Articles | Volume 15, issue 15
Atmos. Chem. Phys., 15, 8615–8629, 2015
https://doi.org/10.5194/acp-15-8615-2015
Atmos. Chem. Phys., 15, 8615–8629, 2015
https://doi.org/10.5194/acp-15-8615-2015
Research article
03 Aug 2015
Research article | 03 Aug 2015

On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

S. Pandey et al.

Related authors

Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR
Sudhanshu Pandey, Sander Houweling, and Arjo Segers
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-339,https://doi.org/10.5194/gmd-2021-339, 2021
Revised manuscript accepted for GMD
Short summary
Using satellite data to identify the methane emission controls of South Sudan's wetlands
Sudhanshu Pandey, Sander Houweling, Alba Lorente, Tobias Borsdorff, Maria Tsivlidou, A. Anthony Bloom, Benjamin Poulter, Zhen Zhang, and Ilse Aben
Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021,https://doi.org/10.5194/bg-18-557-2021, 2021
Short summary
Carbon monoxide air pollution on sub-city scales and along arterial roads detected by the Tropospheric Monitoring Instrument
Tobias Borsdorff, Joost aan de Brugh, Sudhanshu Pandey, Otto Hasekamp, Ilse Aben, Sander Houweling, and Jochen Landgraf
Atmos. Chem. Phys., 19, 3579–3588, https://doi.org/10.5194/acp-19-3579-2019,https://doi.org/10.5194/acp-19-3579-2019, 2019
Short summary
What caused the extreme CO concentrations during the 2017 high-pollution episode in India?
Iris N. Dekker, Sander Houweling, Sudhanshu Pandey, Maarten Krol, Thomas Röckmann, Tobias Borsdorff, Jochen Landgraf, and Ilse Aben
Atmos. Chem. Phys., 19, 3433–3445, https://doi.org/10.5194/acp-19-3433-2019,https://doi.org/10.5194/acp-19-3433-2019, 2019
Short summary
Constraints and biases in a tropospheric two-box model of OH
Stijn Naus, Stephen A. Montzka, Sudhanshu Pandey, Sourish Basu, Ed J. Dlugokencky, and Maarten Krol
Atmos. Chem. Phys., 19, 407–424, https://doi.org/10.5194/acp-19-407-2019,https://doi.org/10.5194/acp-19-407-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
An ensemble-variational inversion system for the estimation of ammonia emissions using CrIS satellite ammonia retrievals
Michael Sitwell, Mark W. Shephard, Yves Rochon, Karen Cady-Pereira, and Enrico Dammers
Atmos. Chem. Phys., 22, 6595–6624, https://doi.org/10.5194/acp-22-6595-2022,https://doi.org/10.5194/acp-22-6595-2022, 2022
Short summary
A process-oriented evaluation of CAMS reanalysis ozone during tropopause folds over Europe for the period 2003–2018
Dimitris Akritidis, Andrea Pozzer, Johannes Flemming, Antje Inness, Philippe Nédélec, and Prodromos Zanis
Atmos. Chem. Phys., 22, 6275–6289, https://doi.org/10.5194/acp-22-6275-2022,https://doi.org/10.5194/acp-22-6275-2022, 2022
Short summary
Estimation of mechanistic parameters in the gas-phase reactions of ozone with alkenes for use in automated mechanism construction
Mike J. Newland, Camille Mouchel-Vallon, Richard Valorso, Bernard Aumont, Luc Vereecken, Michael E. Jenkin, and Andrew R. Rickard
Atmos. Chem. Phys., 22, 6167–6195, https://doi.org/10.5194/acp-22-6167-2022,https://doi.org/10.5194/acp-22-6167-2022, 2022
Short summary
Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies
Guus J. M. Velders, John S. Daniel, Stephen A. Montzka, Isaac Vimont, Matthew Rigby, Paul B. Krummel, Jens Muhle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 22, 6087–6101, https://doi.org/10.5194/acp-22-6087-2022,https://doi.org/10.5194/acp-22-6087-2022, 2022
Short summary
Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion
Joe McNorton, Nicolas Bousserez, Anna Agustí-Panareda, Gianpaolo Balsamo, Luca Cantarello, Richard Engelen, Vincent Huijnen, Antje Inness, Zak Kipling, Mark Parrington, and Roberto Ribas
Atmos. Chem. Phys., 22, 5961–5981, https://doi.org/10.5194/acp-22-5961-2022,https://doi.org/10.5194/acp-22-5961-2022, 2022
Short summary

Cited articles

Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, 2015.
Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013.
Basu, S., Krol, M., Butz, A., Clerbaux, C., Sawa, Y., Machida, T., Matsueda, H., Frankenberg, C., Hasekamp, O., and Aben, I.: The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI, Geophys. Res. Lett., 41, 1809–1815, https://doi.org/10.1002/2013GL059105, 2014.
Bergamaschi, P. and Frankenberg, C.: Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, 1–28, https://doi.org/10.1029/2009JD012287, 2009.
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M., Dlugokencky, E. J., and Goede, A.: Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, https://doi.org/10.1029/2006JD007268, 2007.
Download
Short summary
This study attempts to determine the feasibility of a new assimilation method of satellite measurements of CH4 and CO2 for optimization of their surface fluxes in a synthetic environment. Instead of their absolute concentrations, we assimilate the ratios of their concentrations (CH4/CO2) in our inversion. Doing so helps us to reduce the effect of atmospheric scattering on the measurements in our system. However, assimilation of the ratios makes the inversion non-linear.
Altmetrics
Final-revised paper
Preprint