Articles | Volume 16, issue 3
https://doi.org/10.5194/acp-16-1545-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-1545-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation
A. D. Elvidge
CORRESPONDING AUTHOR
School of Environmental Sciences, University of East Anglia, Norwich,
UK
present address: Atmospheric Processes and Parametrisations, Met Office, Fitzroy Road,
Exeter, UK
I. A. Renfrew
School of Environmental Sciences, University of East Anglia, Norwich,
UK
A. I. Weiss
British Antarctic Survey, Cambridge, UK
I. M. Brooks
School of Earth and Environment, University of Leeds, Leeds, UK
T. A. Lachlan-Cope
British Antarctic Survey, Cambridge, UK
J. C. King
British Antarctic Survey, Cambridge, UK
Related authors
No articles found.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Thomas Caton Harrison, Stavroula Biri, Thomas J. Bracegirdle, John C. King, Elizabeth C. Kent, Étienne Vignon, and John Turner
Weather Clim. Dynam., 3, 1415–1437, https://doi.org/10.5194/wcd-3-1415-2022, https://doi.org/10.5194/wcd-3-1415-2022, 2022
Short summary
Short summary
Easterly winds encircle Antarctica, impacting sea ice and helping drive ocean currents which shield ice shelves from warmer waters. Reanalysis datasets give us our most complete picture of how these winds behave. In this paper we use satellite data, surface measurements and weather balloons to test how realistic recent reanalysis estimates are. The winds are generally accurate, especially in the most recent of the datasets, but important short-term variations are often misrepresented.
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Amy Foulds, Grant Allen, Jacob T. Shaw, Prudence Bateson, Patrick A. Barker, Langwen Huang, Joseph R. Pitt, James D. Lee, Shona E. Wilde, Pamela Dominutti, Ruth M. Purvis, David Lowry, James L. France, Rebecca E. Fisher, Alina Fiehn, Magdalena Pühl, Stéphane J. B. Bauguitte, Stephen A. Conley, Mackenzie L. Smith, Tom Lachlan-Cope, Ignacio Pisso, and Stefan Schwietzke
Atmos. Chem. Phys., 22, 4303–4322, https://doi.org/10.5194/acp-22-4303-2022, https://doi.org/10.5194/acp-22-4303-2022, 2022
Short summary
Short summary
We measured CH4 emissions from 21 offshore oil and gas facilities in the Norwegian Sea in 2019. Measurements compared well with operator-reported emissions but were greatly underestimated when compared with a 2016 global fossil fuel inventory. This study demonstrates the need for up-to-date and accurate inventories for use in research and policy and the important benefits of best-practice reporting methods by operators. Airborne measurements are an effective tool to validate such inventories.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Shona E. Wilde, Pamela A. Dominutti, Grant Allen, Stephen J. Andrews, Prudence Bateson, Stephane J.-B. Bauguitte, Ralph R. Burton, Ioana Colfescu, James France, James R. Hopkins, Langwen Huang, Anna E. Jones, Tom Lachlan-Cope, James D. Lee, Alastair C. Lewis, Stephen D. Mobbs, Alexandra Weiss, Stuart Young, and Ruth M. Purvis
Atmos. Chem. Phys., 21, 3741–3762, https://doi.org/10.5194/acp-21-3741-2021, https://doi.org/10.5194/acp-21-3741-2021, 2021
Short summary
Short summary
We use airborne measurements to evaluate the speciation of volatile organic compound (VOC) emissions from offshore oil and gas (O&G) installations in the North Sea. The composition of emissions varied across regions associated with either gas, condensate or oil extraction, demonstrating that VOC emissions are not uniform across the whole O&G sector. We compare our results to VOC source profiles in the UK emissions inventory, showing these emissions are not currently fully characterized.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Cited articles
Andreas, E. L.: A relationship between the aerodynamic and physical
roughness of winter sea ice, Q. J. Roy. Meteor. Soc., 137, 927–943, 2011.
Andreas, E. L., Tucker, W. B., and Ackley, S. F.: Atmospheric boundary-layer
modification, drag coefficient, and surface heat flux in the Antarctic
marginal ice zone, J. Geophys. Res.-Oceans, 89, 649–661,
https://doi.org/10.1029/JC089iC01p00649, 1984.
