Articles | Volume 15, issue 8
https://doi.org/10.5194/acp-15-4399-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-4399-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Compilation of Henry's law constants (version 4.0) for water as solvent
R. Sander
Atmospheric Chemistry Department, Max Planck Institute for Chemistry, P.O. Box 3060, 55020 Mainz, Germany
Note: Please note that an updated version is available at https://doi.org/10.5194/acp-23-10901-2023.
Related authors
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2024-3437, https://doi.org/10.5194/egusphere-2024-3437, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for e.g. alkyl nitrates and peroxy nitrates.
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
Geosci. Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-2597-2024, https://doi.org/10.5194/gmd-17-2597-2024, 2024
Short summary
Short summary
The capabilities of the Modular Earth Submodel System (MESSy) are extended to account for non-equilibrium aqueous-phase chemistry in the representation of deliquescent aerosols. When applying the new development in a global simulation, we find that MESSy's bias in modelling routinely observed reduced inorganic aerosol mass concentrations, especially in the United States. Furthermore, the representation of fine-aerosol pH is particularly improved in the marine boundary layer.
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024, https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Short summary
The open-source software MEXPLORER 1.0.0 is presented here. The program can be used to analyze, reduce, and visualize complex chemical reaction mechanisms. The mathematics behind the tool is based on graph theory: chemical species are represented as vertices, and reactions as edges. MEXPLORER is a community model published under the GNU General Public License.
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
Atmos. Chem. Phys., 23, 15165–15180, https://doi.org/10.5194/acp-23-15165-2023, https://doi.org/10.5194/acp-23-15165-2023, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species has been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
Rolf Sander
Atmos. Chem. Phys., 23, 10901–12440, https://doi.org/10.5194/acp-23-10901-2023, https://doi.org/10.5194/acp-23-10901-2023, 2023
Short summary
Short summary
According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry’s law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 46 434 values of Henry's law constants for 10 173 species, collected from 995 references. It is also available on the internet at https://www.henrys-law.org.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev., 14, 4103–4115, https://doi.org/10.5194/gmd-14-4103-2021, https://doi.org/10.5194/gmd-14-4103-2021, 2021
Short summary
Short summary
The Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) is developed and implemented into the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA). JAMOC is an explicit in-cloud oxidation scheme for oxygenated volatile organic compounds (OVOCs), which is suitable for global model applications. Within a box-model study, we show that JAMOC yields reduced gas-phase concentrations of most OVOCs and oxidants, except for nitrogen oxides.
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 9909–9930, https://doi.org/10.5194/acp-21-9909-2021, https://doi.org/10.5194/acp-21-9909-2021, 2021
Short summary
Short summary
In-cloud destruction of ozone depends on hydroperoxyl radicals in cloud droplets, where they are produced by oxygenated volatile organic compound (OVOC) oxygenation. Only rudimentary representations of these processes, if any, are currently available in global atmospheric models. By using a comprehensive atmospheric model that includes a complex in-cloud OVOC oxidation scheme, we show that atmospheric oxidants are reduced and models ignoring this process will underpredict clouds as ozone sinks.
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
Zacharias Marinou Nikolaou, Jyh-Yuan Chen, Yiannis Proestos, Jos Lelieveld, and Rolf Sander
Geosci. Model Dev., 11, 3391–3407, https://doi.org/10.5194/gmd-11-3391-2018, https://doi.org/10.5194/gmd-11-3391-2018, 2018
Short summary
Short summary
Chemistry is an important component of the atmosphere that describes many important physical processes. However, atmospheric chemical mechanisms include hundreds of species and reactions, posing a significant computational load. In this work, we use a powerful reduction method in order to develop a computationally faster chemical mechanism from a detailed mechanism. This enables accelerated simulations, which can be used to examine a wider range of processes in increased detail.
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
Bettina Derstroff, Imke Hüser, Efstratios Bourtsoukidis, John N. Crowley, Horst Fischer, Sergey Gromov, Hartwig Harder, Ruud H. H. Janssen, Jürgen Kesselmeier, Jos Lelieveld, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Gavin J. Phillips, Rolf Sander, Carina Sauvage, Jan Schuladen, Christof Stönner, Laura Tomsche, and Jonathan Williams
Atmos. Chem. Phys., 17, 9547–9566, https://doi.org/10.5194/acp-17-9547-2017, https://doi.org/10.5194/acp-17-9547-2017, 2017
Short summary
Short summary
The aim of the study was to examine aged air masses being transported from the European continent towards Cyprus. Longer-lived oxygenated volatile organic compounds (OVOCs) such as methanol were mainly impacted by long-distance transport and showed higher values in air masses from eastern Europe than in a flow regime from the west. The impact of the transport through the marine boundary layer as well as the influence of the residual layer/free troposphere on OVOCs were studied.
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016, https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, and C. Zetzsch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10135-2014, https://doi.org/10.5194/acpd-14-10135-2014, 2014
Revised manuscript has not been submitted
M. S. Long, W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson
Atmos. Chem. Phys., 14, 3397–3425, https://doi.org/10.5194/acp-14-3397-2014, https://doi.org/10.5194/acp-14-3397-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
R. Sander, A. A. P. Pszenny, W. C. Keene, E. Crete, B. Deegan, M. S. Long, J. R. Maben, and A. H. Young
Earth Syst. Sci. Data, 5, 385–392, https://doi.org/10.5194/essd-5-385-2013, https://doi.org/10.5194/essd-5-385-2013, 2013
H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen
Earth Syst. Sci. Data, 5, 365–373, https://doi.org/10.5194/essd-5-365-2013, https://doi.org/10.5194/essd-5-365-2013, 2013
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013, https://doi.org/10.5194/acp-13-10703-2013, 2013
M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan
Geosci. Model Dev., 6, 255–262, https://doi.org/10.5194/gmd-6-255-2013, https://doi.org/10.5194/gmd-6-255-2013, 2013
R. Sander and J. Bottenheim
Earth Syst. Sci. Data, 4, 215–282, https://doi.org/10.5194/essd-4-215-2012, https://doi.org/10.5194/essd-4-215-2012, 2012
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2024-3437, https://doi.org/10.5194/egusphere-2024-3437, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for e.g. alkyl nitrates and peroxy nitrates.
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
Geosci. Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-2597-2024, https://doi.org/10.5194/gmd-17-2597-2024, 2024
Short summary
Short summary
The capabilities of the Modular Earth Submodel System (MESSy) are extended to account for non-equilibrium aqueous-phase chemistry in the representation of deliquescent aerosols. When applying the new development in a global simulation, we find that MESSy's bias in modelling routinely observed reduced inorganic aerosol mass concentrations, especially in the United States. Furthermore, the representation of fine-aerosol pH is particularly improved in the marine boundary layer.
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024, https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Short summary
The open-source software MEXPLORER 1.0.0 is presented here. The program can be used to analyze, reduce, and visualize complex chemical reaction mechanisms. The mathematics behind the tool is based on graph theory: chemical species are represented as vertices, and reactions as edges. MEXPLORER is a community model published under the GNU General Public License.
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
Atmos. Chem. Phys., 23, 15165–15180, https://doi.org/10.5194/acp-23-15165-2023, https://doi.org/10.5194/acp-23-15165-2023, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species has been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
Rolf Sander
Atmos. Chem. Phys., 23, 10901–12440, https://doi.org/10.5194/acp-23-10901-2023, https://doi.org/10.5194/acp-23-10901-2023, 2023
Short summary
Short summary
According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry’s law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 46 434 values of Henry's law constants for 10 173 species, collected from 995 references. It is also available on the internet at https://www.henrys-law.org.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev., 14, 4103–4115, https://doi.org/10.5194/gmd-14-4103-2021, https://doi.org/10.5194/gmd-14-4103-2021, 2021
Short summary
Short summary
The Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) is developed and implemented into the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA). JAMOC is an explicit in-cloud oxidation scheme for oxygenated volatile organic compounds (OVOCs), which is suitable for global model applications. Within a box-model study, we show that JAMOC yields reduced gas-phase concentrations of most OVOCs and oxidants, except for nitrogen oxides.
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 9909–9930, https://doi.org/10.5194/acp-21-9909-2021, https://doi.org/10.5194/acp-21-9909-2021, 2021
Short summary
Short summary
In-cloud destruction of ozone depends on hydroperoxyl radicals in cloud droplets, where they are produced by oxygenated volatile organic compound (OVOC) oxygenation. Only rudimentary representations of these processes, if any, are currently available in global atmospheric models. By using a comprehensive atmospheric model that includes a complex in-cloud OVOC oxidation scheme, we show that atmospheric oxidants are reduced and models ignoring this process will underpredict clouds as ozone sinks.
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
Zacharias Marinou Nikolaou, Jyh-Yuan Chen, Yiannis Proestos, Jos Lelieveld, and Rolf Sander
Geosci. Model Dev., 11, 3391–3407, https://doi.org/10.5194/gmd-11-3391-2018, https://doi.org/10.5194/gmd-11-3391-2018, 2018
Short summary
Short summary
Chemistry is an important component of the atmosphere that describes many important physical processes. However, atmospheric chemical mechanisms include hundreds of species and reactions, posing a significant computational load. In this work, we use a powerful reduction method in order to develop a computationally faster chemical mechanism from a detailed mechanism. This enables accelerated simulations, which can be used to examine a wider range of processes in increased detail.
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
Bettina Derstroff, Imke Hüser, Efstratios Bourtsoukidis, John N. Crowley, Horst Fischer, Sergey Gromov, Hartwig Harder, Ruud H. H. Janssen, Jürgen Kesselmeier, Jos Lelieveld, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Gavin J. Phillips, Rolf Sander, Carina Sauvage, Jan Schuladen, Christof Stönner, Laura Tomsche, and Jonathan Williams
Atmos. Chem. Phys., 17, 9547–9566, https://doi.org/10.5194/acp-17-9547-2017, https://doi.org/10.5194/acp-17-9547-2017, 2017
Short summary
Short summary
The aim of the study was to examine aged air masses being transported from the European continent towards Cyprus. Longer-lived oxygenated volatile organic compounds (OVOCs) such as methanol were mainly impacted by long-distance transport and showed higher values in air masses from eastern Europe than in a flow regime from the west. The impact of the transport through the marine boundary layer as well as the influence of the residual layer/free troposphere on OVOCs were studied.
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016, https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, and C. Zetzsch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10135-2014, https://doi.org/10.5194/acpd-14-10135-2014, 2014
Revised manuscript has not been submitted
M. S. Long, W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson
Atmos. Chem. Phys., 14, 3397–3425, https://doi.org/10.5194/acp-14-3397-2014, https://doi.org/10.5194/acp-14-3397-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
R. Sander, A. A. P. Pszenny, W. C. Keene, E. Crete, B. Deegan, M. S. Long, J. R. Maben, and A. H. Young
Earth Syst. Sci. Data, 5, 385–392, https://doi.org/10.5194/essd-5-385-2013, https://doi.org/10.5194/essd-5-385-2013, 2013
H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen
Earth Syst. Sci. Data, 5, 365–373, https://doi.org/10.5194/essd-5-365-2013, https://doi.org/10.5194/essd-5-365-2013, 2013
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013, https://doi.org/10.5194/acp-13-10703-2013, 2013
M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan
Geosci. Model Dev., 6, 255–262, https://doi.org/10.5194/gmd-6-255-2013, https://doi.org/10.5194/gmd-6-255-2013, 2013
R. Sander and J. Bottenheim
Earth Syst. Sci. Data, 4, 215–282, https://doi.org/10.5194/essd-4-215-2012, https://doi.org/10.5194/essd-4-215-2012, 2012
Related subject area
Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation of reactive nitrogen species promoted by iron ions through the photochemistry of a neonicotinoid insecticide
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes determined by the relative-rate technique
Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
Mechanistic insight into the kinetic fragmentation of norpinonic acid in the gas phase: an experimental and density functional theory (DFT) study
Temperature-dependent rate coefficients for the reaction of OH radicals with selected alkanes, aromatic compounds and monoterpenes
Exploring HONO production from particulate nitrate photolysis in Chinese representative regions: characteristics, influencing factors and environmental implications
Secondary reactions of aromatics-derived oxygenated organic molecules lead to plentiful highly oxygenated organic molecules within an intraday OH exposure
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Negligible temperature dependence of the ozone–iodide reaction and implications for oceanic emissions of iodine
Extension, development, and evaluation of the representation of the OH-initiated dimethyl sulfide (DMS) oxidation mechanism in the Master Chemical Mechanism (MCM) v3.3.1 framework
On the potential use of highly oxygenated organic molecules (HOMs) as indicators for ozone formation sensitivity
Oxygenated organic molecules produced by low-NOx photooxidation of aromatic compounds: contributions to secondary organic aerosol and steric hindrance
Impact of temperature on the role of Criegee intermediates and peroxy radicals in dimer formation from β-pinene ozonolysis
Atmospheric impact of 2-methylpentanal emissions: kinetics, photochemistry, and formation of secondary pollutants
Quantifying primary oxidation products in the OH-initiated reaction of benzyl alcohol
Technical note: Gas-phase nitrate radical generation via irradiation of aerated ceric ammonium nitrate mixtures
Direct probing of acylperoxy radicals during ozonolysis of α-pinene: constraints on radical chemistry and production of highly oxygenated organic molecules
Atmospheric photooxidation and ozonolysis of sabinene: reaction rate coefficients, product yields, and chemical budget of radicals
Compilation of Henry's law constants (version 5.0.0) for water as solvent
Measurement report: Carbonyl sulfide production during dimethyl sulfide oxidation in the atmospheric simulation chamber SAPHIR
An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation
Measuring and modeling investigation of the net photochemical ozone production rate via an improved dual-channel reaction chamber technique
Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions
Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone
On the formation of highly oxidized pollutants by autoxidation of terpenes under low-temperature-combustion conditions: the case of limonene and α-pinene
Selective deuteration as a tool for resolving autoxidation mechanisms in α-pinene ozonolysis
Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
Measurement of Henry's law and liquid-phase loss rate constants of peroxypropionic nitric anhydride (PPN) in deionized water and in n-octanol
Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes
Atmospheric breakdown chemistry of the new “green” solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals
Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking
Observations of gas-phase products from the nitrate-radical-initiated oxidation of four monoterpenes
Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical
Oxidation product characterization from ozonolysis of the diterpene ent-kaurene
Kinetics of OH + SO2 + M: temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour
Formation of organic sulfur compounds through SO2-initiated photochemistry of PAHs and dimethylsulfoxide at the air-water interface
Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants
Evaluation of the daytime tropospheric loss of 2-methylbutanal
Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour
Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility
N2O5 uptake onto saline mineral dust: a potential missing source of tropospheric ClNO2 in inland China
NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical
Marine gas-phase sulfur emissions during an induced phytoplankton bloom
Biomass burning plume chemistry: OH-radical-initiated oxidation of 3-penten-2-one and its main oxidation product 2-hydroxypropanal
Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets
Characterization of ambient volatile organic compounds, source apportionment, and the ozone–NOx–VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions
Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction
Reactions of NO3 with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction
Zhu Ran, Yanan Hu, Yuanzhe Li, Xiaoya Gao, Can Ye, Shuai Li, Xiao Lu, Yongming Luo, Sasho Gligorovski, and Jiangping Liu
Atmos. Chem. Phys., 24, 11943–11954, https://doi.org/10.5194/acp-24-11943-2024, https://doi.org/10.5194/acp-24-11943-2024, 2024
Short summary
Short summary
We report enhanced formation of nitrous acid (HONO) and NOx (NO + NO2) triggered by iron ions during photolysis of neonicotinoid insecticides at the air–water interface. This novel previously overlooked source of atmospheric HONO and NOx may be an important contribution to the global nitrogen cycle and affects atmospheric oxidizing capacity and climate change.
Yanyan Xin, Chengtang Liu, Xiaoxiu Lun, Shuyang Xie, Junfeng Liu, and Yujing Mu
Atmos. Chem. Phys., 24, 11409–11429, https://doi.org/10.5194/acp-24-11409-2024, https://doi.org/10.5194/acp-24-11409-2024, 2024
Short summary
Short summary
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes were determined using the multivariate relative-rate technique. A total of 25 relative-rate coefficients at room temperature and 24 Arrhenius expressions in the temperature range of 273–323 K were obtained, which expanded the data available.
Yuanyuan Luo, Ditte Thomsen, Emil Mark Iversen, Pontus Roldin, Jane Tygesen Skønager, Linjie Li, Michael Priestley, Henrik B. Pedersen, Mattias Hallquist, Merete Bilde, Marianne Glasius, and Mikael Ehn
Atmos. Chem. Phys., 24, 9459–9473, https://doi.org/10.5194/acp-24-9459-2024, https://doi.org/10.5194/acp-24-9459-2024, 2024
Short summary
Short summary
∆3-carene is abundantly emitted from vegetation, but its atmospheric oxidation chemistry has received limited attention. We explored highly oxygenated organic molecule (HOM) formation from ∆3-carene ozonolysis in chambers and investigated the impact of temperature and relative humidity on HOM formation. Our findings provide new insights into ∆3-carene oxidation pathways and their potential to impact atmospheric aerosols.
