Articles | Volume 16, issue 19
https://doi.org/10.5194/acp-16-12411-2016
https://doi.org/10.5194/acp-16-12411-2016
Research article
 | 
04 Oct 2016
Research article |  | 04 Oct 2016

What controls the low ice number concentration in the upper troposphere?

Cheng Zhou, Joyce E. Penner, Guangxing Lin, Xiaohong Liu, and Minghuai Wang

Related authors

Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM
Cheng Zhou and Joyce E. Penner
Atmos. Chem. Phys., 17, 21–29, https://doi.org/10.5194/acp-17-21-2017,https://doi.org/10.5194/acp-17-21-2017, 2017
Short summary
Dehydration effects from contrails in a coupled contrail–climate model
U. Schumann, J. E. Penner, Yibin Chen, Cheng Zhou, and K. Graf
Atmos. Chem. Phys., 15, 11179–11199, https://doi.org/10.5194/acp-15-11179-2015,https://doi.org/10.5194/acp-15-11179-2015, 2015

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo
Atmos. Chem. Phys., 25, 1831–1850, https://doi.org/10.5194/acp-25-1831-2025,https://doi.org/10.5194/acp-25-1831-2025, 2025
Short summary
Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025,https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025,https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Claudia Christine Stephan and Bjorn Stevens
Atmos. Chem. Phys., 25, 1209–1226, https://doi.org/10.5194/acp-25-1209-2025,https://doi.org/10.5194/acp-25-1209-2025, 2025
Short summary
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025,https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U., and Möhler, O.: Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation, Science, 313, 1770–1773, https://doi.org/10.1126/science.1129726, 2006.
Barahona, D. and Nenes, A.: Parameterization of cirrus formation in large scale models: Homogenous nucleation, J. Geophys. Res., 113, D11211, https://doi.org/10.1029/2007JD009355, 2008.
Barahona, D. and Nenes, A.: Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation – polydisperse ice nuclei, Atmos. Chem. Phys., 9, 5933–5948, https://doi.org/10.5194/acp-9-5933-2009, 2009.
Barahona, D. and Nenes, A.: Dynamical states of low temperature cirrus, Atmos. Chem. Phys., 11, 3757–3771, https://doi.org/10.5194/acp-11-3757-2011, 2011.
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the community atmosphere model, J. Climate, 22, 3422–3448, 2009.
Download
Short summary
We examined the different ice nucleation parameterization factors that affect the simulated ice number concentrations in cirrus clouds in the upper troposphere using the CAM5 model. We examined the effect from three different updraft velocities (from low to high), two different water vapour accommodation coefficients (α = 0.1 or 1), the effect of including vapour deposition onto pre-existing ice particles during ice nucleation, and the effect of including SOA as heterogeneous ice nuclei.
Share
Altmetrics
Final-revised paper
Preprint