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C.
W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over
summer sea ice and the marginal ice zone, Q. J. Roy. Meteor. Soc., 136,
927–943, https://doi.org/10.1002/qj.618, 2010.
Arya, S. P. S.: Contribution of form drag on pressure ridges to the air
stress on Arctic ice, J. Geophys. Res., 78, 7092–7099,
https://doi.org/10.1029/JC078i030p07092, 1973.
Arya, S. P. S.: A drag partition theory for determining the large-scale
roughness parameter and wind stress on the Arctic pack ice, J. Geophys.
Res., 80, 3447–3454, https://doi.org/10.1029/JC080i024p03447, 1975.
Banke, E. G. and Smith, S. D.: Wind stress over ice and over water in the
Beaufort Sea, J. Geophys. Res., 76, 7368–7374,
https://doi.org/10.1029/JC076i030p07368, 1971.
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux parameterization over land
surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341,
https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991.
Bidlot, J.-R., Keeley S., and Mogensen, K.: Towards the Inclusion of Sea Ice
Attenuation in an Operational Wave Model. Proceedings of the 22nd IAHR
International Symposium on ICE 2014 (IAHR-ICE 2014), available at:
http://rpsonline.com.sg/iahr-ice14/html/org.html, 2014.
Birnbaum, G. and Lüpkes C.: A new parameterization of surface drag in
the marginal sea ice zone, Tellus 54A, 107–123,
https://doi.org/10.1034/j.1600-0870.2002.00243.x, 2002.
Castellani, G., Lüpkes, C., Hendricks, S., and Gerdes, R.: Variability
of Arctic sea-ice topography and its impact on the atmospheric surface drag,
J. Geophys. Res.-Oceans, 119, 6743–6762, https://doi.org/10.1002/2013JC009712, 2014.
Claussen, M.: Area-averaging of surface fluxes in a neutrally stratified,
horizontally inhomogeneous atmospheric boundary layer, Atmos. Environ., 24A,
1349–1360, 1990.
Cook, P. A. and Renfrew, I. A.: Aircraft-based observations of air–sea
turbulent fluxes around the British Isles, Q. J. Roy. Meteor.
Soc., 141, 139–152, https://doi.org/10.1002/qj.2345, 2015.
Curry, J. A. and Webster, P. J.: Thermodynamics of atmospheres and oceans, Academic Press, 65, 471 pp., Elsevier, New York, 1999.
Dyer, A. J.: A review of flux-profile relationships, Bound.-Lay.
Meteorol., 7, 363–372, https://doi.org/10.1007/BF00240838, 1974.
ECMWF: Working Group Report: ECMWF-WWRP/THORPEX Polar Prediction
Workshop, available at:
http://www.ecmwf.int/sites/default/files/elibrary/2013/13913-ecmwf-wwrpthorpex-workshop-polar-prediction-working-groups-report.pdf) (last access: 10 March 2004),
2013.
Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B.,
and Young, G. S.: Cool-skin and warm-layer effects on sea surface
temperature, J. Geophys. Res.-Oceans, 101, 1295–1308,
https://doi.org/10.1029/95JC03190, 1996.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J.
B.: Bulk parameterization of air-sea fluxes: Updates and verification for
the COARE algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2,
2003.
Fiedler, E. K., Lachlan-Cope, T. A., Renfrew, I. A., and King, J. C.:
Convective heat transfer over thin ice covered coastal polynyas, J. Geophys.
Res., 115, C10051, https://doi.org/10.1029/2009JC005797, 2010.
French, J. R., Drennan, W. M., Zhang, J. A., and Black, P. G.: Turbulent
fluxes in the hurricane boundary layer. Part I: Momentum flux, J. Atmos.
Sci., 64, 1089–1102, https://doi.org/10.1175/JAS3887.1, 2007.
Garbrecht, T., Lüpkes, C., Augstein, E., and Wamser, C.: The influence
of a sea ice ridge on the low level air flow, J. Geophys. Res., 104,
24499–24507, https://doi.org/10.1029/1999JD900488, 1999.