Izabela Kurzydym, Agata Błaziak, Kinga Podgórniak, Karol Kułacz, and Kacper Błaziak
Atmos. Chem. Phys., 24, 9309–9322, https://doi.org/10.5194/acp-24-9309-2024, https://doi.org/10.5194/acp-24-9309-2024, 2024
Short summary
Short summary
This paper outlines a unique scientific strategy for studying the reactivity of atmospherically relevant norpinonic acid (NA). The publication offers a new toolbox, illustrating NA's fragmentation and pattern of kinetic degradation leading to the formation of new small molecules. Furthermore, the research strategy presented here demonstrates how a mass spectrometer can function as a gas-phase reactor and the quantum chemistry method can serve as a reaction model builder.
Florian Berg, Anna Novelli, René Dubus, Andreas Hofzumahaus, Frank Holland, Andreas Wahner, and Hendrik Fuchs
EGUsphere, https://doi.org/10.5194/egusphere-2024-2614, https://doi.org/10.5194/egusphere-2024-2614, 2024
Short summary
Short summary
This study reports temperature dependent reaction rate constants of the reaction of atmospherically relevant hydrocarbons from biogenic sources (MVK, monoterpenes) and anthropogenic sources (alkanes, aromatics). Measurements were done at atmospheric conditions (ambient pressure, temperature range) in air.
Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2141, https://doi.org/10.5194/egusphere-2024-2141, 2024
Short summary
Short summary
The photolysis rate constants of particulate nitrate for HONO production (JHONO) with PM2.5 samples collected from five representative sites in China varied over a wide range. The parameterization equation between JHONO and OC/NO3− has been established and can be used to estimate JHONO in different environments. Our work provided an important reference for the research in other areas in the world with high proportion of organic components in aerosol samples, such as United States and Europe.
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024, https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary
Short summary
The formation and evolution mechanisms of aromatics-derived highly oxygenated organic molecules (HOMs) are essential to understand the formation of secondary organic aerosol pollution. Our conclusion highlights an underappreciated formation pathway of aromatics-derived HOMs and elucidates detailed formation mechanisms of certain HOMs, which advances our understanding of HOMs and potentially explains the existing gap between model prediction and ambient measurement of the HOMs' concentrations.
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024, https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules are important contributors to secondary organic aerosol. Their yield depends on detailed atmospheric chemical composition. One important parameter is the ratio of hydroperoxy radicals to organic peroxy radicals (HO2/RO2), and we show that higher HO2/RO2 ratios lower the secondary organic aerosol yield. This is of importance as laboratory studies are often biased towards organic peroxy radicals.
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024, https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
Lorrie Simone Denise Jacob, Chiara Giorio, and Alexander Thomas Archibald
Atmos. Chem. Phys., 24, 3329–3347, https://doi.org/10.5194/acp-24-3329-2024, https://doi.org/10.5194/acp-24-3329-2024, 2024
Short summary
Short summary
Recent studies on DMS have provided new challenges to our mechanistic understanding. Here we synthesise a number of recent studies to further develop and extend a state-of-the-art mechanism. Our new mechanism is shown to outperform all existing mechanisms when compared over a wide set of conditions. The development of an improved DMS mechanism will help lead the way to better the understanding the climate impacts of DMS emissions in past, present, and future atmospheric conditions.
Jiangyi Zhang, Jian Zhao, Yuanyuan Luo, Valter Mickwitz, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 24, 2885–2911, https://doi.org/10.5194/acp-24-2885-2024, https://doi.org/10.5194/acp-24-2885-2024, 2024
Short summary
Short summary
Due to the intrinsic connection between the formation pathways of O3 and HOMs, the ratio of HOM dimers or non-nitrate monomers to HOM organic nitrates could be used to determine O3 formation regimes. Owing to the fast formation and short lifetimes of HOMs, HOM-based indicating ratios can describe O3 formation in real time. Despite the success of our approach in this simple laboratory system, applicability to the much more complex atmosphere remains to be determined.
Xi Cheng, Yong Jie Li, Yan Zheng, Keren Liao, Theodore K. Koenig, Yanli Ge, Tong Zhu, Chunxiang Ye, Xinghua Qiu, and Qi Chen
Atmos. Chem. Phys., 24, 2099–2112, https://doi.org/10.5194/acp-24-2099-2024, https://doi.org/10.5194/acp-24-2099-2024, 2024
Short summary
Short summary
In this study we conducted laboratory measurements to investigate the formation of gas-phase oxygenated organic molecules (OOMs) from six aromatic volatile organic compounds (VOCs). We provide a thorough analysis on the effects of precursor structure (substituents and ring numbers) on product distribution and highlight from a laboratory perspective that heavy (e.g., double-ring) aromatic VOCs are important in initial particle growth during secondary organic aerosol formation.
Yiwei Gong, Feng Jiang, Yanxia Li, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 167–184, https://doi.org/10.5194/acp-24-167-2024, https://doi.org/10.5194/acp-24-167-2024, 2024
Short summary
Short summary
This study investigates the role of the important atmospheric reactive intermediates in the formation of dimers and aerosol in monoterpene ozonolysis at different temperatures. Through conducting a series of chamber experiments and utilizing chemical kinetic and aerosol dynamic models, the SOA formation processes are better described, especially for colder regions. The results can be used to improve the chemical mechanism modeling of monoterpenes and SOA parameterization in transport models.
María Asensio, Sergio Blázquez, María Antiñolo, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 23, 14115–14126, https://doi.org/10.5194/acp-23-14115-2023, https://doi.org/10.5194/acp-23-14115-2023, 2023
Short summary
Short summary
In this work, we focus on the atmospheric chemistry and consequences for air quality of 2-methylpentanal (2MP), which is widely used as a flavoring ingredient and as an intermediate in the synthesis of dyes, resins, and pharmaceuticals. Measurements are presented on how fast 2MP is degraded by sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms and what products are generated. We conclude that 2MP will be degraded in a few hours, affecting local air quality.
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-2483, https://doi.org/10.5194/egusphere-2023-2483, 2023
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
Andrew T. Lambe, Bin Bai, Masayuki Takeuchi, Nicole Orwat, Paul M. Zimmerman, Mitchell W. Alton, Nga L. Ng, Andrew Freedman, Megan S. Claflin, Drew R. Gentner, Douglas R. Worsnop, and Pengfei Liu
Atmos. Chem. Phys., 23, 13869–13882, https://doi.org/10.5194/acp-23-13869-2023, https://doi.org/10.5194/acp-23-13869-2023, 2023
Short summary
Short summary
We developed a new method to generate nitrate radicals (NO3) for atmospheric chemistry applications that works by irradiating mixtures containing ceric ammonium nitrate with a UV light at room temperature. It has several advantages over traditional NO3 sources. We characterized its performance over a range of mixture and reactor conditions as well as other irradiation products. Proof of concept was demonstrated by generating and characterizing oxidation products of the β-pinene + NO3 reaction.
Han Zang, Dandan Huang, Jiali Zhong, Ziyue Li, Chenxi Li, Huayun Xiao, and Yue Zhao
Atmos. Chem. Phys., 23, 12691–12705, https://doi.org/10.5194/acp-23-12691-2023, https://doi.org/10.5194/acp-23-12691-2023, 2023
Short summary
Short summary
Acylperoxy radicals (RO2) are key intermediates in the atmospheric oxidation of organic compounds, yet our knowledge of their identities and chemistry remains poor. Using direct measurements and kinetic modeling, we identify the composition and formation pathways of acyl RO2 and quantify their contribution to highly oxygenated organic molecules during α-pinene ozonolysis, which will help to understand oxidation chemistry of monoterpenes and sources of low-volatility organics in the atmosphere.
Jacky Y. S. Pang, Florian Berg, Anna Novelli, Birger Bohn, Michelle Färber, Philip T. M. Carlsson, René Dubus, Georgios I. Gkatzelis, Franz Rohrer, Sergej Wedel, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 12631–12649, https://doi.org/10.5194/acp-23-12631-2023, https://doi.org/10.5194/acp-23-12631-2023, 2023
Short summary
Short summary
In this study, the oxidations of sabinene by OH radicals and ozone were investigated with an atmospheric simulation chamber. Reaction rate coefficients of the OH-oxidation reaction at temperatures between 284 to 340 K were determined for the first time in the laboratory by measuring the OH reactivity. Product yields determined in chamber experiments had good agreement with literature values, but discrepancies were found between experimental yields and expected yields from oxidation mechanisms.
Rolf Sander
Atmos. Chem. Phys., 23, 10901–12440, https://doi.org/10.5194/acp-23-10901-2023, https://doi.org/10.5194/acp-23-10901-2023, 2023
Short summary
Short summary
According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry’s law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 46 434 values of Henry's law constants for 10 173 species, collected from 995 references. It is also available on the internet at https://www.henrys-law.org.
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623, https://doi.org/10.5194/acp-23-10609-2023, https://doi.org/10.5194/acp-23-10609-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (OCS) transports sulfur from the troposphere to the stratosphere, where sulfate aerosols are formed that influence climate and stratospheric chemistry. An uncertain OCS source in the troposphere is chemical production form dimethyl sulfide (DMS), a gas released in large quantities from the oceans. We carried out experiments in a large atmospheric simulation chamber to further elucidate the chemical mechanism of OCS production from DMS.
Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen
Atmos. Chem. Phys., 23, 10517–10532, https://doi.org/10.5194/acp-23-10517-2023, https://doi.org/10.5194/acp-23-10517-2023, 2023
Short summary
Short summary
This work illustrates how a common volatile hydrocarbon, hexanal, has the potential to undergo atmospheric autoxidation that leads to prompt formation of condensable material that subsequently contributes to aerosol formation, deteriorating the air quality of urban atmospheres. We used the combined state-of-the-art quantum chemical modeling and experimental flow reactor experiments under atmospheric conditions to resolve the autoxidation mechanism of hexanal initiated by a common oxidant.
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910, https://doi.org/10.5194/acp-23-9891-2023, https://doi.org/10.5194/acp-23-9891-2023, 2023
Short summary
Short summary
By employing an improved net photochemical ozone production rate (NPOPR) detection system based on the dual-channel reaction chamber technique, we measured the net photochemical ozone production rate in the Pearl River Delta in China. The photochemical ozone formation mechanisms in the reaction and reference chambers were investigated using the observation-data-constrained box model, which helped us to validate the NPOPR detection system and understand photochemical ozone formation mechanism.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023, https://doi.org/10.5194/acp-23-7767-2023, 2023
Short summary
Short summary
Solvents are chemical compounds with countless uses in the chemical industry, and they also represent one of the main sources of pollution in the chemical sector. Scientists are trying to develop new
greensafer solvents which present favourable advantages when compared to traditional solvents. Since the assessment of these green solvents often lacks air quality considerations, this study aims to understand the behaviour of these compounds, investigating their reactivity in the troposphere.
Roland Benoit, Nesrine Belhadj, Zahraa Dbouk, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys., 23, 5715–5733, https://doi.org/10.5194/acp-23-5715-2023, https://doi.org/10.5194/acp-23-5715-2023, 2023
Short summary
Short summary
We observed a surprisingly similar set of oxidation product chemical formulas from limonene and α-pinene, including oligomers, formed under cool-flame (present experiments) and simulated atmospheric oxidation (literature). Data analysis indicated that a subset of chemical formulas is common to all experiments independently of experimental conditions. Also, this study indicates that many detected chemical formulas can be ascribed to an autooxidation reaction.
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Kevin D. Easterbrook, Mitchell A. Vona, Kiana Nayebi-Astaneh, Amanda M. Miller, and Hans D. Osthoff
Atmos. Chem. Phys., 23, 311–322, https://doi.org/10.5194/acp-23-311-2023, https://doi.org/10.5194/acp-23-311-2023, 2023
Short summary
Short summary
The trace gas peroxypropionyl nitrate (PPN) is generated in photochemical smog, phytotoxic, a strong eye irritant, and possibly mutagenic. Here, its solubility and reactivity in water and in octanol were investigated using a bubble flow apparatus, yielding its Henry's law constant and octanol–water partition coefficient (Kow). The results allow the fate of PPN to be more accurately constrained in atmospheric chemical transport models, including its uptake on clouds, organic aerosol, and leaves.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
Michelia Dam, Danielle C. Draper, Andrey Marsavin, Juliane L. Fry, and James N. Smith
Atmos. Chem. Phys., 22, 9017–9031, https://doi.org/10.5194/acp-22-9017-2022, https://doi.org/10.5194/acp-22-9017-2022, 2022
Short summary
Short summary
We performed chamber experiments to measure the composition of the gas-phase reaction products of nitrate-radical-initiated oxidation of four monoterpenes. The total organic yield, effective oxygen-to-carbon ratio, and dimer-to-monomer ratio were correlated with the observed particle formation for the monoterpene systems with some exceptions. The Δ-carene system produced the most particles, followed by β-pinene, with the α-pinene and α-thujene systems producing no particles.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022, https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 22, 6411–6434, https://doi.org/10.5194/acp-22-6411-2022, https://doi.org/10.5194/acp-22-6411-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with the nitrate radical during the nighttime to form functionalized products. The purpose of this study is to furnish kinetic and mechanistic data for terpinolene and β-caryophyllene, using simulation chamber experiments. Rate constants have been measured using both relative and absolute methods, and mechanistic studies have been conducted in order to identify and quantify the main reaction products.
Yuanyuan Luo, Olga Garmash, Haiyan Li, Frans Graeffe, Arnaud P. Praplan, Anssi Liikanen, Yanjun Zhang, Melissa Meder, Otso Peräkylä, Josep Peñuelas, Ana María Yáñez-Serrano, and Mikael Ehn
Atmos. Chem. Phys., 22, 5619–5637, https://doi.org/10.5194/acp-22-5619-2022, https://doi.org/10.5194/acp-22-5619-2022, 2022
Short summary
Short summary
Diterpenes were only recently observed in the atmosphere, and little is known of their atmospheric fates. We explored the ozonolysis of the diterpene kaurene in a chamber, and we characterized the oxidation products for the first time using chemical ionization mass spectrometry. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Haoyu Jiang, Yingyao He, Yiqun Wang, Sheng Li, Bin Jiang, Luca Carena, Xue Li, Lihua Yang, Tiangang Luan, Davide Vione, and Sasho Gligorovski
Atmos. Chem. Phys., 22, 4237–4252, https://doi.org/10.5194/acp-22-4237-2022, https://doi.org/10.5194/acp-22-4237-2022, 2022
Short summary
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
Roland Vernooij, Ulrike Dusek, Maria Elena Popa, Peng Yao, Anupam Shaikat, Chenxi Qiu, Patrik Winiger, Carina van der Veen, Thomas Callum Eames, Natasha Ribeiro, and Guido R. van der Werf
Atmos. Chem. Phys., 22, 2871–2890, https://doi.org/10.5194/acp-22-2871-2022, https://doi.org/10.5194/acp-22-2871-2022, 2022
Short summary
Short summary
Landscape fires are a major source of greenhouse gases and aerosols, particularly in sub-tropical savannas. Stable carbon isotopes in emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to greenhouse gases and aerosols if the process is well understood. This helps us to link individual vegetation types to emissions, identify biomass burning emissions in the atmosphere, and improve the reconstruction of historic fire regimes.
María Asensio, María Antiñolo, Sergio Blázquez, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 22, 2689–2701, https://doi.org/10.5194/acp-22-2689-2022, https://doi.org/10.5194/acp-22-2689-2022, 2022
Short summary
Short summary
The diurnal atmospheric degradation of 2-methylbutanal, 2 MB, emitted by sources like vegetation or the poultry industry is evaluated in this work. Sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms initiate this degradation. Measurements of how fast 2 MB is degraded and what products are generated are presented. The lifetime of 2 MB is around 1 h at noon, when the OH reaction dominates. Thus, 2 MB will not be transported far, affecting only local air quality.
