property that has been linked to health problems caused by particles – from different emission source mixtures in Fresno, CA. Copper was responsible for the majority of the oxidative potential (as measured by the DTT assay), followed by unknown species (likely organics) and manganese. Sources of copper-rich particles, including vehicles, had higher oxidative potentials.
Altmetrics
Final-revised paper
Preprint