Garbrecht, T., Lüpkes, C., Hartmann, J., and Wolff, M.: Atmospheric drag
coefficients over sea ice – validation of a parameterisation concept,
Tellus A, 54, 205–219, https://doi.org/10.1034/j.1600-0870.2002.01253.x, 2002.
Garman, K. E., Hill, K. A., Wyss, P., Carlsen, M., Zimmerman, J. R., Stirm,
B. H., Carney, T. Q., Santini, R., and Shepson, P. B.: An Airborne and Wind
Tunnel Evaluation of a Wind Turbulence Measurement System for Aircraft-Based
Flux Measurements, J. Atmos. Ocean Tech., 23, 1696–1708,
https://doi.org/10.1175/JTECH1940.1, 2006.
Guest, P. S. and Davidson, K. L.: The effect of observed ice conditions on
the drag coefficient in the summer East Greenland Sea marginal ice zone, J.
Geophys. Res. Oceans (1978–2012), 92, 6943–6954,
https://doi.org/10.1029/JC092iC07p06943, 1987.
Hanssen-Bauer, I. and Gjessing, Y. T.: Observations and model calculations
of aerodynamic drag on sea ice in the Fram Strait, Tellus 40A, 151–161,
https://doi.org/10.1111/j.1600-0870.1988.tb00413.x, 1988.
Hartmann, J., Kottmeier, C., and Wamser, C.: Radiation and Eddy Flux Experiment 1991: (REFLEX I), Berichte zur Polarforschung (Reports on Polar Research), 105, 1992.
Hartmann, J., Kottmeier, C., Wamser, C., and Augstein, E.: Aircraft measured
atmospheric momentum, heat and radiation fluxes over Arctic sea ice, in: The polar oceans and their role in shaping the global environment,
443–454, https://doi.org/10.1029/GM085p0443, 1994.
Hines, K. M., Bromwich, D. H., Bai, L., Bitz, C. M., Powers, J. G., and
Manning, K. W.: Sea Ice Enhancements to Polar WRF, Mon. Weather Rev.,
143, 2363–2385, https://doi.org/10.1175/MWR-D-14-00344.1, 2015.
Hunke, E. C, Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos Sea Ice Model documentation and software user's manual,
Version 5.1, 116 pp., available at: http://oceans11.lanl.gov/trac/CICE (last access: 29 January 2016),
2015.
Johannessen, O. M. and Foster, L. A.: A note on the topographically
controlled oceanic polar front in the Barents Sea, J. Geophys. Res.-Oceans, 83,
4567–4571, https://doi.org/10.1029/JC083iC09p04567, 1978.
King, J. C., Lachlan-Cope, T. A., Ladkin, R. S., Weiss, A.: Airborne
measurements in the stable boundary layer over the Larsen Ice Shelf,
Antarctica, Bound.-Lay. Meteorol., 127, 413–428,
https://doi.org/10.1007/s10546-008-9271-4, 2008.
Kohout, A. L., Williams, M. J. M., Dean, S. M., and Meylan, M. H.:
Storm-induced sea-ice breakup and the implications for ice
extent, Nature, 509, 604–607, https://doi.org/10.1038/nature13262, 2014.
Kottmeier, C., Hartmann, J., and Wamser, C.: Radiation and eddy flux experiment 1993:(REFLEX II). Berichte zur Polarforschung (Reports on Polar Research), 133, 1994.
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501,
https://doi.org/10.1029/2009GL039035, 2009.
Lüpkes, C. and Birnbaum, G.: Surface drag in the Arctic marginal
sea-ice zone: A comparison of different parameterisation concepts, Bound.-Lay. Meteorol., 117, 179–211, https://doi.org/10.1007/s10546-005-1445-8, 2005.
Lüpkes, C. and Gryanik, V. M.: A stability-dependent parametrization of
transfer coefficients for momentum and heat over polar sea ice to be used in
climate models, J. Geophys. Res. Atmos., 120, 552–581,
https://doi.org/10.1002/2014JD022418, 2015.
Lüpkes, C., Gryanik, V. M., Hartmann, J., and Andreas, E. L.: A
parametrization, based on sea ice morphology, of the neutral atmospheric
drag coefficients for weather prediction and climate models, J. Geophys.
Res., 117, D13112, https://doi.org/10.1029/2012JD017630, 2012.