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, https://doi.org/10.5194/acp-22-2203-2022, 2022
Short summary
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Zhiyuan Gao, Nicolas-Xavier Geilfus, Alfonso Saiz-Lopez, and Feiyue Wang
Atmos. Chem. Phys., 22, 1811–1824, https://doi.org/10.5194/acp-22-1811-2022, https://doi.org/10.5194/acp-22-1811-2022, 2022
Short summary
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Mike J. Newland, Yangang Ren, Max R. McGillen, Lisa Michelat, Véronique Daële, and Abdelwahid Mellouki
Atmos. Chem. Phys., 22, 1761–1772, https://doi.org/10.5194/acp-22-1761-2022, https://doi.org/10.5194/acp-22-1761-2022, 2022
Short summary
Short summary
Wildfires are increasing in extent and severity, driven by climate change. Such fires emit large amounts of volatile organic compounds (VOCs) to the atmosphere. Many of these, such as the furans studied here, are very reactive and are rapidly converted to other VOCs, which are expected to have negative health effects and to further impact the climate. Here, we establish the importance of the nitrate radical for removing these compounds both during the night and during the day.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572, https://doi.org/10.5194/acp-21-18557-2021, https://doi.org/10.5194/acp-21-18557-2021, 2021
Short summary
Short summary
Understanding the chemistry of biomass burning plumes is of global interest. Within this work we investigated the OH radical reaction of 3-penten-2-one, which has been identified in biomass burning emissions. We observed the primary formation of peroxyacetyl nitrate (PAN), a key NOx reservoir species. Besides, PAN precursors were also identified as main oxidation products. 3-Penten-2-one is shown to be an example explaining rapid PAN formation within young biomass burning plumes.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
Cited articles
Abd-El-Bary, M. F., Hamoda, M. F., Tanisho, S., and Wakao, N.: Henry's constants for phenol over its diluted aqueous solution, J. Chem. Eng. Data, 31, 229–230, 1986.
Abou-Naccoul, R., Mokbel, I., Bassil, G., Saab, J., Stephan, K., and Jose, J.: Aqueous solubility (in the range between 298.15 and 338.15 K), vapor pressures (in the range between 10−5 and 80 Pa) and Henry's law constant of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene, Chemosphere, 95, 41–49, 2014.
Abraham, M. A., Enomoto, K., Clarke, E. D., Rosés, M., Ràfols, C., and Fuguet, E.: Henry's law constants or air to water partition coefficients for 1,3,5-triazines by an LFER method, J. Environ. Monit., 9, 234–239, 2007.
Abraham, M. H.: Free energies of solution of rare gases and alkanes in water and nonaqueous solvents. A quantitative assessment of the hydrophobic effect, J. Am. Chem. Soc., 101, 5477–5484, 1979.
Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, 1984.
Abraham, M. H. and Acree Jr., W. E.: Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration, Fluid Phase Equilib., 262, 97–110, 2007.
Abraham, M. H. and Matteoli, E.: The temperature variation of the hydrophobic effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000, 1988.
Abraham, M. H. and Nasehzadeh, A.: Thermodynamics of solution of gaseous tetramethyltin in 36 solvents. Comparison of experimental results with cavity-theory calculations, J. Chem. Soc. Faraday Trans. 1, 77, 321–339, 1981.
Abraham, M. H., Whiting, G. S., Fuchs, R., and Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, 291–300, 1990.
Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., Leo, A., and Taft, R. S.: Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination, J. Chem. Soc. Perkin Trans., 2, 1777–1791, 1994a.
Abraham, M. H., Chadha, H. S., Whiting, G. S., and Mitchell, R.: Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the Δlog P parameter of Seiler, J. Pharm. Sci., 83, 1085–1100, 1994b.
Abraham, M. H., Gil-Lostes, J., Acree Jr., W. E., Cometto-Muñiz, J. E., and Cain, W. S.: Solvation parameters for mercury and mercury(II) compounds: calculation of properties of environmental interest, J. Environ. Monit., 10, 435–442, 2008.
Alaee, M., Whittal, R. M., and Strachan, W. M. J.: The effect of water temperature and composition on Henry's law constant for various PAH's, Chemosphere, 32, 1153–1164, 1996.
Albanese, V., Milano, J. C., and Vernet, J. L.: Etude de l'evaporation de quelques hydrocarbures halogenenes de faible masse moleculaire dissous a l'etat de traces dans l'eau, Environ. Technol. Lett., 8, 657–668, 1987.
Allen, J. M., Balcavage, W. X., Ramachandran, B. R., and Shrout, A. L.: Determination of Henry's Law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method, Environ. Toxicol. Chem., 17, 1216–1221, 1998.
Allou, L., El Maimouni, L., and Le Calvé, S.: Henry's law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition, Atmos. Environ., 45, 2991–2998, 2011.
Almeida, M. B., Alvarez, A. M., de Miguel, E. M., and del Hoyo, E. S.: Setchenow coefficients for naphthols by distribution method, Can. J. Chem., 61, 244–248, 1983.
Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., and Piringer, O. G.: Henry's law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, 1999.
Amels, P., Elias, H., Götz, U., Steingens, U., and Wannowius, K. J.: Chapter 3.1: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., 77–88, Springer Verlag, Berlin, 1996.
Amoore, J. E. and Buttery, R. G.: Partition coefficient and comparative olfactometry, Chem. Senses Flavour, 3, 57–71, 1978.
Anderson, M. A.: Influence of surfactants on vapor-liquid partitioning, Environ. Sci. Technol., 26, 2186–2191, 1992.
Andersson, M. E., Gårdfeldt, K., Wängberg, I., and Strömberg, D.: Determination of Henry's law constant for elemental mercury, Chemosphere, 73, 587–592, 2008.
Andon, R. J. L., Cox, J. D., and Herington, E. F. G.: Phase relationships in the pyridine series. Part V. The thermodynamic properties of dilute solutions of pyridine bases in water at 25° and 40°, J. Chem. Soc., 3188–3196, 1954.
Andrew, S. P. S. and Hanson, D.: The dynamics of nitrous gas absorption, Chem. Eng. Sci., 14, 105–113, 1961.
Aprea, E., Biasioli, F., Märk, T. D., and Gasperi, F.: PTR-MS study of esters in water and water/ethanol solutions: Fragmentation patterns and partition coefficients, Int. J. Mass Spectrom., 262, 114–121, 2007.
Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, 1983.
Arijs, E. and Brasseur, G.: Acetonitrile in the stratosphere and implications for positive ion composition, J. Geophys. Res., 91D, 4003–4016, 1986.
Armbrust, K. L.: Pesticide hydroxyl radical rate constants: Measurements and estimates of their importance in aquatic environments, Environ. Toxicol. Chem., 19, 2175–2180, 2000.
Arnett, E. M. and Chawla, B.: Complete thermodynamic analysis of the hydration of thirteen pyridines and pyridinium ions. The special case of 2,6-di-tert-butylpyridine, J. Am. Chem. Soc., 101, 7141–7146, 1979.
Arnett, E. M., Chawla, B., Bell, L., Taagepera, M., Hehre, W. J., and Taft, R. W.: Solvation and hydrogen bonding of pyridinium ions, J. Am. Chem. Soc., 99, 5729–5738, 1977.
Arp, H. P. H. and Schmidt, T. C.: Air-water transfer of MTBE, its degradation products, and alternative fuel oxygenates: the role of temperature, Environ. Sci. Technol., 38, 5405–5412, 2004.
Arp, H. P. H., Niederer, C., and Goss, K. U.: Predicting the partitioning behavior of various highly fluorinated compounds, Environ. Sci. Technol., 40, 7298–7304, 2006.
Ashton, J. T., Dawe, R. A., Miller, K. W., Smith, E. B., and Stickings, B. J.: The solubility of certain gaseous fluorine compounds in water, J. Chem. Soc. A, 1793–1796, 1968.
Ashworth, R. A., Howe, G. B., Mullins, M. E., and Rogers, T. N.: Air-water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, 1988.
Atkins, P. W.: Physical Chemistry, Oxford University Press, 1986.
Atlas, E., Foster, R., and Giam, C. S.: Air-sea exchange of high-molecular weight organic pollutants: laboratory studies, Environ. Sci. Technol., 16, 283–286, 1982.
Atlas, E., Velasco, A., Sullivan, K., and Giam, C. S.: A radiotracer study of air-water exchange of synthetic organic compounds, Chemosphere, 12, 1251–1258, 1983.
Ayers, G. P.: Equilibrium partial pressures over (NH4)2SO4/H2SO4 mixtures, Aust. J. Chem., 36, 179–182, 1983.
Ayers, G. P., Gillett, R. W., and Gras, J. L.: On the vapor pressure of sulfuric acid, Geophys. Res. Lett., 7, 433–436, 1980.
Ayuttaya, P. C. N., Rogers, T. N., Mullins, M. E., and Kline, A. A.: Henry's law constants derived from equilibrium static cell measurements for dilute organic-water mixtures, Fluid Phase Equilib., 185, 359–377, 2001.
Bagno, A., Lucchini, V., and Scorrano, G.: Thermodynamics of protonation of ketones and esters and energies of hydration of their conjugate acids, J. Phys. Chem., 95, 345–352, 1991.
Bakierowska, A.-M. and Trzeszczyński, J.: Graphical method for the determination of water/gas partition coefficients of volatile organic compounds by a headspace gas chromatography technique, Fluid Phase Equilib., 213, 139–146, 2003.
Balls, P. W.: Gas transfer across air-water interfaces, PhD thesis, University of East Anglia, Great Britain, 1980.
Ballschmiter, K. and Wittlinger, R.: Interhemisphere exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere, Environ. Sci. Technol., 25, 1103–1111, 1991.
Bamford, H. A., Poster, D. L., and Baker, J. E.: Temperature dependence of Henry's law constants of thirteen polycyclic aromatic hydrocarbons between 4 °C and 31 °C, Environ. Toxicol. Chem., 18, 1905–1912, 1999a.
Bamford, H. A., Poster, D. L., and Baker, J. E.: Method for measuring the temperature dependence of the Henry's law constant of selected polycyclic aromatic hydrocarbons, Polycyclic Aromat. Compd., 14, 11–22, 1999b.
Bamford, H. A., Poster, D. L., and Baker, J. E.: Henry's law constants of polychlorinated biphenyl congeners and their variation with temperature, J. Chem. Eng. Data, 45, 1069–1074, 2000.
Bamford, H. A., Poster, D. L., Huie, R. E., and Baker, J. E.: Using extrathermodynamic relationships to model the temperature dependence of Henry's law constants of 209 PCB congeners, Environ. Sci. Technol., 36, 4395–4402, 2002.
Barcellos da Rosa, M., Behnke, W., and Zetzsch, C.: Study of the heterogeneous reaction of O3 with CH3SCH3 using the wetted-wall flowtube technique, Atmos. Chem. Phys., 3, 1665–1673, https://doi.org/10.5194/acp-3-1665-2003, 2003.
Barr, R. S. and Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and chlorinated hydrocarbons. Part I. Experimental results, Fluid Phase Equilib., 35, 189–205, 1987.
Barrett, T. J., Anderson, G. M., and Lugowski, J.: The solubility of hydrogen sulphide in 0–5 m NaCl solutions at 25°–95 °C and one atmosphere, Geochim. Cosmochim. Acta, 52, 807–811, 1988.
Bartlett, W. P. and Margerum, D. W.: Temperature dependencies of the Henry's law constant and the aqueous phase dissociation constant of bromine chloride, Environ. Sci. Technol., 33, 3410–3414, 1999.
Battino, R. (Ed.): IUPAC Solubility Data Series, vol. 7 of Oxygen and Ozone, Pergamon Press, Oxford, England, 1981.
Battino, R. (Ed.): IUPAC Solubility Data Series, vol. 10 of Nitrogen and Air, Pergamon Press, Oxford, England, 1982.
Battino, R.: The Ostwald coefficient of gas solubility, Fluid Phase Equilib., 15, 231–240, 1984.
Battino, R. and Clever, H. L.: The solubility of gases in liquids, Chem. Rev., 66, 395–463, 1966.
Battino, R., Rettich, T. R., and Tominaga, T.: The solubility of oxygen and ozone in liquids, J. Phys. Chem. Ref. Data, 12, 163–178, 1983.
Battino, R., Rettich, T. R., and Tominaga, T.: The solubility of nitrogen and air in liquids, J. Phys. Chem. Ref. Data, 13, 563–600, 1984.
Bebahani, G. R. R., Hogan, P., and Waghorne, W. E.: Ostwald concentration coefficients of acetonitrile in aqueous mixed solvents: a new, rapid method for measuring the solubilities of volatile solutes, J. Chem. Eng. Data, 47, 1290–1292, 2002.
Becker, K. H., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: Solubility of nitrous acid (HONO) in sulfuric acid solutions, J. Phys. Chem., 100, 14984–14990, 1996.
Becker, K. H., Kleffmann, J., Negri, R. M., and Wiesen, P.: Solubility of nitrous acid (HONO) in ammonium sulfate solutions, J. Chem. Soc. Faraday Trans., 94, 1583–1586, 1998.
Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, 1997.
Bell, R. P.: The reversible hydration of carbonyl compounds, Adv. Phys. Org. Chem., 4, 1–29, 1966.
Beneš, M. and Dohnal, V.: Limiting activity coefficients of some aromatic and aliphatic nitro compounds in water, J. Chem. Eng. Data, 44, 1097–1102, 1999.
Benkelberg, H.-J., Hamm, S., and Warneck, P.: Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite, J. Atmos. Chem., 20, 17–34, 1995.
Ben-Naim, A. and Wilf, J.: Solubilities and hydrophobic interactions in aqueous solutions of monoalkylbenzene molecules, J. Phys. Chem., 84, 583–586, 1980.
Benson, B. B., Krause Jr., D., and Peterson, M. A.: The solubility and isotopic fractionation of gases in dilute aqueous solution. I. oxygen, J. Solution Chem., 8, 655–690, 1979.
Berdnikov, V. M. and Bazhin, N. M.: Oxidation-reduction potentials of certain inorganic radicals in aqueous solutions, Russ. J. Phys. Chem., Engl. Transl., 44, 395–398, 1970.
Bernauer, M. and Dohnal, V.: Temperature dependence of air-water partitioning of N-methylated (C1 and C2) fatty acid amides, J. Chem. Eng. Data, 53, 2622–2631, 2008.
Bernauer, M. and Dohnal, V.: Temperature dependences of limiting activity coefficients and Henry's law constants for N-methylpyrrolidone, pyridine, and piperidine in water, Fluid Phase Equilib., 282, 100–107, 2009.
Bernauer, M., Dohnal, V., Roux, A. H., Roux-Desgranges, G., and Majer, V.: Temperature dependences of limiting activity coefficients and Henry's law constants for nitrobenzene, aniline, and cyclohexylamine in water, J. Chem. Eng. Data, 51, 1678–1685, 2006.
Betterton, E. A.: The partitioning of ketones between the gas and aqueous phases, Atmos. Environ., 25A, 1473–1477, 1991.
Betterton, E. A.: Henry's law constants of soluble and moderately soluble organic gases: Effects on aqueous phase chemistry, Adv. Environ. Sci. Technol., 24, 1–50, 1992.
Betterton, E. A. and Hoffmann, M. R.: Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418, 1988.
Betterton, E. A. and Robinson, J. L.: Henry's law coefficient of hydrazoic acid, J. Air Waste Manage. Assoc., 47, 1216–1219, 1997.
Bierwagen, B. G. and Keller, A. A.: Measurement of Henry's law constant for methyl tert-butyl ether using solid-phase microextraction, Environ. Toxicol. Chem., 20, 1625–1629, 2001.
Bissonette, E. M., Westrick, J. J., and Morand, J. M.: Determination of Henry's coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, 17–21 June, 1913–1922, 1990.
Blair, E. W. and Ledbury, W.: The partial formaldehyde vapour pressures of aqueous solutions of formaldehyde. Part I, J. Chem. Soc., 127, 26–40, 1925.
Blatchley III, E. R., Johnson, R. W., Alleman, J. E., and McCoy, W. F.: Effective Henry's law constants for free chlorine and free bromine, Wat. Res., 26, 99–106, 1992.
Bobadilla, R., Huybrechts, T., Dewulf, J., and van Langenhove, H.: Determination of the Henry's constant of volatile and semi-volatile organic componuds of environmental concern by the bas (batch air stripping) technique: a new mathematical approach, J. Chilean Chem. Soc., 48, https://doi.org/10.4067/S0717-97072003000300001, 2003.
Bobra, A., Shiu, W. Y., and Mackay, D.: Quantitative structure-activity relationships for the acute toxicity of chlorobenzenes to daphnia magna, Environ. Toxicol. Chem., 4, 297–305, 1985.
Boggs, J. E. and Buck Jr., A. E.: The solubility of some chloromethanes in water, J. Phys. Chem., 62, 1459–1461, 1958.
Bohon, R. J. and Claussen, W. F.: The solubility of aromatic hydrocarbons in water, J. Am. Chem. Soc., 73, 1571–1578, 1951.
Bohr, C.: Definition und Methode zur Bestimmung der Invasions- und Evasionscoefficienten bei der Auflösung von Gasen in Flüssigkeiten. Werthe der genannten Constanten sowie der Absorptionscoefficienten der Kohlensäure bei Auflösung in Wasser und in Chlornatriumlösungen, Wied. Ann., 68, 500–525, 1899.
