Articles | Volume 16, issue 4
Atmos. Chem. Phys., 16, 2243–2254, 2016
Atmos. Chem. Phys., 16, 2243–2254, 2016

Research article 26 Feb 2016

Research article | 26 Feb 2016

Anvil microphysical signatures associated with lightning-produced NOx

Jeffrey L. Stith et al.

Related authors

Microphysical characteristics of frozen droplet aggregates from deep convective clouds
Junshik Um, Greg M. McFarquhar, Jeffrey L. Stith, Chang Hoon Jung, Seoung Soo Lee, Ji Yi Lee, Younghwan Shin, Yun Gon Lee, Yiseok Isaac Yang, Seong Soo Yum, Byung-Gon Kim, Joo Wan Cha, and A-Reum Ko
Atmos. Chem. Phys., 18, 16915–16930,,, 2018
Short summary
Ice particles in the upper anvil regions of midlatitude continental thunderstorms: the case for frozen-drop aggregates
J. L. Stith, L. M. Avallone, A. Bansemer, B. Basarab, S. W. Dorsi, B. Fuchs, R. P. Lawson, D. C. Rogers, S. Rutledge, and D. W. Toohey
Atmos. Chem. Phys., 14, 1973–1985,,, 2014

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Supercooled liquid water and secondary ice production in Kelvin–Helmholtz instability as revealed by radar Doppler spectra observations
Haoran Li, Alexei Korolev, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 13593–13608,,, 2021
Short summary
Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon
Alice Henkes, Gilberto Fisch, Luiz A. T. Machado, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 21, 13207–13225,,, 2021
Short summary
Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates
Youssef Wehbe, Sarah A. Tessendorf, Courtney Weeks, Roelof Bruintjes, Lulin Xue, Roy Rasmussen, Paul Lawson, Sarah Woods, and Marouane Temimi
Atmos. Chem. Phys., 21, 12543–12560,,, 2021
Short summary
Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018)
Kwonil Kim, Wonbae Bang, Eun-Chul Chang, Francisco J. Tapiador, Chia-Lun Tsai, Eunsil Jung, and Gyuwon Lee
Atmos. Chem. Phys., 21, 11955–11978,,, 2021
Short summary
Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations
J. Brant Dodson, Patrick C. Taylor, Richard H. Moore, David H. Bromwich, Keith M. Hines, Kenneth L. Thornhill, Chelsea A. Corr, Bruce E. Anderson, Edward L. Winstead, and Joseph R. Bennett
Atmos. Chem. Phys., 21, 11563–11580,,, 2021
Short summary

Cited articles

Anderson, N. F., Grainger, C. A., and Stith, J. L.: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon, J. Appl. Meteorol., 44, 731–738, 2005.
Baker, M. B. and Dash, J. G.: Mechanism of charge transfer between colliding ice particles in thunderstorms, J. Geophys. Res., 99, 10621–10626,, 1994.
Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H., Huntrieser, H., Carey, L. D., MacGorman, D., Weisman, M., Pickering, K. E., Bruning, E., Anderson, B., Apel, E., Biggerstaff, M., Campos, T., Campuzano-Jost, P., Cohen, R., Crounse, J., Day, D. A., Diskin, G., Flocke, F., Fried, A., Garland, C., Heikes, B., Honomichi, S., Hornbrook, R., Huey, L. G., Jimenez, J., Lang, T., Lichtenstern, M., Mikoviny, T., Nault, B., O'Sullivan, D., Pan, L., Peischl, J., Pollack, I., Richter, D., Riemer, D., Ryerson, T., Schlager, H., St. Clair, J., Walega, J., Weibring, P., Weinheimer, A., Wennberg, P., Wisthaler, A., Wooldridge, P., and Zeigler, C.: The Deep Convective clouds and Chemistry (DC3) Field Campaign, B. Am. Meteorol. Soc., 96, 1281–1309,, 2015.
Basarab, B., Rutledge, S. A., and Fuchs, B. R.: An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models, J. Geophys. Res., 120, 9481–9499,, 2015.
Bruning, E. C.: Streamed clustering of lightning mapping data in Python using sklearn, in: Scientific Computing With Python, 2, available at: (last access: 21 February 2016), 2013.
Short summary
Lightning-produced NOx and ice particles were studied using airborne measurements in thunderstorm anvil clouds during the Deep Convective Clouds and Chemistry experiment (DC3). These data were compared with radar and Lightning Mapping Array (LMA) measurements. A characteristic signature was found in three anvils that relates the occurrence of frozen cloud droplets and aggregates of frozen droplets to the presence of lightning-produced NOx in these storms.
Final-revised paper