Lüpkes, C., Gryanik, V. M., Rösel, A., Birnbaum, G., and Kaleschke,
L.: Effect of sea ice morphology during Arctic summer on atmospheric drag
coefficients used in climate models, Geophys. Res. Lett., 40, 446–451,
https://doi.org/10.1002/grl.50081, 2013.
Mai, S., Wamser, C., and Kottmeier, C.: Geometric and aerodynamic roughness
of sea ice, Bound.-Lay. Meteorol., 77, 233–248, https://doi.org/10.1007/BF00123526,
1996.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt onset, freezeup, and melt season length, J. Geophys. Res., 114, C12024,
https://doi.org/10.1029/2009JC005436, 2009.
Miller, P. A., Laxon, S. W., Feltham, D. L., and Cresswell, D. J.:
Optimization of a sea ice model using basinwide observations of Arctic sea
ice thickness, extent, and velocity, J. Climate, 19, 1089–1108,
https://doi.org/10.1175/JCLI3648.1, 2006.
Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S.,
Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A., Collins, W.
D., Zhang, M., and Shian-Jiann, L.: Description of the NCAR Community
Atmospheric Model (CAM 5.0), NCAR technical note, NCAR/TN-486 + STR, 268
pp., 2010.
Newman, S. M., Smith, J. A., Glew, M. D., Rogers, S. M., and Taylor, J. P.:
Temperature and salinity dependence of sea surface emissivity in the thermal
infrared, Q. J. Roy. Meteor. Soc., 131, 2539–2557, https://doi.org/10.1256/qj.04.150,
2005.
Notz, D.: Challenges in simulating sea ice in Earth System Models, Wiley
Interdiscip, Rev. Clim. Change, 3, 509–526, https://doi.org/10.1002/wcc.189, 2012.
Overland, J. E.: Atmospheric boundary layer structure and drag coefficients
over sea ice, J. Geophys. Res.-Oceans, 90, 9029–9049,
https://doi.org/10.1029/JC090iC05p09029, 1985.
Pellerin, P., Ritchie, H., Saucier, F. J., Roy, F., Desjardins, S., Valin,
M., and Lee, V.: Impact of a two-way coupling between an atmospheric and an
ocean-ice model over the Gulf of St. Lawrence, Mon. Weather Rev., 132,
1379–1398, https://doi.org/10.1175/1520-0493(2004)132<1379:IOATCB>2.0.CO;2, 2004.
Petersen, G. N. and Renfrew, I. A.: Aircraft-based observations of air–sea
fluxes over Denmark Strait and the Irminger Sea during high wind speed
conditions, Q. J. Roy. Meteor. Soc., 135, 2030–2045,
https://doi.org/10.1002/qj.355, 2009.
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., Edwards, J. M.,
and Harris, C. M.: A sensitivity study of the sea ice simulation in the
global coupled climate model, HadGEM3, Ocean Model., 74, 60–76,
https://doi.org/10.1002/qj.355, 2014.
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., West,
A. E., Harris, C. M., Hunke, E. C., and Walters, D. N.: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model, Geosci. Model Dev., 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015,
2015.
Renfrew, I. A., Moore, G. W. K., Guest, P. S., and Bumke, K.: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF
analyses and NCEP reanalyses, J. Phys. Oceanogr., 32, 383–400, 2002.
Renfrew, I. A., Petersen, G. N., Outten, S., Sproson, D., Moore, G. W. K., Hay, C., Ohigashi, T., Zhang, S., Kristjánsson, J. E., Føre, I., Ólafsson, H., Gray, S. L., Irvine, E. A.,
Bovis, K., Brown, P. R. A., Swinbank, R., Haine, T., Lawrence, A., Pickart, R. S., Shapiro, M., and Woolley, A.: The Greenland flow distortion experiment, B. Am. Meteorol. Soc., 89, 1307–1324, 2008.
Roy, F., Chevallier, M., Smith, G., Dupont, F., Garric, G., Lemieux, J.-F.,
Lu, Y., and Davidson, F.: Arctic sea ice and freshwater sensitivity to the
treatment of the atmosphere-ice-ocean surface layer, J. Geophys. Res.-Oceans., 120, 4392–4417, https://doi.org/10.1002/2014JC010677,
2015.