Bone, R., Cullis, P., and Wolfenden, R.: Solvent effects on equilibria of addition of nucleophiles to acetaldehyde and the hydrophilic character of diols, J. Am. Chem. Soc., 105, 1339–1343, 1983.
Bonifácio, R. P., Pádua, A. A. H., and Costa Gomes, M. F.: Perfluoroalkanes in water: experimental Henry's law coefficients for hexafluoroethane and computer simulations for tetrafluoromethane and hexafluoroethane, J. Phys. Chem. B, 105, 8403–8409, 2001.
Booth, N. and Jolley, L. J.: The removal of organic sulphur compounds from gases, J. Soc. Chem. Ind., 62, 87–88, 1943.
Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere, Chemosphere, 32, 405–420, 1996.
Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constants of the haloacetic acids, J. Atmos. Chem., 29, 85–107, 1998a.
Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constant of trichloroacetic acid, Water Air Soil Pollut., 101, 197–215, 1998b.
Braun, H. and Dransfeld, P.: Abscheidung von Quecksilber, gVC/VDI-Tagung "Entsorgung von Sonderabfällen durch Verbrennung", Baden-Baden, 4–6 December 1989.
Breiter, W. A., Baker, J. M., and Koskinen, W. C.: Direct measurement of Henry's constant for S-ethyl N,N-di-n-propylthiocarbamate, J. Agric. Food Chem., 46, 1624–1629, 1998.
Brennan, R. A., Nirmalakhandan, N., and Speece, R. E.: Comparison of predictive methods for Henrys law coefficients of organic chemicals, Wat. Res., 32, 1901–1911, 1998.
Brian, P. L. T., Vivian, J. E., and Habib, A. G.: The effect of the hydrolysis reaction upon the rate of absorption of chlorine into water, AIChE J., 8, 205–209, 1962.
Brimblecombe, P.: Air Composition & Chemistry, Cambridge University Press, Cambridge, 1986.
Brimblecombe, P. and Clegg, S. L.: The solubility and behaviour of acid gases in the marine aerosol, J. Atmos. Chem., 7, 1–18, 1988.
Brimblecombe, P. and Clegg, S. L.: Erratum, J. Atmos. Chem., 8, 95, 1989.
Brimblecombe, P., Clegg, S. L., and Khan, I.: Thermodynamic properties of carboxylic acids relevant to their solubility in aqueous solutions, J. Aerosol Sci., 23, S901–S904, 1992.
Briner, E. and Perrottet, E.: Détermination des solubilités de l'ozone dans l'eau et dans une solution aqueuse de chlorure de sodium; calcul des solubilités de l'ozone atmosphérique dans les eaux, Helv. Chim. Acta, 22, 397–404, 1939.
Brockbank, S. A., Russon, J. L., Giles, N. F., Rowley, R. L., and Wilding, W. V.: Infinite dilution activity coefficients and Henry's law constants of compounds in water using the inert gas stripping method, Fluid Phase Equilib., 348, 45–51, 2013.
Brown, R. L. and Wasik, S. P.: A method of measuring the solubilities of hydrocarbons in aqueous solutions, J. Res. Natl. Bureau Standards A: Phys. Chem., 78A, 453–460, 1974.
Brunner, S., Hornung, E., Santl, H., Wolff, E., Piringer, O. G., Altschuh, J., and Brüggemann, R.: Henry's law constants for polychlorinated biphenyls: Experimental determination and structure-property relationships, Environ. Sci. Technol., 24, 1751–1754, 1990.
Bu, X. and Warner, M. J.: Solubility of chlorofluorocarbon 113 in water and seawater, Deep-Sea Res. I, 42, 1151–1161, 1995.
Bullister, J. L., Wisegarvera, D. P., and Menziab, F. A.: The solubility of sulfur hexafluoride in water and seawater, Deep-Sea Res. I, 49, 175–187, 2002.
Bullock, K. R. and Teja, A. S.: Henry's constants of volatile organic compounds in aqueous salt solutions, Ind. Eng. Chem. Res., 42, 6494–6498, 2003.
Burkhard, L. P., Armstrong, D. E., and Andren, A. W.: Henry's law constants for the polychlorinated biphenyls, Environ. Sci. Technol., 19, 590–596, 1985.
Burkhard, N. and Guth, J. A.: Rate of volatilisation of pesticides from soil surfaces; comparison of calculated results with those determined in a laboratory model system, Pestic. Sci., 12, 37–44, 1981.
Burnett, M. G.: Determination of partition coefficients at infinite dilution by the gas chromatographic analysis of the vapor above dilute solutions, Anal. Chem., 35, 1567–1570, 1963.
Butler, J. A. V. and Ramchandani, C. N.: The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc., 952–955, 1935.
Butler, J. A. V., Thomson, D. W., and Maclennan, W. H.: The free energy of the normal aliphatic alcohols in aqueous solution. Part I. The partial vapour pressures of aqueous solutions of methyl, n-propyl, and n-butyl alcohols. Part II. The solubilities of some normal aliphatic alcohols in water. Part III. The theory of binary solutions, and its application to aqueous-alcoholic solutions, J. Chem. Soc., 674–686, 1933.
Butler, J. A. V., Ramchandani, C. N., and Thomson, D. W.: The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., 280–285, 1935.
Buttery, R. G., Guadagni, D. G., and Okano, S.: Air–water partition coefficients of some aldehydes, J. Sci. Food Agri., 16, 691–692, 1965.
Buttery, R. G., Ling, L. C., and Guadagni, D. G.: Volatilities of aldehydes, ketones, and esters in dilute water solutions, J. Agric. Food Chem., 17, 385–389, 1969.
Buttery, R. G., Bomben, J. L., Guadagni, D. G., and Ling, L. C.: Some considerations of volatilities of organic flavor compounds in foods, J. Agric. Food Chem., 19, 1045–1048, 1971.
Cabani, S., Conti, G., and Lepori, L.: Thermodynamic study on aqueous dilute solutions of organic compounds. Part 1. – Cyclic amines, Trans. Faraday Soc., 67, 1933–1942, 1971a.
Cabani, S., Conti, G., and Lepori, L.: Thermodynamic study on aqueous dilute solutions of organic compounds. Part 2. – Cyclic ethers, Trans. Faraday Soc., 67, 1943–1950, 1971b.
Cabani, S., Conti, G., Giannessi, D., and Lepori, L.: Thermodynamic study of aqueous dilute solutions of organic compounds. Part 3. – Morpholines and piperazines, J. Chem. Soc. Faraday Trans. 1, 71, 1154–1160, 1975a.
Cabani, S., Conti, G., Mollica, V., and Lepori, L.: Thermodynamic study of dilute aqueous solutions of organic compounds. Part 4. – Cyclic and straight chain secondary alcohols, J. Chem. Soc. Faraday Trans. 1, 71, 1943–1952, 1975b.
Cabani, S., Mollica, V., and Lepori, L.: Thermodynamic study of dilute aqueous solutions of organic compounds. Part 5. – Open-chain saturated bifunctional compounds, J. Chem. Soc. Faraday Trans. 1, 74, 2667–2671, 1978.
Cabani, S., Gianni, P., Mollica, V., and Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution, J. Solution Chem., 10, 563–595, 1981.
Cady, G. H. and Misra, S.: Hydrolysis of sulfuryl fluoride, Inorg. Chem., 13, 837–841, 1974.
Calamari, D., Bacci, E., Focardi, S., Gaggi, C., Morosini, M., and Vighi, M.: Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons, Environ. Sci. Technol., 25, 1489–1495, 1991.
Calvert, J. G.: Glossary of atmospheric chemistry terms, https://doi.org/10.1351/pac199062112167, 1990.
Cargill, R. W. (Ed.): IUPAC Solubility Data Series, vol. 43 of Carbon Monoxide, Pergamon Press, Oxford, England, 1990.
Caron, G., Suffet, I. H., and Belton, T.: Effect of dissolved organic carbon on the environmental distribution of nonpolar organic compounds, Chemosphere, 14, 993–1000, 1985.
Carpenter, J. H.: New measurements of oxygen solubility in pure and natural water, Limnol. Oceanogr., 11, 264–277, 1966.
Carroll, J. J. and Mather, A. E.: The solubility of hydrogen sulphide in water from 0 to 90 °C and pressures to 1 MPa, Geochim. Cosmochim. Acta, 53, 1163–1170, 1989.
Carroll, J. J., Slupsky, J. D., and Mather, A. E.: The solubility of carbon dioxide in water at low pressure, J. Phys. Chem. Ref. Data, 20, 1201–1209, 1991.
Carroll, J. J., Jou, F.-Y., and Mather, A. E.: Fluid phase equilibria in the system n-butane + water, Fluid Phase Equilib., 140, 157–169, 1997.
Carslaw, K. S., Clegg, S. L., and Brimblecombe, P.: A thermodynamic model of the system HCl-HNO3-H2SO4-H2O, including solubilities of HBr, from <200 to 328 K, J. Phys. Chem., 99, 11557–11574, 1995.
Carter, G. B., McIver, M. C., and Miller, G. J.: Evidence for the formation of a hexahydrotriazine in the condensation of acetaldehyde with methylamine, J. Chem. Soc. C, 2591–2592, 1968.
Cetin, B. and Odabasi, M.: Measurement of Henry's law constants of seven polybrominated diphenyl ether (PBDE) congeners as a function of temperature, Atmos. Environ., 39, 5273–5280, 2005.
Cetin, B., Ozer, S., Sofuoglu, A., and Odabasi, M.: Determination of Henry's law constants of organochlorine pesticides in deionized and saline water as a function of temperature, Atmos. Environ., 40, 4538–4546, 2006.
Chai, X.-S., Falabella, J. B., and Teja, A. S.: A relative headspace method for Henry's constants of volatile organic compounds, Fluid Phase Equilib., 231, 239–245, 2005.
Chaintreau, A., Grade, A., and Muñoz-Box, R.: Determination of partition coefficients and quantitation of headspace volatile compounds, Anal. Chem., 67, 3300–3304, 1995.
Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, 1984.
Chameides, W. L.: Reply, J. Geophys. Res., 91D, 14571–14572, 1986.
Chameides, W. L. and Stelson, A. W.: Aqueous phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt, J. Geophys. Res., 97D, 20565–20580, 1992.
Chan, M. N., Surratt, J. D., Claeys, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M., Eddingsaas, N. C., Wennberg, P. O., and Seinfeld, J. H.: Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the southeastern United States, Environ. Sci. Technol., 44, 4590–4596, 2010.
Chancel, G. and Parmentier, F.: Sur la solubilité du sulfure de carbone et sur celle du chloroforme, C. R. Hebd. Séances Acad. Sci., 100, 773–776, 1885.
Chang, W.-K. and Criddle, C. S.: Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1, Biodegrad., 6, 1–9, 1995.
Chapoy, A., Mokraoui, S., Valtz, A., Richon, D., Mohammadi, A. H., and Tohidi, B.: Solubility measurement and modeling for the system propane-water from 277.62 to 368.16 K, Fluid Phase Equilib., 226, 213–220, 2004.
Chapoy, A., Mohammadi, A. H., Tohidi, B., Valtz, A., and Richon, D.: Experimental measurement and phase behavior modeling of hydrogen sulfide-water binary system, Ind. Eng. Chem. Res., 44, 7567–7574, 2005.
Charles, M. J. and Destaillats, H.: Experimental determinations of Henry's law constants of polybrominated diphenyl ethers (PBDEs) to evaluate exposure to aquatic biota, technical Completion Report, University of California Water Resources Center, UC Berkeley, available at: http://escholarship.org/uc/item/9zv0s4np (last access: 10 April 2015), 2005.
Chen, C.-C., Britt, H. I., Boston, J. F., and Evans, L. B.: Extension and application of the Pitzer equation for vapor-liquid equlibrium of aqueous electrolyte systems with molecular solutes, AIChE J., 25, 820–831, 1979.
Chen, F., Freedman, D. L., Falta, R. W., and Murdoch, L. C.: Henry's law constants of chlorinated solvents at elevated temperatures, Chemosphere, 86, 156–165, 2012.
Chen, L., Takenaka, N., Bandow, H., and Maeda, Y.: Henry's law constants for C2-C3 fluorinated alcohols and their wet deposition in the atmosphere, Atmos. Environ., 37, 4817–4822, 2003.
Cheng, W.-H., Chu, F.-S., and Liou, J.-J.: Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons, Atmos. Environ., 37, 4807–4815, 2003.
Cheng, W.-H., Chou, M.-S., Perng, C.-H., and Chu, F.-S.: Determining the equilibrium partitioning coefficients of volatile organic compounds at an air-water interface, Chemosphere, 54, 935–942, 2004.
Chesters, G., Simsiman, G. V., Levy, J., Alhajjar, B. J., Fathulla, R. N., and Harkin, J. M.: Environmental fate of alachlor and metolachlor, Rev. Environ. Contam. Toxicol., 110, 1–74, 1989.
Cheung, J. L., Li, Y. Q., Boniface, J., Shi, Q., Davidovits, P., Worsnop, D. R., Jayne, J. T., and Kolb, C. E.: Heterogeneous interactions of NO2 with aqueous surfaces, J. Phys. Chem. A, 104, 2655–2662, 2000.
Chiang, P.-C., Hung, C.-H., Mar, J. C., and Chang, E. E.: Henry's constants and mass transfer coefficients of halogenated organic pollutants in an air stripping packed column, Water Sci. Tech., 38, 287–294, 1998.
Chiou, C. T., Freed, V. H., Peters, L. J., and Kohnert, R. L.: Evaporation of solutes from water, Environ. Int., 3, 231–236, 1980.
Christie, A. O. and Crisp, D. J.: Activity coefficients on the n-primary, secondary and tertiary aliphatic amines in aqueous solution, J. Appl. Chem., 17, 11–14, 1967.
Cimetiere, N. and De Laat, J.: Henry's law constant of N,N-dichloromethylamine: Application to the contamination of the atmosphere of indoor swimming pools, Chemosphere, 77, 465–470, 2009.
Clegg, S. L. and Brimblecombe, P.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 20, 2483–2485, 1986.
Clegg, S. L. and Brimblecombe, P.: Solubility of ammonia in pure aqueous and multicomponent solutions, J. Phys. Chem., 93, 7237–7248, 1989.
Clegg, S. L. and Brimblecombe, P.: Equilibrium partial pressures and mean activity and osmotic coefficients of 0–100
Clegg, S. L., Brimblecombe, P., and Khan, I.: The Henry's law constant oxalic acid and its partitioning into in the atmospheric aerosol, Idöjárás, 100, 51–68, 1996.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system H+-NH4+-SO42−-NO3−-H2O at tropospheric temperatures, J. Phys. Chem. A, 102, 2137–2154, 1998.
Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 1 of Helium and Neon, Pergamon Press, Oxford, England, 1979a.
Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 2 of Krypton, Xenon and Radon, Pergamon Press, Oxford, England, 1979b.
Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 4 of Argon, Pergamon Press, Oxford, England, 1980.
Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 29 of Mercury in liquids, compressed gases, molten salts and other elements, Pergamon Press, Oxford, England, 1987.
Clever, H. L. and Young, C. L. (Eds.): IUPAC Solubility Data Series, vol. 27/28 of Methane, Pergamon Press, Oxford, England, 1987.
Clever, H. L., Johnson, S. A., and Derrick, M. E.: The solubility of mercury and some sparingly soluble mercury salts in water and aqueous-electrolyte solutions, J. Phys. Chem. Ref. Data, 14, 631–681, 1985.
Clever, H. L., Battino, R., Jaselskis, B., Yampol'skii, Y. P., Jaselskis, B., Scharlin, P., and Young, C. L.: IUPAC-NIST solubility data series. 80. gaseous fluorides of boron, nitrogen, sulfur, carbon, and silicon and solid xenon fluorides in all solvents, J. Phys. Chem. Ref. Data, 34, 201–438, 2005.
Cline, J. D. and Bates, T. S.: Dimethyl sulfide in the equatorial Pacific Ocean: A natural source of sulfur to the atmosphere, Geophys. Res. Lett., 10, 949–952, 1983.
Compernolle, S. and Müller, J.-F.: Henry's law constants of diacids and hydroxy polyacids: recommended values, Atmos. Chem. Phys., 14, 2699–2712, https://doi.org/10.5194/acp-14-2699-2014, 2014a.
Compernolle, S. and Müller, J.-F.: Henry's law constants of polyols, Atmos. Chem. Phys., 14, 12815–12837, https://doi.org/10.5194/acp-14-12815-2014, 2014b.
