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S1. Soluble metals measurements in DTT solution compared to in surrogate lung fluid

Soluble metals were measured in a surrogate lung fluid (SLF) containing 114 mM NaCl, 2.2 mM
KH,PO,, 7.8 mM Na,HPO, and anti-oxidants (200 uM ascorbic acid, 300 uM citric acid, 100 pM
glutathione and 100 uM uric acid), pH of 7.4. Portions of filters were extracted from 1.5 to 24 hours at
room temperature on a shake table. DTT assay conditions are somewhat different: the extraction fluid
contains 22 mM KH,P0O,4, 78 mM Na,HPO,and 100 uM DTT, pH 7.4, and is extracted for 20 minutes at 37
°C. Both the SLF and DTT extraction solutions were treated with Chelex 100 resin to remove transition
metals prior to adding the antioxidants or DTT. The differences in ligands, extraction time and
temperature for the two assays could affect soluble metals measurements. To test this, we measured
soluble metals under the DTT assay conditions for 12 of the 38 samples (6 summer and 6 winter, 7 SMF
and 5 UF). The resulting soluble metal concentrations were very similar for the SLF and DTT extractions,
with the exception of (Fig. S1). Fe was sometimes higher in the SLF than the DTT assay, possibly because
of the presence of citrate in the SLF, which effectively solubilizes Fe (Aust et al., 2002). Given the
similarity in the metals data for the two assays, we use the SLF measurements since these were made
for every sample as part of our companion study (Richards-Henderson et al., 2014). The SLF results
might sometimes overestimate Fe in the DTT extracts, but this is a minor issue since Fe is nearly always
unimportant in the DTT assay (Charrier and Anastasio, 2012).
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Figure S1. Comparison of soluble metals measurements in DTT solution versus SLF solution.

S2. Total and soluble metals

To measure total metals, approximately 167 ug of extracted PM from each source was digested
using 1 M nitric acid via sonication and diluted to 6 mL for sample analysis. All samples were analyzed in
triplicate for a standard set of 26 elements. A description of soluble metals analysis steps is in Section
2.5 of the main text.

Both total and soluble metals were analyzed by the Interdisciplinary Center for Plasma Mass
Spectrometry at the University of California at Davis (ICPMS.UCDavis.edu) using an Agilent 7500CE ICP-
MS (Agilent Technologies, Palo Alto, CA). The prepared samples were introduced using a MicroMist
Nebulizer (Glass Expansion) into a temperature controlled spray chamber with He as the collision cell
gas. Instrument standards were diluted from Certiprep ME2A standard (SPEX CertiPrep) to 0.25ppb,
0.5ppb, 1ppb, 10ppb, 100ppb, 200ppb and 500ppb respectively in 3% Trace Element HNOs in ultrapure
water. A NIST 1643E Standard was analyzed initially and QC standard consisting of ME2A at 100ppb
were analyzed every 12th sample as quality controls. An internal standard consisting of Sc, Y, and Bi
Certiprep standards (SPEX CertiPrep) were diluted to 100ppb in 3% HNO3 and introduced by peripump.
Soluble metals results are in the main text Fig. 1, while total metals results are in Fig. S2 below.
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Figure S2. Total metals concentration in each sample. For each CV, the first bar is the UF size fraction
and the second bar is the SMF size fraction. Zn concentrations are divided by 10. In panel (a) there is no
data for the CV 10 UF sample.
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Figure S3. Correlations between total and soluble metals data.
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Table S1. Range of atmospheric concentrations of total and soluble metals for each season and size
fraction

Total Metals Median and Range of Concentration (ng/m3)

Metal Summer 2008 Winter 2009
UF SMF UF SMF

Zn 12 (1.9-20) 29 (8.8-128) 19 (4.7-60) 31 (4.7-79)
Ba 4.4 (1.3-11) 4.0 (0.89-7.8) 8.9 (1.1-34) 1.6 (0.30-4.9)
Fe 1.8 (0.40-31) 31 (3.1-44) 2.6 (0.30-12) 6.1 (2.7-24)
Cu 0.44 (0.15-1.7) 43(1.9-21) 0.68 (0.092-1.2) 3.5(0.42-6.3)
Mn 0.32 (0.084-2.1) 2.3 (0.72-4.7) 0.42 (0.10-0.63) 0.72 (0.30-1.9)
Ni 0.13 (0.091-0.44) 0.80 (0.50-2.5) 0.27 (0.033-1.0) 0.65 (0.21-2.0)
Pb 0.079 (0.013-0.31) 0.56 (0.20-4.2) 0.092 (0.005-1.1) 0.25(0.12-0.51)
\Y 0.044 (0.02-0.13) 0.24 (0.087-0.61) 0.051 (0.018-0.11) 0.07 (0.032-0.16)
cr 0.056 (0.018-0.26) 0.66 (0.24-10) 0.13 (0-0.29) 0.25(0.14-0.82)
Cd 0.01 (0.005-0.022) 0.05(0.035-0.17)  0.03 (0.004-0.098) 0.044 (0.013-0.39)