Schröder, D., Vihma, T., Kerber, A., and Brümmer, B.: On the
parameterisation of Turbulent Surface Fluxes Over Heterogeneous Sea Ice
Surfaces, J. Geophys. Res., 108, 3195 https://doi.org/10.1029/2002JC001385, 2003.
Smith, G. C., Roy, F., and Brasnett, B.: Evaluation of an operational ice-ocean
analysis and forecasting system for the Gulf of St Lawrence, Q. J. Roy.
Meteor. Soc., 139, 419–433, https://doi.org/10.1002/qj.1982, 2013.
Sorteberg, A. and Kvingedal, B.: Atmospheric forcing on the Barents Sea
winter ice extent, J. Climate, 19, 4772–4784, 2006.
Stössel, A., Cheon, W.-G., and Vihma, T.: Interactive momentum flux
forcing over sea ice in a global ocean GCM, J. Geophys. Res., 113, C05010,
https://doi.org/10.1029/2007JC004173, 2008.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht,
https://doi.org/10.1007/978-94-009-3027-8, 1988.
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L.,
Kurtz, N., Laxon, S. L., and Bacon, S.: Impact of Variable Atmospheric and
Oceanic Form Drag on Simulations of Arctic Sea Ice, J. Phys. Oceanogr.,
44, 1329–1353, https://doi.org/10.1175/JPO-D-13-0215.1, 2014.
Uttal, T., Curry J. A., McPhee, M. G., Perovich, D. K., Moritz, R. E.,
Maslanik, J. A., Guest, P. S., Stern, H. L., Moore, J. A., Turenne, R.,
Heiberg, A., Serreze, M. C., Wylie, D, P., Persson, P. O. G., Paulson, C.
A., Halle, C., Morison, J. H., Wheeler, P. A., Makshtas, A.,Welch, H.,
Shupe, M. D., Intrieri, J. M., Stamnes, K., Lindsey, R. W., Pinkel, R.,
Pegau, W. S., Stanton, T. P., and Grenfeld, T. C.: Surface Heat Budget of
the Arctic Ocean, B. Am. Meteorol. Soc., 83, 255–275,
https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2,
2002.
Vancoppenolle, M., Bouillon, S., Fichefet, T., Goosse, H., Lecomte, O.,
Morales Maqueda, M. A. and Madec, G.: The Louvain-la-Neuve sea Ice Model
Users Guide, 89 pp., available at: http://www.elic.ucl.ac.be/repomodx/lim/ (last access: 29 January 2016),
2012.
Vihma, T.: Subgrid Parameterization of Surface Heat and Momentum Fluxes over
Polar Oceans, J. Geophys. Res., 100, 22625–22646, https://doi.org/10.1029/95JC02498,
1995.
Wadhams, P., Squire, V. A., Goodman, D. J., Cowan, A. M., and Moore, S. C.:
The attenuation rates of ocean waves in the marginal ice zone, J. Geophys.
Res.-Oceans, 93, 6799–6818, https://doi.org/10.1029/JC093iC06p06799, 1988.
Weiss, A. I., King, J., Lachlan-Cope, T., and Ladkin, R.: On the effective
aerodynamic and scalar roughness length of Weddell Sea ice, J. Geophys.
Res., 116, D19119, https://doi.org/10.1029/2011JD015949, 2011.
Weiss, A. I., King, J. C., Lachlan-Cope, T. A., and Ladkin, R. S.: Albedo of the ice covered Weddell and Bellingshausen Seas, The Cryosphere, 6, 479–491, https://doi.org/10.5194/tc-6-479-2012,
2012.
Short summary
Rare aircraft observations of surface momentum flux over the Arctic marginal ice zone provide the best means yet to constrain model representation of MIZ surface roughness. The sensitivity of surface roughness to ice concentration over the Arctic MIZ is presented; these results do not support the values used in many models. However, a leading parameterization scheme (that of Lüpkes et al., 2012) is found to provide a good representation of form drag, after some parameter alterations.
Rare aircraft observations of surface momentum flux over the Arctic marginal ice zone provide...
Altmetrics
Final-revised paper
Preprint