Conway, R. A., Waggy, G. T., Spiegel, M. H., and Berglund, R. L.: Environmental fate and effects of ethylene oxide, Environ. Sci. Technol., 17, 107–112, 1983.
Cooling, M. R., Khalfaoui, B., and Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene, Fluid Phase Equilib., 81, 217–229, 1992.
Copolovici, L. O. and Niinemets, U.: Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids, Chemosphere, 61, 1390–1400, 2005.
Coquelet, C. and Richon, D.: Measurement of Henry's law constants and infinite dilution activity coefficients of propyl mercaptan, butyl mercaptan, and dimethyl sulfide in methyldiethanolamine (1) + water (2) with w1 = 0.50 using a gas stripping technique, J. Chem. Eng. Data, 50, 2053–2057, 2005.
Cotham, W. E. and Bidleman, T. F.: Degradation of malathion, endosulfan, and fenvalerate in seawater and seawater/sediment microcosms, J. Agric. Food Chem., 37, 824–828, 1989.
Cousins, I. and Mackay, D.: Correlating the physical-chemical properties of phthalate esters using the `three solubility' approach, Chemosphere, 41, 1389–1399, 2000.
Crovetto, R.: Evaluation of solubility data for the system CO2-H2O from 273 K to the critical point of water, J. Phys. Chem. Ref. Data, 20, 575–589, 1991.
Crovetto, R., Fernández-Prini, R., and Japas, M. L.: Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K, J. Chem. Phys., 76, 1077–1086, 1982.
Dacey, J. W. H., Wakeham, S. G., and Howes, B. L.: Henry's law constants for dimethylsulfide in freshwater and seawater, Geophys. Res. Lett., 11, 991–994, 1984.
Dallos, A., Ország, I., and Ratkovics, F.: Liquid–liquid and vapour–liquid equilibrium data and calculations for the system aniline + water in the presence of NaCl, NaI, NH4Cl and NH4I, Fluid Phase Equilib., 11, 91–102, 1983.
Dasgupta, P. G. and Dong, S.: Solubility of ammonia in liquid water and generation of trace levels of standard gaseous ammonia, Atmos. Environ., 20, 565–570, 1986.
David, M. D., Fendinger, N. J., and Hand, V. C.: Determination of Henry's law constants for organosilicones in actual and simulated wastewater, Environ. Sci. Technol., 34, 4554–4559, 2000.
De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res., 99D, 16927–16932, 1994.
De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of haloacetyl and carbonyl halides by water surfaces, Environ. Sci. Technol., 29, 1179–1185, 1995a.
De Bruyn, W. J., Swartz, E., Hu, J. H., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Henry's law solubilities and Śetchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements, J. Geophys. Res., 100D, 7245–7251, 1995b.
De Maagd, P. G.-J., Ten Hulscher, D. T. E. M., van den Heuvel, H., Opperhuizen, A., and Sijm, D. T. H. M.: Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants, Environ. Toxicol. Chem., 17, 251–257, 1998.
de Wolf, W. and Lieder, P. H.: A novel method to determine uptake and elimination kinetics of volatile chemicals in fish, Chemosphere, 36, 1713–1724, 1998.
Dean, J. A.: Lange's Handbook of Chemistry, McGraw-Hill, Inc., 1992.
Dearden, J. C. and Schüürmann, G.: Quantitative structure-property relationships for predicting Henry's law constant from molecular structure, Environ. Toxicol. Chem., 22, 1755–1770, 2003.
Delgado, E. J. and Alderete, J.: On the calculation of Henry's law constants of chlorinated benzenes in water from semiempirical quantum chemical methods, J. Chem. Inf. Comput. Sci., 42, 559–563, 2002.
Delgado, E. J. and Alderete, J. B.: Prediction of Henry's law constants of triazine derived herbicides from quantum chemical continuum solvation models, J. Chem. Inf. Comput. Sci., 43, 1226–1230, 2003.
Della Gatta, G., Stradella, L., and Venturello, P.: Enthalpies of solvation in cyclohexane and in water for homologous aliphatic ketones and esters, J. Solution Chem., 10, 209–220, 1981.
Deno, N. C. and Berkheimer, H. E.: Activity coefficients as a functon of structure and media, J. Chem. Eng. Data, 5, 1–5, 1960.
Destaillats, H. and Charles, M. J.: Henry's law constants of carbonyl-pentafluorobenzyl hydroxylamine (PFBHA) derivatives in aqueous solution, J. Chem. Eng. Data, 47, 1481–1487, 2002.
Dewulf, J., Drijvers, D., and van Langenhove, H.: Measurement of Henry's law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, 1995.
Dewulf, J., van Langenhove, H., and Everaert, P.: Determination of Henry's law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques, J. Chromatogr. A, 830, 353–363, 1999.
Diaz, A., Ventura, F., and Galceran, M. T.: Determination of odorous mixed chloro-bromoanisoles in water by solid-phase micro-extraction and gas chromatography-mass detection, J. Chromatogr. A, 1064, 97–106, 2005.
Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions, Environ. Sci. Technol., 11, 405–409, 1977.
Dilling, W. L., Tefertiller, N. B., and Kallos, G. J.: Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions, Environ. Sci. Technol., 9, 833–838, 1975.
Disselkamp, R. S., Chapman, E. G., Barchet, W. R., Colson, S. D., and Howd, C. D.: BrCl production in NaBr/NaCl/HNO3/O3 solutions representative of sea-salt aerosols in the marine boundary layer, Geophys. Res. Lett., 26, 2183–2186, 1999.
Dohányosová, P., Sarraute, S., Dohnal, V., Majer, V., and Costa Gomes, M.: Aqueous solubility and related thermodynamic functions of nonaromatic hydrocarbons as a function of molecular structure, Ind. Eng. Chem. Res., 43, 2805–2815, 2004.
Dohnal, V. and Fenclová, D.: Air-water partitioning and aqueous solubility of phenols, J. Chem. Eng. Data, 40, 478–483, 1995.
Dohnal, V. and Hovorka, Š.: Exponential saturator: a novel gas-liquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, 1999.
Dohnal, V., Fenclová, D., and Vrbka, P.: Temperature dependences of limiting activity coefficients, Henry's law constants, and derivative infinite dilution properties of lower (C1-C5) 1-alkanols in water. critical compilation, correlation, and recommended data, J. Phys. Chem. Ref. Data, 35, 1621–1651, 2006.
Donahue, N. M. and Prinn, R. G.: In situ nonmethane hydrocarbon measurements on SAGA 3, J. Geophys. Res., 98, 16915–16932, 1993.
Dong, S. and Dasgupta, P. G.: Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde, Environ. Sci. Technol., 20, 637–640, 1986.
Douglas, E.: Carbon monoxide solubilities in sea water, J. Phys. Chem., 71, 1931–1933, 1967.
Drouillard, K. G., Tomy, G. T., Muir, D. C. G., and Friesen, K. J.: Volatility of chlorinated n-alkanes (C10-C12): Vapor pressures and Henry's law constants, Environ. Toxicol. Chem., 17, 1252–1260, 1998.
Dubik, N. A., Titova, G. M., and Loshakova, E. I.: Partition coefficients of bromine and bromine chloride between air and natural brines, Issled. v Obl. Poluch. Magniya, Ioda, Broma i ikh Soed., M., 53–57, 1987 (in Russian, see also Chem. Abstr., 109, 213154j).
Dunnivant, F. M. and Elzerman, A. W.: Aqueous solubility and Henry's law constant data for PCB congeners for evaluation of quantitative structure-property relationships (QSPRs), Chemosphere, 17, 525–541, 1988.
Dunnivant, F. M., Coates, J. T., and Elzerman, A. W.: Experimentally determined Henry's law constants for 17 polychlorobiphenyl congeners, Environ. Sci. Technol., 22, 448–453, 1988.
Dunnivant, F. M., Elzerman, A. W., Jurs, P. C., and Hasan, M. N.: Quantitative structure-property relationships for aqueous solubilities and Henry's law constants of polychlorinated biphenyls, Environ. Sci. Technol., 26, 1567–1573, 1992.
Durham, J. L., Overton Jr., J. H., and Aneja, V. P.: Influence of gaseous nitric acid on sulfate production and acidity in rain, Atmos. Environ., 15, 1059–1068, 1981.
Eastcott, L., Shiu, W. Y., and Mackay, D.: Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations, Oil Chem. Pollut., 4, 191–216, 1988.
Edelist, G., Singer, M. M., and Eger, E. I., I.: Solubility coefficients of teflurane in various biological media, Anesthesiology, 25, 223–225, 1964.
Edwards, T. J., Maurer, G., Newman, J., and Prausnitz, J. M.: Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes, AIChE J., 24, 966–976, 1978.
Eguchi, W., Adachi, M., and Yoneda, M.: Dependency of partition equilibrium of iodine between air and aqueous solution containing sodium hydroxide upon temperature and concentration, J. Chem. Eng. Jpn., 6, 389–396, 1973.
Elliott, S.: The solubility of carbon disulfide vapor in natural aqueous systems, Atmos. Environ., 23, 1977–1980, 1989.
Elliott, S. and Rowland, F. S.: Nucleophilic substitution rates and solubilities for methyl halides in seawater, Geophys. Res. Lett., 20, 1043–1046, 1993.
Emel'yanenko, V. N., Dabrowska, A., Verevkin, S. P., Hertel, M. O., Scheuren, H., and Sommer, K.: Vapor Pressures, Enthalpies of Vaporization, and Limiting Activity Coefficients in Water at 100 °C of 2-Furanaldehyde, Benzaldehyde, Phenylethanal, and 2-Phenylethanol, J. Chem. Eng. Data, 52, 468–471, 2007.
Endo, S., Pfennigsdorff, A., and Goss, K.-U.: Salting-out effect in aqueous NaCl solutions: Trends with size and polarity of solute molecules, Environ. Sci. Technol., 46, 1496–1503, 2012.
English, N. J. and Carroll, D. G.: Prediction of Henry's law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, 2001.
Ervin, A. L., Mangone, M. A., and Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, 507–530, 1980.
Ettre, L. S., Welter, C., and Kolb, B.: Determination of gas-liquid partition coefficients by automatic equilibrium headspace – gas chromatography utilizing the phase ratio variation method, Chromatographia, 35, 73–84, 1993.
Falabella, J. B.: Air-water partitioning of volatile organic compounds and greenhouse gases in the presence of salts, PhD thesis, Georgia Institute of Technology, available at: https://smartech.gatech.edu/handle/1853/16221 (last access: 10 April 2015), 2007.
Falabella, J. B. and Teja, A. S.: Air-water partitioning of gasoline components in the presence of sodium chloride, Energy Fuels, 22, 398–401, 2008.
Falabella, J. B., Nair, A., and Teja, A. S.: Henry's constants of 1-alkanols and 2-ketones in salt solutions, J. Chem. Eng. Data, 51, 1940–1945, 2006.
Falk, A., Gullstrand, E., Löf, A., and Wigaeus-Hjelm, E.: Liquid/air partition coefficients of four terpenes, Br. J. Ind. Med., 47, 62–64, 1990.
Fang, F., Chu, S., and Hong, C.-S.: Air-water Henry's law constants for PCB congeners: experimental determination and modeling of structure-property relationship, Anal. Chem., 78, 5412–5418, 2006.
Fang Lee, F.: Comprehensive analysis, Henry's law constant determination, and photocatalytic degradation of polychlorinated biphenyls (PCBs) and/or other persistent organic pollutants (POPs), PhD thesis, University at Albany, State University of New York, USA, 2007.
Feigenbrugel, V., Le Calvé, S., and Mirabel, P.: Temperature dependence of Henry's law constants of metolachlor and diazinon, Chemosphere, 57, 319–327, 2004a.
Feigenbrugel, V., Le Calvé, S., Mirabel, P., and Louis, F.: Henry's law constant measurements for phenol, o-, m-, and p-cresol as a function of temperature, Atmos. Environ., 38, 5577–5588, 2004b.
Felder, J. D., Adams, W. J., and Saeger, V. W.: Assessment of the safety of dioctyl adipate in freshwater environments, Environ. Toxicol. Chem., 5, 777–784, 1986.
Feldhake, C. J. and Stevens, C. D.: The solubility of tetraethyllead in water, J. Chem. Eng. Data, 8, 196–197, 1963.
Fenclová, D., Blahut, A., Vrbka, P., Dohnal, V., and Böhme, A.: Temperature dependence of limiting activity coefficients, Henry's law constants, and related infinite dilution properties of C4-C6 isomeric n-alkyl ethanoates/ethyl n-alkanoates in water. Measurement, critical compilation, correlation, and recommended data, Fluid Phase Equilib., 375, 347–359, 2014.
Fendinger, N. J. and Glotfelty, D. E.: A laboratory method for the experimental determination of air-water Henry's law constants for several pesticides, Environ. Sci. Technol., 22, 1289–1293, 1988.
Fendinger, N. J. and Glotfelty, D. E.: Henry's law constants for selected pesticides, PAHs and PCBs, Environ. Toxicol. Chem., 9, 731–735, 1990.
Fendinger, N. J., Glotfelty, D. E., and Freeman, H. P.: Comparison of two experimental techniques for determining air/water Henry's law constants, Environ. Sci. Technol., 23, 1528–1531, 1989.
Fernández-Prini, R., Alvarez, J. L., and Harvey, A. H.: Henry's constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, 2003.
Ferreira, M. M. C.: Polycyclic aromatic hydrocarbons: a QSPR study, Chemosphere, 44, 125–146, 2001.
Fichan, I., Larroche, C., and Gros, J. B.: Water solubility, vapor pressure, and activity coefficients of terpenes and terpenoids, J. Chem. Eng. Data, 44, 56–62, 1999.
Fickert, S.: Laboruntersuchungen zur Freisetzung photoreaktiver Halogenverbindungen aus Seesalzaerosol, PhD thesis, Johannes Gutenberg-Universität, Mainz, Germany, 1998.
Fischer, A., Müller, M., and Klasmeier, J.: Determination of Henry's law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures, Chemosphere, 54, 689–694, 2004.
Fischer, R. G. and Ballschmiter, K.: Determination of vapor pressure, water solubility, gas-water partition coefficient PGW, Henry's law constant, and octanol-water partition coefficient POW of 26 alkyl dinitrates, Chemosphere, 36, 2891–2901, 1998a.
Fischer, R. G. and Ballschmiter, K.: Prediction of the environmental distribution of alkyl dinitrates – Chromatographic determination of vapor pressure p0, water solubility SH2O, gas-water partition coefficient KGW (Henry's law constant) and octanol-water partition coefficient KOW, Fresenius J. Anal. Chem., 360, 769–776, 1998b.
Fishbein, L. and Albro, P. W.: Chromatographic and biological aspects of the phthalate esters, J. Chromatogr. A, 70, 365–412, 1972.
Fogg, P. and Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., 2003.
Fogg, P. G. T. and Young, C. L. (Eds.): IUPAC Solubility Data Series, vol. 32 of Hydrogen Sulfide, Deuterium Sulfide, and Hydrogen Selenide, Pergamon Press, Oxford, England, 1988.
Foster, P., Ferronato, C., and Jacob, V.: Organic-compound transfer between gas-phase and raindrops – 1st experiments in a simulation chamber, Fresenius Environ. Bull., 3, 318–323, 1994.
Fredenhagen, K. and Liebster, H.: Die Teildrucke und Verteilungszahlen der Essigsäure über ihren wässerigen Lösungen bei 25 °C, Z. Phys. Chem., 162A, 449–453, 1932.
Fredenhagen, K. and Wellmann, M.: Verteilungszahlen des Fluorwasserstoffs über dem Zweistoffsystem [H2O-HF] bei 25 °C und die Siedepunktskurve dieses Systems bei Atmosphärendruck, Z. Phys. Chem., 162A, 454–466, 1932a.
Fredenhagen, K. and Wellmann, M.: Verteilungszahlen des Cyanwasserstoffs und des Wassers über dem Zweistoffsystem [H2O-HCN] bei 18 °C, Z. Phys. Chem., 162A, 467–470, 1932b.
Frenzel, A., Scheer, V., Sikorski, R., George, C., Behnke, W., and Zetzsch, C.: Heterogeneous interconversion reactions of BrNO2, ClNO2, Br2, and Cl2, J. Phys. Chem. A, 102, 1329–1337, 1998.
Friant, S. L. and Suffet, I. H.: Interactive effects of temperature, salt concentration, and pH on head space analysis for isolating volatile trace organics in aqueous environmental samples, Anal. Chem., 51, 2167–2172, 1979.
Fried, A., Henry, B. E., Calvert, J. G., and Mozurkewich, M.: The reaction probability of N2O5 with sulfuric acid aerosols at stratospheric temperatures and compositions, J. Geophys. Res., 99D, 3517–3532, 1994.