Co 0.009 (0.004-0.041) 0.055 (0.027-0.16) 0.017 (0.002-0.025) 0.032(0.014-0.12)
Soluble Metals Median and Range of Concentration (ng/m3)

Metal Summer 2008 Winter 2009
UF SMF UF SMF

Zn 10 (1.6-18) 44 (3.8-116) 15 (6.0-44) 35 (3.6-77)

Ba 3.7 (0.70-5.3) 2.8 (0.36-8.2) 4.6 (0.63-14) 0.78 (0.19-3.3)
Fe 2.0(0.34-2.9) 6.2 (1.5-20) 1.0 (0.053-5.9) 1.5 (0.16-5.6)
Cu 0.65(0.11-1.3) 3.7 (1.6-15) 0.79 (0.21-2.0) 3.0(0.51-6.2)
Mn 0.47 (0.10-1.0) 2.3 (0.83-3.3) 0.42 (0.12-0.79) 0.74 (0.28-1.6)
Ni 0.16 (0.057-0.87) 0.61 (0.16-1.5) 0.28 (0.086-2.6) 0.12 (0-5.0)
Pb 0.058 (0.016-0.10) 0.31 (0.05-1.) 0.14 (0.024-053)  0.077 (0.01-0.17)
\Y 0.039 (0.025-0.16) 0.21(0.11-1.1) 0.028 (0-0.074) 0.066 (0.036-0.18)
cr 0.084 (0.034-0.73)  0.34 (0.098-0.56)  0.12 (0.029-0.40) 0.074 (0-0.35)
Cd 0.005 (0-0.50) 0.068 (0-1.2) 0.052 (0-5.6) 0.028 (0-0.32)

Co 0.007 (0.004-0.065) 0.046 (0.022-0.085) 0.021 (0.002-0.34) 0.017 (0.004-0.098)
Note: Co, Cr, Cd and Niwere generally below their detection limits.

S3. Percent solubility

We calculated the percent of each metal that was soluble in SLF for each CV and size range as
the ratio between the SLF-soluble concentration and the total metal (acid-extract) concentration. Figure
S3 shows the percent solubility for the 6 metals that are well measured: V, Mn, Cu, Fe, Zn, Pb. Four
metals were generally below detection: Co, Cr, Cd. Total metals data for summer ultrafine “Nighttime
Inversion (CV10)” is missing, so percent solubility for that CV cannot be calculated. V, Mn, Cu and Zn all
exhibited nearly 100% solubility. Pb is less soluble, with a median solubility of 48% and Fe was generally
the least soluble metal measured, with a median solubility of 27%.
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Figure S4. Percent solubility for each metals and CV. Error bars are the propagated errors of soluble and

total metals data accounting for both blank corrections and error in the mass data.
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Figure S5. Correlations of DTT loss with soluble Cu, Mn, and V (a — c) and correlations between these
soluble metal concentrations (d — f). The lines in a — c represent the calculated DTT response as a
function of metal concentration for 30 pug of PM based on the concentration-response curves in Charrier

and Anastasio (2012).



Table S2. PM masses used for DTT analysis (sample volume is 3.0 mL).

Experiment ChemVol UF SMF
Mass (ug) Error Mass (ug) Error

Summer 1 38.2 3.8 38.2 3.8
2008 2 38.2 3.8 38.2 3.8
Samples 3 29.4 3.7 28.0 5.6
4 31.4 7.8 36.1 9.0

5 24.7 6.2 18.7 6.2
6 18.0 6.0 17.6 4.4

7 17.6 4.4 31.4 6.3

9 9 0.3 32.3 3.2
10 56.8 N/A 18.2 3.6

Winter 1 37.3 3.9 29.4 4.2
2009 2 29.4 3.9 29.4 4.2
Samples 3 31.4 6.7 29.4 4.2
4 24.7 6.7 31.4 7.8
5 31.4 3.9 28 7.0
6 30 7.5 28 7.0
7 29.4 4.5 20.0 5.0

8 32.3 3.3 32.3 3.2

9 39.0 4.4 32.3 3.2

10 8 0.6 31.0 3.1

Field 2.0 - 2.0 -

Blanks

S4. Estimating the contribution of PQN to DTT response

To test if PQN is likely important in our samples we assume ambient particulate PQN was
present at the median measured concentration previously reported (0.3 ng/m?) (Charrier and Anastasio,
2012). Using the mass concentration of each sample (Table 1 in the main text) and the mass of PM
added to each vial (Table S2), we calculated the expected concentration of PQN in each solution. We
then used the PQN concentration-response equation from Charrier and Anastasio (2012) to calculate the
DTT response from PQN in each DTT extract and calculated what percent of the DTT response this would
contribute to each sample. Results are discussed in the main text.

S5. Apportionment of volume-normalized oxidative potential to individual sources.