Friesen, K. J., Loewen, M. D., Fairchild, W. L., Lawrence, S. G., Holoka, M. H., and Muir, D. C. G.: Evidence for particle-mediated transport of 2,3,7,8-tetrachlorodibenzofuran during gas sparging of natural water, Environ. Toxicol. Chem., 12, 2037–2044, 1993.
Fu, M., Yu, Z., Lu, G., and Song, X.: Henry's law constant for phosphine in seawater: determination and assessment of influencing factors, Chin. J. Oceanol. Limnol., 31, 860–866, https://doi.org/10.1007/s00343-013-2212-1, 2013.
Gaffney, J. S. and Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by: Newman, L., NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory, 5–1–5–7, 1984.
Gaffney, J. S., Streit, G. E., Spall, W. D., and Hall, J. H.: Beyond acid rain, Environ. Sci. Technol., 21, 519–524, 1987.
Gamsjäger, H., Lorimer, J. W., Scharlin, P., and Shaw, D. G.: Glossary of terms related to solubility (IUPAC Recommendations 2008), Pure Appl. Chem., 80, 233–276, 2008.
Gamsjäger, H., Lorimer, J. W., Salomon, M., Shaw, D. G., and Tomkins, R. P. T.: The IUPAC-NIST Solubility Data Series: A guide to preparation and use of compilations and evaluations (IUPAC Technical Report), Pure Appl. Chem., 82, 1137–1159, 2010.
Gan, J. and Yates, S. R.: Degradation and phase partition of methyl iodide in soil, J. Agric. Food Chem., 44, 4001–4008, 1996.
Garbarini, D. R. and Lion, L. W.: Evaluation of sorptive partitioning of nonionic pollutants in closed systems by headspace analysis, Environ. Sci. Technol., 19, 1122–1128, 1985.
Gautier, C., Le Calvé, S., and Mirabel, P.: Henry's law constants measurements of alachlor and dichlorvos between 283 and 298 K, Atmos. Environ., 37, 2347–2353, 2003.
George, C., Ponche, J. L., and Mirabel, P.: Experimental determination of uptake coefficients for acid halides, in: Proceedings of Workshop on STEP-HALOCSIDE, AFEAS, Dublin, 23–25 March, 1993.
George, C., Lagrange, J., Lagrange, P., Mirabel, P., Pallares, C., and Ponche, J. L.: Heterogeneous chemistry of trichloroacetyl chloride in the atmosphere, J. Geophys. Res., 99D, 1255–1262, 1994a.
George, C., Saison, J. Y., Ponche, J. L., and Mirabel, P.: Kinetics of mass transfer of carbonyl fluoride, trifluoroacetyl fluoride, and trifluoroacetyl chloride at the air/water interface, J. Phys. Chem., 98, 10857–10862, 1994b.
Gershenzon, M., Davidovits, P., Jayne, J. T., Kolb, C. E., and Worsnop, D. R.: Simultaneous uptake of DMS and ozone on water, J. Phys. Chem. A, 105, 7031–7036, 2001.
Giardino, N. J., Andelman, J. B., Borrazzo, J. E., and Davidson, C. I.: Sulfur hexafluoride as a surrogate for volatilization of organics from indoor water uses, J. Air Pollut. Control Assoc., 38, 278–279, 1988.
Gibbs, P., Radzicka, A., and Wolfenden, R.: The anomalous hydrophilic character of proline, J. Am. Chem. Soc., 113, 4714–4715, 1991.
Gill, S. J., Nichols, N. F., and Wadsö, I.: Calorimetric determination of enthalpies of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities, J. Chem. Thermodyn., 8, 445–452, 1976.
Glew, D. N. and Hames, D. A.: Aqueous nonelectrolyte solutions. Part X. Mercury solubility in water, Can. J. Chem., 49, 3114–3118, 1971.
Glew, D. N. and Moelwyn-Hughes, E. A.: Chemical statics of the methyl halides in water, Discuss. Faraday Soc., 15, 150–161, 1953.
Glotfelty, D. E., Seiber, J. N., and Liljedahl, A.: Pesticides in fog, Nature, 325, 602–605, 1987.
Gmitro, J. I. and Vermeulen, T.: Vapor-liquid equilibria for aqueous sulfuric acid, AIChE J., 10, 740–746, 1964.
Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry's law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA, 1982.
Gordon, J. E. and Thorne, R. L.: Salt effects on the activity coefficient of naphthalene in mixed aqueous electrolyte solutions. I. Mixtures of two salts, J. Phys. Chem., 71, 4390–4399, 1967a.
Gordon, J. E. and Thorne, R. L.: Salt effects on non-electrolyte activity coefficients in mixed aqueous electrolyte solutions – II. Artificial and natural sea waters, Geochim. Cosmochim. Acta, 31, 2433–2443, 1967b.
Görgényi, M., Dewulf, J., and Van Langenhove, H.: Temperature dependence of Henry's law constant in an extended temperature range, Chemosphere, 48, 757–762, 2002.
Goss, K. U., Bronner, G., Harner, T., Hertel, M., and Schmidt, T.: The partition behavior of fluorotelomer alcohols and olefins, Environ. Sci. Technol., 40, 3572–3577, 2006.
Gossett, J. M.: Packed tower air stripping of trichloroethylene from dilute aqueous solution, Final Report ESL-TR-81-38, Engineering and Services Laboratory, Tyndall Air Force Base, FL, 1980.
Gossett, J. M.: Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202–208, 1987.
Gossett, J. M., Cameron, C. E., Eckstrom, B. P., Goodman, C., and Lincoff, A. H.: Mass transfer coefficients and Henry's constants for packed-tower air stripping of volatile organics: Measurements and Correlations, Final Report ESL-TR-85-18, Engineering and Services Laboratory, Tyndall Air Force Base, FL, 1985.
Govers, H. A. J. and Krop, H. B.: Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins, Chemosphere, 37, 2139–2152, 1998.
Graedel, T. E. and Goldberg, K. I.: Kinetic studies of raindrop chemistry 1. Inorganic and organic processes, J. Geophys. Res., 88C, 10865–10882, 1983.
Green, W. J. and Frank, H. S.: The state of dissolved benzene in aqueous solution, J. Solution Chem., 8, 187–196, 1979.
Guitart, R., Puigdemont, F., and Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, 1989.
Guo, X. X. and Brimblecombe, P.: Henry's law constants of phenol and mononitrophenols in water and aqueous sulfuric acid, Chemosphere, 68, 436–444, 2007.
Gupta, A. K., Teja, A. S., Chai, X. S., and Zhu, J. Y.: Henry's constants of n-alkanols (methanol through n-hexanol) in water at temperatures between 40 °C and 90 °C, Fluid Phase Equilib., 170, 183–192, 2000.
Guthrie, J. P.: Hydration of carboxylic acids and esters. Evaluation of the free energy change for addition of water to acetic and formic acids and their methyl esters, J. Am. Chem. Soc., 95, 6999–7003, 1973.
Hales, J. M. and Drewes, D. R.: Solubility of ammonia in water at low concentrations, Atmos. Environ., 13, 1133–1147, 1979.
Hamelink, J. L., Simon, P. B., and Silberhorn, E. M.: Henry's law constant, volatilization rate, and aquatic half-life of octamethylcyclotetrasiloxane, Environ. Sci. Technol., 30, 1946–1952, 1996.
Hamm, S., Hahn, J., Helas, G., and Warneck, P.: Acetonitrile in the troposphere: residence time due to rainout and uptake by the ocean, Geophys. Res. Lett., 11, 1207–1210, 1984.
Hansen, K. C., Zhou, Z., Yaws, C. L., and Aminabhavi, T. M.: Determination of Henry's law constants of organics in dilute aqueous solutions, J. Chem. Eng. Data, 38, 546–550, 1993.
Hansen, K. C., Zhou, Z., Yaws, C. L., and Aminabhavi, T. M.: A laboratory method for the determination of Henry's law constants of volatile organic chemicals, J. Chem. Educ., 72, 93–96, 1995.
Hanson, D. R. and Ravishankara, A. R.: The reaction probabilities of ClONO2 and N2O5 on 40 to 75
Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.: Measurement of OH and HO2 radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985, 1992.
Harrison, D. P., Valsaraj, K. T., and Wetzel, D. M.: Air stripping of organics from ground water, Waste Manage., 13, 417–429, 1993.
Harrison, M. A. J., Cape, J. N., and Heal, M. R.: Experimentally determined Henry's Law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281-302 K, Atmos. Environ., 36, 1843–1851, 2002.
Hartkopf, A. and Karger, B. L.: Study of the interfacial properties of water by gas chromatography, Acc. Chem. Res., 6, 209–216, 1973.
Hauff, K., Fischer, R. G., and Ballschmiter, K.: Determination of C1-C5 alkyl nitrates in rain, snow, white frost, and tap water by a combined codistillation head-space gas chromatography technique. Determination of Henry's law constants by head-space GC, Chemosphere, 37, 2599–2615, 1998.
Hawthorne, S. B., Sievers, R. E., and Barkley, R. M.: Organic emissions from shale oil wastewaters and their implications for air quality, Environ. Sci. Technol., 19, 992–997, 1985.
Hayduk, W. (Ed.): IUPAC Solubility Data Series, vol. 9 of Ethane, Pergamon Press, Oxford, England, 1982.
Hayduk, W. (Ed.): IUPAC Solubility Data Series, vol. 24 of Propane, Butane and 2-Methylpropane, Pergamon Press, Oxford, England, 1986.
Hayduk, W. (Ed.): IUPAC Solubility Data Series, vol. 57 of Ethene, Oxford University Press, 1994.
Haynes, W. M. (Ed.): CRC Handbook of Chemistry and Physics, 95th Edn. (Internet Version 2015), Taylor and Francis Group, 2014.
Heal, M. R., Pilling, M. J., Titcombe, P. E., and Whitaker, B. J.: Mass accommodation of aniline, phenol and toluene on aqueous droplets, Geophys. Res. Lett., 22, 3043–3046, 1995.
Hedgecock, I. M. and Pirrone, N.: Chasing quicksilver: Modeling the atmospheric lifetime of Hg0(g) in the marine boundary layer at various latitudes, Environ. Sci. Technol., 38, 69–76, 2004.
Hedgecock, I. M., Trunfio, G. A., Pirrone, N., and Sprovieri, F.: Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model, Atmos. Environ., 39, 7217–7230, 2005.
Heidman, J. L., Tsonopoulos, C., Brady, C. J., and Wilson, G. M.: High-temperature mutual solubilities of hydrocarbons and water. Part II: Ethylbenzene, ethylcyclohexane, and n-octane, AIChE J., 31, 376–384, 1985.
Helburn, R., Albritton, J., Howe, G., Michael, L., and Franke, D.: Henry's law constants for fragrance and organic solvent compounds in aqueous industrial surfactants, J. Chem. Eng. Data, 53, 1071–1079, 2008.
Hellmann, H.: Model tests on volatilization of organic trace substances in surfaces waters, Fresenius J. Anal. Chem., 328, 475–479, 1987.
Hempel, W.: Ueber Kohlenoxysulfid, Z. Angew. Chem., 14, 865–868, 1901.
Henry, W.: Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Phil. Trans. R. Soc. Lond., 93, 29–274, 1803.
Heron, G., Christensen, T. H., and Enfield, C. G.: Henry's law constant for trichloroethylene between 10 and 95 °C, Environ. Sci. Technol., 32, 1433–1437, 1998.
Hertel, M. O. and Sommer, K.: Limiting separation factors and limiting activity coefficients for 2-phenylethanol and 2-phenylethanal in water at 100 °C, J. Chem. Eng. Data, 50, 1905–1906, 2005.
Hertel, M. O. and Sommer, K.: Limiting separation factors and limiting activity coefficients for 2-furfural, γ-nonalactone, benzaldehyde, and linalool in water at 100 °C, J. Chem. Eng. Data, 51, 1283–1285, 2006.
Hertel, M. O., Scheuren, H., Sommer, K., and Glas, K.: Limiting separation factors and limiting activity coefficients for hexanal, 2-methylbutanal, 3-methylbutanal, and dimethylsulfide in water at (98.1 to 99.0) °C, J. Chem. Eng. Data, 52, 148–150, 2007.
Hiatt, M. H.: Determination of Henry's law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902–908, 2013.
Hilal, S. H., Ayyampalayam, S. N., and Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry's law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, 2008.
Hill, J. O., Worsley, I. G., and Hepler, L. G.: Calorimetric determination of the distribution coefficient and thermodynamic properties of bromine in water and carbon tetrachloride, J. Phys. Chem., 72, 3695–3697, 1968.
Hine, J. and Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, 1975.
Hine, J. and Weimar Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, 1965.
Hodzic, A., Aumont, B., Knote, C., Lee-Taylor, J., Madronich, S., and Tyndall, G.: Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols, Geophys. Res. Lett., 41, 4795–4804, https://doi.org/10.1002/2014GL060649, 2014.
Hoff, J. T., Mackay, D., Gillham, R., and Shiu, W. Y.: Partitioning of organic chemicals at the air-water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, 1993.
Hoffmann, M. R. and Calvert, J. G.: Chemical transformation modules for Eulerian acid deposition models. Volume II. The aqueous-phase chemistry, Tech. rep., NCAR, Box 3000, Boulder, CO 80307, 1985.
Hoffmann, M. R. and Jacob, D. J.: Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fog water chemistry, in: SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, edited by: Calvert, J. G., Butterworth Publishers, Boston, MA, 101–172, 1984.
Holdren, M. W., Spicer, C. W., and Hales, J. M.: Peroxyacetyl nitrate solubility and decomposition rate in acidic water, Atmos. Environ., 18, 1171–1173, 1984.
Holzwarth, G., Balmer, R. G., and Soni, L.: The fate of chlorine and chloramines in cooling towers, Wat. Res., 18, 1421–1427, 1984.
Hough, A. M.: Development of a two-dimensional global tropospheric model: Model chemistry, J. Geophys. Res., 96D, 7325–7362, 1991.
Hovorka, Š. and Dohnal, V.: Determination of air-water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, 1997.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. I: Large production and priority pollutants, Lewis Publishers Inc. Chelsea, Michigan, 1989.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. II: Solvents, Lewis Publishers Inc. Chelsea, Michigan, 1990.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. III: Pesticides, Lewis Publishers Inc. Chelsea, Michigan, 1991.
Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. IV: Solvents 2, Lewis Publishers Inc. Chelsea, Michigan, 1993.
Howard, P. H. and Meylan, W. M.: Handbook of physical properties of organic chemicals, CRC Press, Lewis Publisher, Boca Raton, FL, 1997.
Howard, P. H., Boethling, R. S., Jarvis, W. F., Meylan, W. M., and Michalenko, E. M.: Handbook of Environmental Degradation Rates, Lewis Publishers Inc. Chelsea, Michigan, 1991.
Howe, G. B., Mullins, M. E., and Rogers, T. N.: Evaluation and prediction of Henry's law constants and aqueous solubilities for solvents and hydrocarbon fuel components. Vol II: Experimental Henry's law data, Tech. Rep. NTIS AD-A202 262, Research Triangle Institute, Research Triangle Park, NC, 27709, USA, 1987.
Hoyt, S. D.: The ocean-air exchange of carbonyl sulfide (OCS) and halocarbons, PhD thesis, Oregon Graduate Center, available at: http://digitalcommons.ohsu.edu/etd/67/ (last access: 10 April 2015), 1982.
HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), available at: http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm (last access: 10 April 2015), 2015.
Huang, D. and Chen, Z.: Reinvestigation of the Henry's law constant for hydrogen peroxide with temperature and acidity variation, J. Environ. Sci., 22, 570–574, 2010.
Hunter-Smith, R. J., Balls, P. W., and Liss, P. S.: Henry's law constants and the air-sea exchange of various low molecular weight halocarbon gases, Tellus, 35B, 170–176, 1983.
Huthwelker, T., Clegg, S. L., Peter, T., Carslaw, K., Luo, B. P., and Brimblecombe, P.: Solubility of HOCl in water and aqueous H2SO4 to stratospheric temperatures, J. Atmos. Chem., 21, 81–95, 1995.
Hwang, H. and Dasgupta, P. G.: Thermodynamics of the hydrogen peroxide-water system, Environ. Sci. Technol., 19, 255–258, 1985.
Hwang, Y.-L., Olson, J. D., and Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, 1992.
Iliuta, M. C. and Larachi, F.: Gas-liquid partition coefficients and Henry's law constants of DMS in aqueous solutions of Fe(II) chelate complexes using the static headspace method, J. Chem. Eng. Data, 50, 1700–1705, 2005.
Iliuta, M. C. and Larachi, F.: Solubility of total reduced sulfurs (hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide) in liquids, J. Chem. Eng. Data, 52, 2–19, 2007.
Inga, R. F. and McKetta, J. J.: Solubility of propyne in water, J. Chem. Eng. Data, 6, 337–338, 1961.
Ip, H. S. S., Huang, X. H. H., and Yu, J. Z.: Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36, L01802, https://doi.org/10.1029/2008GL036212, 2009.
Iraci, L. T., Baker, B. M., Tyndall, G. S., and Orlando, J. J.: Measurements of the Henry's law coefficients of 2-methyl-3-buten-2-ol, methacrolein, and methylvinyl ketone, J. Atmos. Chem., 33, 321–330, 1999.
Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37, 789–798, 1965.
Iverfeldt, Å. and Lindqvist, O.: Distribution equilibrium of methyl mercury chloride between water and air, Atmos. Environ., 16, 2917–2925, 1982.
Iverfeldt, Å. and Persson, I.: The solvation thermodynamics of methylmercury(II) species derived from measurements of the heat of solution and the Henry's law constant, Inorg. Chim. Acta, 103, 113–119, 1985.
Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807–9826, 1986.
Jacob, D. J., Gottlieb, E. W., and Prather, M. J.: Chemistry of a polluted cloudy boundary layer, J. Geophys. Res., 94D, 12975–13002, 1989.
Jaeglé, L., Yung, Y. L., Toon, G. C., Sen, B., and Blavier, J.-F.: Balloon observations or organic and inorganic chlorine in the stratosphere: The role of HClO4 production on sulfate aerosols, Geophys. Res. Lett., 23, 1749–1752, 1996.
Janini, G. M. and Quaddora, L. A.: Determination of activity coefficients of oxygenated hydrocarbons by liquid-liquid chromatography, J. Liq. Chromatogr., 9, 39–53, 1986.
Jantunen, L. M. and Bidleman, T. F.: Henry's law constants for hexachlorobenzene, p,p'-DDE and components of technical chlordane and estimates of gas exchange for Lake Ontario, Chemosphere, 62, 1689–1696, 2006.
Jayasinghe, D. S., Brownawell, B. J., Chen, H., and Westall, J. C.: Determination of Henry's constants of organic compounds of low volatility: methylanilines in methanol-water, Environ. Sci. Technol., 26, 2275–2281, 1992.
Jenkins, J. and King, M. B.: Vapor-liquid equilibria for the system bromine/water at low bromine concentrations, Chem. Eng. Sci., 20, 921–922, 1965.
Ji, C. and Evans, E. M.: Using an internal standard method to determine Henry's law constants, Environ. Toxicol. Chem., 26, 231–236, 2007.
Johanson, G. and Dynésius, B.: Liquid/air partition coefficients of six commonly used glycol ethers, Br. J. Ind. Med., 45, 561–564, 1988.
Johnson, B. J.: The carbon isotope content and concentration of ambient formic acid and acetic acid, PhD thesis, University of Arizona, Tucson, AZ, USA, 1990.
Johnson, B. J., Betterton, E. A., and Craig, D.: Henry's law coefficients of formic and acetic acids, J. Atmos. Chem., 24, 113–119, 1996.
Johnson, J. E. and Harrison, H.: Carbonyl sulfide concentrations in the surface waters and above the Pacific Ocean, J. Geophys. Res., 91D, 7883–7888, 1986.
Johnstone, H. F. and Leppla, P. W.: The solubility of sulfur-dioxide at low partial pressures, J. Am. Chem. Soc., 56, 2233–2238, 1934.
Jönsson, J. Å., Vejrosta, J., and Novák, J.: Air/water partition coefficients for normal alkanes (n-pentane to n-nonane), Fluid Phase Equilib., 9, 279–286, 1982.
Joosten, G. E. H. and Danckwerts, P. V.: Solubility and diffusivity of nitrous oxide in equimolar potassium carbonate-potassium bicarbonate solutions at 25 °C and 1 atm, J. Chem. Eng. Data, 17, 452–454, 1972.
Jou, F.-Y. and Mather, A. E.: Vapor-liquid-liquid locus of the system pentane + water, J. Chem. Eng. Data, 45, 728–729, 2000.
Kames, J. and Schurath, U.: Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies, J. Atmos. Chem., 15, 79–95, 1992.
Kames, J. and Schurath, U.: Henry's law and hydrolysis-rate constants for peroxyacyl nitrates (PANs) using a homogeneous gas-phase source, J. Atmos. Chem., 21, 151–164, 1995.
Kames, J., Schweighoefer, S., and Schurath, U.: Henry's law constant and hydrolysis of peroxyacetyl nitrate (PAN), J. Atmos. Chem., 12, 169–180, 1991.
Kampf, C. J., Waxman, E. M., Slowik, J. G., Dommen, J., Pfaffenberger, L., Praplan, A. P., Prévôt, A. S. H., Baltensperger, U., Hoffmann, T., and Volkamer, R.: Effective Henry's law partitioning and the salting constant of glyoxal in aerosols containing sulfate, Environ. Sci. Technol., 47, 4236–4244, 2013.
Kanakidou, M., Dentener, F. J., and Crutzen, P. J.: A global three-dimensional study of the fate of HCFCs and HFC-134a in the troposphere, J. Geophys. Res., 100D, 18781–18801, 1995.
Kanefke, R.: Durch Quecksilberbromierung verbesserte Quecksilberabscheidung aus den Abgasen von Kohlekraftwerken und Abfallverbrennungsanlagen, PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Germany, 2008.
Karl, T., Yeretzian, C., Jordan, A., and Lindinger, W.: Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (PTR-MS), Int. J. Mass Spectrom., 223–224, 383–395, 2003.
Katrib, Y., Deiber, G., Schweitzer, F., Mirabel, P., and George, C.: Chemical transformation of bromine chloride at the air/water interface, J. Aerosol Sci., 32, 893–911, 2001.
Katrib, Y., Calve, S. L., and Mirabel, P.: Uptake measurements of dibasic esters by water droplets and determination of their Henry's law constants, J. Phys. Chem. A, 107, 11433–11439, 2003.
Kawamoto, K. and Urano, K.: Parameters for predicting fate of organochlorine pesticides in the environment (I) Octanol-water and air-water partition coefficients, Chemosphere, 18, 1987–1996, 1989.
Keeley, D. F., Hoffpauir, M. A., and Meriwether, J. R.: Solubility of aromatic hydrocarbons in water and sodium chloride solutions of different ionic strengths: benzene and toluene, Environ. Sci. Technol., 33, 87–89, 1988.
Keene, W. C. and Galloway, J. N.: Considerations regarding sources for formic and acetic acids in the troposphere, J. Geophys. Res., 91D, 14466–14474, 1986.
Keene, W. C., Mosher, B. W., Jacob, D. J., Munger, J. W., Talbot, R. W., Artz, R. S., Maben, J. R., Daube, B. C., and Galloway, J. N.: Carboxylic acids in a high-elevation forested site in central Virginia, J. Geophys. Res., 100D, 9345–9357, 1995.
Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem. Soc., 78, 5752–5756, 1956.
Keßel, S.: Quellen und Senken von Kohlensuboxid in der Atmosphäre, diplomarbeit, Johannes Gutenberg-Universität, Mainz, Germany, 2011.
Khalfaoui, B. and Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and brominated hydrocarbons, Fluid Phase Equilib., 98, 213–223, 1994a.
Khalfaoui, B. and Newsham, D. M. T.: Determination of infinite dilution activity coefficients and second virial coefficients using gas-liquid chromatography I. The dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene, J. Chromatogr. A, 673, 85–92, 1994b.
Khan, I. and Brimblecombe, P.: Henry's law constants of low molecular weight (<130) organic acids, J. Aerosol Sci., 23, S897–S900, 1992.
Khan, I., Brimblecombe, P., and Clegg, S. L.: The Henry's law constants of pyruvic and methacrylic acids, Environ. Technol., 13, 587–593, 1992.
Khan, I., Brimblecombe, P., and Clegg, S. L.: Solubilities of pyruvic acid and the lower (C1-C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem., 22, 285–302, 1995.
Kieckbusch, T. G. and King, C. J.: An improved method of determining vapor liquid equilibria for dilute organics in aqueous solution, J. Chromatogr. Sci., 17, 273–276, 1979.
Kim, B. R., Kalis, E. M., DeWulf, T., and Andrews, K. M.: Henry's Law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting, Water Environ. Res., 72, 65–74, 2000.
Kim, Y.-H. and Kim, K.-H.: Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry's law constant, J. Chromatogr. A, 1342, 78–85, 2014.
Kish, J. D., Leng, C. B., Kelley, J., Hiltner, J., Zhang, Y. H., and Liu, Y.: An improved approach for measuring Henry's law coefficients of atmospheric organics, Atmos. Environ., 79, 561–565, 2013.
Klein, R. G.: Calculations and measurements on the volatility of N-nitrosamines and their aqueous solutions, Toxicology, 23, 135–147, 1982.
Kochetkov, A., Smith, J. S., Ravikrishna, R., Valsaraj, K. T., and Thibodeaux, L. J.: Air-water partition constants for volatile methyl siloxanes, Environ. Toxicol. Chem., 20, 2184–2188, 2001.
Koga, Y.: Vapor pressures of dilute aqueous t-butyl alcohol: How dilute is the Henry's law region?, J. Phys. Chem., 99, 6231–6233, 1995.
Kolb, B., Welter, C., and Bichler, C.: Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration, Chromatographia, 34, 235–240, 1992.
Komiyama, H. and Inoue, H.: Reaction and transport of nitrogen oxides in nitrous acid solutions, J. Chem. Eng. Jpn., 11, 25–32, 1978.
Komiyama, H. and Inoue, H.: Absorption of nitrogen oxides into water, Chem. Eng. Sci., 35, 154–161, 1980.
Kondoh, H. and Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry's constants, J. Environ. Chem., 7, 81–89, 1997.
Kosak-Channing, L. F. and Helz, G. R.: Solubility of ozone in aqueous solutions of 0–0.6 M ionic strength at 5–30 °C, Environ. Sci. Technol., 17, 145–149, 1983.
Kramers, H., Blind, M. P. P., and Snoeck, E.: Absorption of nitrogen tetroxide by water jets, Chem. Eng. Sci., 14, 115–123, 1961.
Krause Jr., D. and Benson, B. B.: The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases, J. Solution Chem., 18, 823–873, 1989.
Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res., 110D, D23207, https://doi.org/10.1029/2005JD006004, 2005.
Krop, H. B., van Velzen, M. J. M., Parsons, J. R., and Govers, H. A. J.: n-Octanol-water partition coefficients, aqueous solubilities and Henry's law constants of fatty acid esters, Chemosphere, 34, 107–119, 1997.
Kruis, A. and May, A.: Lösungsgleichgewichte von Gasen mit Flüssigkeiten, in: Landolt-Börnstein II/2b, edited by: Schäfer, K. and Lax, E., Springer Verlag, Berlin, (1–1)–(1–210), 1962.
Krysztofiak, G., Catoire, V., Poulet, G., Marécal, V., Pirre, M., Louis, F., Canneaux, S., and Josse, B.: Detailed modeling of the atmospheric degradation mechanism of very-short lived brominated species, Atmos. Environ., 59, 514–532, 2012.
Kucklick, J. R., Hinckley, D. A., and Bidleman, T. F.: Determination of Henry's law constants for hexachlorocyclohexanes in distilled water and artificial seawater as a function of temperature, Mar. Chem., 34, 197–209, 1991.
Kühne, R., Ebert, R.-U., and Schüürmann, G.: Prediction of the temperature dependency of Henry's law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, 2005.
Kuramochi, H., Maeda, K., and Kawamoto, K.: Measurements of water solubilities and 1-octanol/water partition coefficients and estimations of Henry's law constants for brominated benzenes, J. Chem. Eng. Data, 49, 720–724, 2004.
Kuramochi, H., Takigami, H., Scheringer, M., and Sakai, S.: Measurement of vapor pressures of selected PBDEs, hexabromobenzene, and 1,2-bis(2,4,6-tribromophenoxy)ethane at elevated temperatures, J. Chem. Eng. Data, 59, 8–15, 2014.
Kurtén, T., Elm, J., Prisle, N. L., Mikkelsen, K. V., Kampf, C. J., Waxman, E. M., and Volkamer, R.: Computational study of the effect of glyoxal-sulfate clustering on the Henry's law coefficient of glyoxal, J. Phys. Chem. A, https://doi.org/10.1021/jp510304c, 2014.
Kurz, J. and Ballschmiter, K.: Vapour pressures, aqueous solubilities, Henry's law constants, partition coefficients between gas/water (Kgw), n-octanol/water (Kow) and gas/n-octanol (Kgo) of 106 polychlorinated diphenyl ethers (PCDE), Chemosphere, 38, 573–586, 1999.
Kutsuna, S.: Determination of rate constants for aqueous reactions of HCFC-123 and HCFC-225ca with OH− along with Henry's law constants of several HCFCs, Int. J. Chem. Kinetics, 45, 440–451, 2013.
Kutsuna, S. and Hori, H.: Experimental determination of Henry's law constant of perfluorooctanoic acid (PFOA) at 298 K by means of an inert-gas stripping method with a helical plate, Atmos. Environ., 42, 8883–8892, 2008.
Kutsuna, S. and Horia, H.: Experimental determination of Henry's law constants of trifluoroacetic acid at 278-298 K, Atmos. Environ., 42, 1399–1412, 2008.
Kutsuna, S., Chen, L., Ohno, K., Tokuhashi, K., and Sekiya, A.: Henry's law constants and hydrolysis rate constants of 2,2,2-trifluoroethyl acetate and methyl trifluoroacetate, Atmos. Environ., 38, 725–732, 2004.
Kutsuna, S., Chen, L., Abe, T., Mizukado, J., Uchimaru, T., Tokuhashi, K., and Sekiya, A.: Henry's law constants of 2,2,2-trifluoroethyl formate, ethyl trifluoroacetate, and non-fluorinated analogous esters, Atmos. Environ., 39, 5884–5892, 2005.
Lamarche, P. and Droste, R. L.: Air stripping mass transfer correlations for volatile organics, J. Am. Water Works Assoc., 81, 78–89, 1989.
Latimer, W. M.: The Oxidation States of the Elements and their Potentials in Aqueous Solutions, Prentice-Hall, Englewood Cliffs, NJ, 1952.
Lau, F. K., Charles, M. J., and Cahill, T. M.: Evaluation of gas-stripping methods for the determination of Henry's law constants for polybrominated diphenyl ethers and polychlorinated biphenyls, J. Chem. Eng. Data, 51, 871–878, 2006.
Lau, K., Rogers, T. N., and Chesney, D. J.: Measuring the aqueous Henry's law constant at elevated temperatures using an extended EPICS technique, J. Chem. Eng. Data, 55, 5144–5148, 2010.
Lau, Y. L., Liu, D. L. S., Pacepavicius, G. J., and Maguire, R. J.: Volatilization of metolachlor from water, J. Environ. Sci. Health B, 30, 605–620, 1995.
Ledbury, W. and Blair, E. W.: The partial formaldehyde vapour pressures of aqueous solutions of formaldehyde. Part II, J. Chem. Soc., 127, 2832–2839, 1925.
Lee, H., Kim, H.-J., and Kwon, J.-H.: Determination of Henry's law constant using diffusion in air and water boundary layers, J. Chem. Eng. Data, 57, 3296–3302, 2012.
Lee, S.-H., Mukherjee, S., Brewer, B., Ryan, R., Yu, H., and Gangoda, M.: A laboratory experiment to measure Henry's law constants of volatile organic compounds with a bubble column and a gas chromatography flame ionization detector (GC-FID), J. Chem. Educ., 90, 495–499, 2013.
Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840–848, 1981.
Lee, Y.-N. and Zhou, X.: Method for the determination of some soluble atmospheric carbonyl compounds, Environ. Sci. Technol., 27, 749–756, 1993.
Lee, Y.-N. and Zhou, X.: Aqueous reaction kinetics of ozone and dimethylsulfide and its atmospheric implications, J. Geophys. Res., 99D, 3597–3605, 1994.
Lei, Y. D., Wania, F., Shiu, W. Y., and Boocock, D. G. B.: Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes, J. Chem. Eng. Data, 44, 200–202, 1999.
Lei, Y. D., Wania, F., Mathers, D., and Mabury, S. A.: Determination of vapor pressures, octanol-air, and water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols, J. Chem. Eng. Data, 49, 1013–1022, 2004.
Lei, Y. D., Shunthirasingham, C., and Wania, F.: Comparison of headspace and gas-stripping techniques for measuring the air-water partititioning of normal alkanols (C4 to C10) – effect of temperature, chain length and adsorption to the water surface, J. Chem. Eng. Data, 52, 168–179, 2007.
Leighton, D. T. and Calo, J. M.: Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwater contamination applications, J. Chem. Eng. Data, 26, 382–385, 1981.