We categorized the sources we observed and those in the modeling of Hu et al. (2014) into four
categories: Cooking, Mobile, Heating, Biomass/Wood Smoke. Any sources that do not fit these
categories are labeled “Other”. The sources included in each category are listed in Supplemental Tables
S3 and S4. We calculated the average ambient mass concentration for each category over our two-week
sampling periods using the 7-year average source contributions from 2000 — 2006 provided in Hu et al.



(2014). We multiplied the mass concentration of each category by the weighted average of the mass-
normalized oxidative potential (Fig. 2) for the associated category to get the volume-normalized
oxidative potential of each category. We then summed the volume-normalized oxidative potential of
each category (Fig. 4c and 4d). There is a remaining volume-normalized oxidative potential measured
from the PM which is not accounted for by the four source categories. We attribute this to “Unknown”
sources, which includes the “Other” category, sources that were not identified in the emissions
inventory, and secondary PM mass, which is not accounted for in the primary modeling data of Hu et al.
A large percent of PM mass is identified in “Other”, which consists of constrained and unconstrained PM
sources (Fig. S6).

Our approach makes several assumptions. First, our measurements are for PMy .17 and PMg 17,
while corresponding model results are for PM, s and PMg 4, respectively. Secondly, our samples were
collected in 2008 and 2009 while model sources are from 2000 — 2006. And finally, model sources only
account for primary PM mass, so contribution from secondary PM mass is automatically grouped into
“Unknown”. Though these assumptions are not ideal, the data from Hu et al. (2014) are the most
complete estimates of PM sources in Fresno currently available, especially in regards to the ultrafine size
fraction.
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Table S3. ARB emissions inventory PM sources from (Hu et al., 2014) with their associated category.

Source Category

Agricultural pruning waste burning Biomass/Wood Smoke
Agricultural crop waste burning Biomass/Wood Smoke
Residential wood stoves Biomass/Wood Smoke
Residential wood fireplaces Biomass/Wood Smoke
Non-agricultural waste burning Biomass/Wood Smoke
Commercial deep fat frying Cooking
Commercial cooking unspecified Cooking
Commercial Charbroiling Cooking
Industrial residual oil combustion Heating
Residential natural gas water heating Heating
Residential natural gas space heating Heating
Offroad trans refrigeration diesel Mobile
offroad industrial diesel equipment Mobile
Ag. Irrigation diesel engines Mobile
Light commercial gasoline equipment Mobile
Light commercial diesel equipment Mobile
Lawn and garden gasoline 2-st Mobile
Onroad diesel exhaust Mobile
lawn and garden diesel equipment Mobile
Construction and mining diesel Mobile
Industrial gasoline equipment 4-st Mobile
Lawn and garden gasoline 4-st Mobile
Onroad non-cat. gasoline hot exhaust Mobile
Trains hauling locomotives Mobile
Stationary IC diesel engines Mobile
Agricultural diesel equipment Mobile
Recreational gasoline boat (unspec) 2-st Mobile
Onroad cat. gasoline hot exhaust Mobile
Cat. gasoline buses Mobile
Onroad cat. gasoline cold exhaust Mobile
Onroad diesel idle Mobile
Non-cat. gasoline cold exhaust Mobile
Onroad diesel buses Mobile
Construction and mining gasoline Mobile
Paved road dust freeways Mobile
Paved road dust local streets Mobile
Paved road dust major streets Mobile
Commercial natural gas combustion Other
Commercial LPG combustion Other
Ag. land windblown dust Other
Commercial bldg construction&demolition Other
Farming tilling dust Other
Industrial bldg construction&demolition Other
Institutional bldg construction&demolition Other
Non-constrained PM2.5 sources Other
Unpaved road dust farm roads Other
QOil drill diesel equipment Other
Other constrained PMO.1 sources Other
Other constrained PM2.5 sources Other
Residential bldg construction&demolition Other
Stationary IC diesel engines Other
Structural fires Other
Non-constrained PMO0.1 sources Other

11



Table S4. Sources identified during our sampling with associated categories.

cv
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Source
Summer
Cooking - NE
Cooking -W
Diesel enriched
Vehicular emissions
Secondary
Regional source mix
Unknown - metals
Nighttime Inversion
Daytime mixed layer
Winter
Processed biomass
Cooking - W
Residential heating
Vehicular emissions
Morning commute
Secondary
Regional source mix
Nighttime inversion
Daytime mixed layer
Evening commute
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Category

Cooking
Cooking
Mobile
Mobile
Other
Other
Other
Other
Other

Biomass
Cooking
Heating
Mobile
Mobile
Other
Other
Other
Other
Other
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Figure S6. Contribution of source categories to total primary PM mass in Fresno, CA as identified by
modeling for the time period that match ambient samples (Hu et al., 2014). To match previous
nomenclature, “winter” is actually 3/1/2009 to 4/6/2009 and “summer” is actually 9/11/2008 to
10/21/2008 is designated “summer” (see main text methods discussion). A detailed summary of
sources contributing to the “Other” category is shown in each expansion pie charts.
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