Leistra, M.: Distribution of 1,3-dichloropropene over the phases in soil, J. Agric. Food Chem., 18, 1124–1126, 1970.
Lekvam, K. and Bishnoi, P. R.: Dissolution of methane in water at low temperatures and intermediate pressures, Fluid Phase Equilib., 131, 297–309, 1997.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229–267, 1991.
Leng, C., Kish, J. D., Kelley, J., Mach, M., Hiltner, J., Zhang, Y., and Liu, Y.: Temperature-dependent Henry's law constants of atmospheric organics of biogenic origin, J. Phys. Chem. A, 117, 10359–10367, 2013.
Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., and Aumont, B.: A model for tropospheric multiphase chemistry: application to one cloudy event during the CIME experiment, Atmos. Environ., 34, 5015–5036, 2000.
Lerman, J., Willis, M. M., Gregory, G. A., and Eger, E. I.: Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 \degree C, Anesthesiology, 59, 554–558, 1983.
Leu, M.-T. and Zhang, R.: Solubilities of CH3C(O)O2NO2 and HO2NO2 in water and liquid H2SO4, Geophys. Res. Lett., 26, 1129–1132, 1999.
Leuenberger, C., Ligocki, M. P., and Pankow, J. F.: Trace organic compounds in rain: 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain, Environ. Sci. Technol., 19, 1053–1058, 1985.
Li, H., Ellis, D., and Mackay, D.: Measurement of low air-water partition coefficients of organic acids by evaporation from a water surface, J. Chem. Eng. Data, 52, 1580–1584, 2007.
Li, J. and Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443–1450, 1993.
Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait, M. J., and Eckert, C. A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography, Anal. Chem., 65, 3212–3218, 1993.
Li, J., Perdue, E. M., Pavlostathis, S. G., and Araujo, R.: Physicochemical properties of selected monoterpenes, Environ. Int., 24, 353–358, 1998.
Li, J.-Q., Shen, C.-Y., Xu, G.-H., Wang, H.-M., Jiang, H.-H., Han, H.-Y., Chu, Y.-N., and Zheng, P.-C.: Dynamic measurements of Henry's law constant of aromatic compounds using proton transfer reaction mass spectrometry, Acta Phys. Chim. Sin., 24, 705–708, 2008.
Li, N., Wania, F., Lei, Y. D., and Daly, G. L.: A comprehensive and critical compilation, evaluation, and selection of physical-chemical property data for selected polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 32, 1545–1590, 2003.
Lia, S., Chen, Z., and Shia, F.: Determination of Henry's Law constant for methyl hydroperoxide by long path FTIR, Prog. Nat. Sci., 14, 765–769, 2004.
Lide, D. R. and Frederikse, H. P. R. (Eds.): CRC Handbook of Chemistry and Physics, 76th Edn., CRC Press, Inc., Boca Raton, FL, 1995.
Lin, C.-J. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl−): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103D, 28093–28102, 1998.
Lincoff, A. H. and Gossett, J. M.: The determination of Henry's law constant for volatile organics by equilibrium partitioning in closed systems, in: Gas transfer at water surfaces, edited by: Brutsaert, W. and Jirka, G. H., D. Reidel Publishing Company, Dordrecht-Holland, 17–25, 1984.
Lind, J. A. and Kok, G. L.: Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 91D, 7889–7895, 1986.
Lind, J. A. and Kok, G. L.: Correction to "Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid" by John A. Lind and Gregory L. Kok, J. Geophys. Res., 99D, 21119, 1994.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, Int. J. Mass Spectrom. Ion Proc., 173, 191–241, 1998.
Lindqvist, O. and Rodhe, H.: Atmospheric mercury – a review, Tellus, 37B, 136–159, 1985.
Liss, P. S. and Slater, P. G.: Flux of gases across the air-sea interface, Nature, 247, 181–184, 1974.
Liu, X., Guo, Z., Roache, N. F., Mocka, C. A., Allen, M. R., and Mason, M. A.: Henry's law constant and overall mass transfer coefficient for formaldehyde emission from small water pools under simulated indoor environmental conditions, Environ. Sci. Technol., 49, 1603–1610, 2015.
Lodge, K. B. and Danso, D.: The measurement of fugacity and the Henry's law constant for volatile organic compounds containing chromophores, Fluid Phase Equilib., 253, 74–79, 2007.
Loomis, A. G.: Solubilities of gases in water, in: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. III, edited by: Washburn, E. W., West, C. J., Dorsey, N. E., Bichowsky, F. R., and Klemenc, A., McGraw-Hill, Inc., 255–261, 1928.
Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric dimethyl sulphide and the natural sulphur cycle, Nature, 237, 452–453, 1972.
Luke, W. T., Dickerson, R. R., and Nunnermacker, L. J.: Direct measurements of the photolysis rate coefficients and Henry's law constants of several alkyl nitrates, J. Geophys. Res., 94D, 14905–14921, 1989.
Ma, Y.-G., Lei, Y. D., Xiao, H., Wania, F., and Wang, W.-H.: Critical review and recommended values for the physical-chemical property data of 15 polycyclic aromatic hydrocarbons at 25 °C, J. Chem. Eng. Data, 55, 819–825, 2010.
Maahs, H. G.: Sulfur-dioxide/water equilibria between 0° and 50 °C. An examination of data at low concentrations, in: Heterogeneous Atmospheric Chemistry, Geophysical Monograph 26, edited by: Schryer, D. R., pp. 187–195, Am. Geophys. Union, Washington, D.C., 1982.
Maaßen, S.: Experimentelle Bestimmung und Korrelierung von Verteilungskoeffizienten in verdünnten Lösungen, PhD thesis, Technische Universität Berlin, Germany, 1995.
Mabury, S. A. and Crosby, D. G.: Pesticide reactivity toward hydroxyl and its relationship to field persistence, J. Agric. Food Chem., 44, 1920–1924, 1996.
MacBean, C.: The Pesticide Manual, 16th Edition, Supplementary Entries – Extended, Tech. rep., British Crop Production Council, available at: http://www.bcpcdata.com/_assets/files/PM16-supplementary-BCPC.pdf (last access: 10 April 2015), 2012a.
MacBean, C.: The Pesticide Manual, British Crop Production Council, 2012b.
Mackay, D. and Leinonen, P. J.: Rate of evaporation of low-solubility contaminants from water bodies to atmosphere, Environ. Sci. Technol., 9, 1178–1180, 1975.
Mackay, D. and Shiu, W. Y.: A critical review of Henry's law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, 1981.
Mackay, D. and Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from water, Environ. Sci. Technol., 17, 211–217, 1983.
Mackay, D., Shiu, W. Y., and Sutherland, R. P.: Determination of air-water Henry's law constants for hydrophobic pollutants, Environ. Sci. Technol., 13, 333–337, 1979.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs, Lewis Publishers, Boca Raton, 1992a.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans, Lewis Publishers, Boca Raton, 1992b.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, 1993.
Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, 1995.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, 2006a.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, 2006b.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, 2006c.
Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Nitrogen and Sulfur Containing Compounds and Pesticides, CRC/Taylor & Francis Group, 2006d.
Manogue, W. H. and Pigford, R. L.: The kinetics of the absorption of phosgene into water and aqueous solutions, AIChE J., 6, 494–500, 1960.
Marin, M., Baek, I., and Taylor, A. J.: Volatile release from aqueous solutions under dynamic headspace dilution conditions, J. Agric. Food Chem., 47, 4750–4755, 1999.
Markham, A. E. and Kobe, K. A.: The solubility of gases in liquids, Chem. Rev., 28, 519–588, 1941.
Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080, 1985.
Marti, J. J., Jefferson, A., Cai, X. P., Richert, C., McMurry, P. H., and Eisele, F.: H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions, J. Geophys. Res., 102D, 3725–3735, 1997.
Martikainen, P., Salmi, T., Paatero, E., Hummelstedt, L., Klein, P., Damén, H., and Lindroos, T.: Kinetics of homogeneous catalytic chlorination of acetic acid, J. Chem. Tech. Biotechnol., 40, 259–274, 1987.
Martin, L. R.: Kinetic studies of sulfite oxidation in aqueous solution, in: SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, edited by: Calvert, J. G., Butterworth Publishers, Boston, MA, 63–100, 1984.
Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ., 15, 1615–1621, 1981.
Mazzoni, S. M., Roy, S., and Grigoras, S.: Eco-relevant properties of selected organosilicon materials, in: The Handbook of Environmental Chemistry, Vol 3. Part H. Organosilicon Materials, edited by: Chandra, G., Springer Verlag, Berlin, 53–81, 1997.
McAuliffe, C.: GC determination of solutes by multiple phase equilibrium, Chem. Technol., 1, 46–51, 1971.
McCarty, P. L.: Organics in water – an engineering challenge, J. Environ. Eng. Div., 106, 1–17, 1980.
McConnell, G., Ferguson, D. M., and Pearson, C. R.: Chlorinated hydrocarbons and the environment, Endeavour, 34, 13–18, 1975.
McDevit, W. F. and Long, F. A.: The activity coefficient of benzene in aqueous salt solutions, J. Am. Chem. Soc., 74, 1773–1777, 1952.
McLachlan, M., Mackay, D., and Jones, P. H.: A conceptual model of organic chemical volatilization at waterfalls, Environ. Sci. Technol., 24, 252–257, 1990.
McLinden, M. O.: Physical properties of alternatives to the fully halogenated chlorofluorocarbons, in: WMO Report 20, Scientific Assessment of Stratospheric Ozone: 1989, Volume II, World Meteorol. Organ., Geneva, 11–38, 1989.
McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner, A. J., and Barakat, J. M.: Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study, Environ. Sci. Technol., 46, 8075–8081, 2012.
McPhedran, K. N., Seth, R., and Drouillard, K. G.: Evaluation of the gas stripping technique for calculation of Henry's law constants using the initial slope method for 1,2,4,5-tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene, Chemosphere, 91, 1648–1652, 2013.
Meadows, R. W. and Spedding, D. J.: The solubility of very low concentrations of carbon monoxide in aqueous solution, Tellus, 26, 143–149, 1974.
Mentel, T. F., Folkers, M., Tillmann, R., Henk, H., Wahner, A., Otjes, R., Blom, M., and ten Brink, H. M.: Determination of the Henry coefficients for organic aerosol components, Geophys. Res. Abstr., 6, 1525, 2004.
Metcalfe, C. D., McLeese, D. W., and Zitko, V.: Rate of volatilization of fenitrothion from fresh water, Chemosphere, 9, 151–155, 1980.
Meylan, W. M. and Howard, P. H.: Bond contribution method for estimating Henry's law constants, Environ. Toxicol. Chem., 10, 1283–1293, 1991.
Miller, M. E. and Stuart, J. D.: Measurement of aqueous Henry's law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 72, 622–625, 2000.
Miller, M. E. and Stuart, J. D.: Correction: Measurement of aqueous Henry's law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 75, 1037, 2003.
Mills, I., Cvitaš, T., Homann, K., Kallay, N., and Kuchitsu, K.: International Union of Pure and Applied Chemistry: Quantities, Units and Symbols in Physical Chemistry, Blackwell Science, Boca Raton, available at: http://old.iupac.org/publications/books/gbook/green_book_2ed.pdf (last access: 10 April 2015), 1993.
Mirabel, P., George, C., Magi, L., and Ponche, J. L.: Chapter 6.3: Gas-liquid interactions, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag, Berlin, 175–181, 1996.
Mirvish, S. S., Issenberg, P., and Sornson, H. C.: Air–water and ether–water distribution of N–nitroso compounds: implications for laboratory safety, analytic methodology, and carcinogenicity for the rat esophagus, nose, and liver, J. Natl. Cancer Inst., 56, 1125–1129, 1976.
Modarresi, H., Modarress, H., and Dearden, J. C.: QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, 2007.
Mohebbi, V., Naderifar, A., Behbahani, R. M., and Moshfeghian, M.: Determination of Henry's law constant of light hydrocarbon gases at low temperatures, J. Chem. Thermodyn., 51, 8–11, 2012.
Möller, D. and Mauersberger, G.: Aqueous phase chemical reaction system used in cloud chemistry modelling, in: EUROTRAC Special Publication: Clouds: Models and Mechanisms, edited by: Flossmann, A., Cvitaš, T., Möller, D., and Mauersberger, G., 77–93, 1992.
Moore, R. M.: The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere, Chemosphere; Global Change Sci., 2, 95–99, 2000.
Moore, R. M., Geen, C. E., and Tait, V. K.: Determination of Henry's law constants for a suite of naturally occuring halogenated methanes in seawater, Chemosphere, 30, 1183–1191, 1995.
Morrison, T. J. and Johnstone, N. B.: Solubilities of the inert gases in water, J. Chem. Soc., 3441–3446, 1954.
Mozurkewich, M.: Comment on "Possible role of NO3 in the nighttime chemistry of a cloud" by William L. Chameides, J. Geophys. Res., 91D, 14569–14570, 1986.
Mozurkewich, M.: Mechanisms for the release of halogens from sea-salt particles by free radical reactions, J. Geophys. Res., 100D, 14 199–14 207, 1995.
Muir, D. C. G., Teixeira, C., and Wania, F.: Empirical and modeling evidence of regional atmospheric transport of current-use pesticides, Environ. Toxicol. Chem., 23, 2421–2432, 2004.
Müller, B. and Heal, M. R.: The Henry's law coefficient of 2-nitrophenol over the temperature range 278–303 K, Chemosphere, 45, 309–314, 2001.
Munson, E. S., Saidman, L. J., and Eger, E. I.: Solubility of fluroxene in blood and tissue homogenates, Anesthesiology, 25, 638–640, 1964.
Munz, C. and Roberts, P. V.: Effects of solute concentration and cosolvents on the aqueous activity coefficient of halogenated hydrocarbons, Environ. Sci. Technol., 20, 830–836, 1986.
Munz, C. and Roberts, P. V.: Air-water phase equilibria of volatile organic solutes, J. Am. Water Works Assoc., 79, 62–69, 1987.
Murphy, T. J., Pokojowczyk, J. C., and Mullin, M. D.: Vapor exchange of PCBs with Lake Michigan: The atmosphere as a sink for PCBs, in: Physical Behavior of PCBs in the Great Lakes, edited by: Mackay, D., Patterson, S., Eisenreich, S. J., and Simmons, M. S., Ann Arbor Science, Ann Arbor, Mich., 49–58, 1983.
Murphy, T. J., Mullin, M. D., and Meyer, J. A.: Equilibration of polychlorinated biphenyls and toxaphene with air and water, Environ. Sci. Technol., 21, 155–162, 1987.
Myrdal, P. and Yalkowsky, S. H.: A simple scheme for calculating aqueous solubility, vapor pressure and Henry's law constant: application to the chlorobenzenes, SAR QSAR Environ. Res., 2, 17–28, 1994.
Nelson, P. E. and Hoff, J. E.: Food volatiles: Gas chromatographic determination of partition coefficients in water-lipid systems, Int. J. Mass Spectrom., 228, 479–482, 1968.
Ni, N., El-Sayed, M. M., Sanghvi, T., and Yalkowsky, S. H.: Estimation of the effect of NaCl on the solubility of organic compounds in aqueous solution, J. Pharm. Sci., 89, 1620–1625, 2000.
Nicholson, B. C., Maguire, B. P., and Bursill, D. B.: Henry's law constants for the trihalomethanes: Effects of water composition and temperature, Environ. Sci. Technol., 18, 518–521, 1984.
Nielsen, F., Olsen, E., and Fredenslund, A.: Henry's law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method, Environ. Sci. Technol., 28, 2133–2138, 1994.
Niinemets, U. and Reichstein, M.: A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species, Global Biogeochem. Cy., 16, 1110, https://doi.org/10.1029/2002GB001927, 2002.
Nirmalakhandan, N., Brennan, R. A., and Speece, R. E.: Predicting Henry's law constant and the effect of temperature on Henry's law constant, Wat. Res., 31, 1471–1481, 1997.
Nirmalakhandan, N. N. and Speece, R. E.: QSAR model for predicting Henry's constant, Environ. Sci. Technol., 22, 1349–1357, 1988a.
Nirmalakhandan, N. N. and Speece, R. E.: Prediction of aqueous solubility of organic chemicals based on molecular structure, Environ. Sci. Technol., 22, 328–338, 1988b.
Odabasi, M., Cetin, B., and Sofuoglu, A.: Henry's law constant, octanol-air partition coefficient and supercooled liquid vapor pressure of carbazole as a function of temperature: Application to gas/particle partitioning in the atmosphere, Chemosphere, 62, 1087–1096, 2006.
Oliver, B. G.: Desorption of chlorinated hydrocarbons from spiked and anthropogenically contaminated sediments, Chemosphere, 14, 1087–1106, 1985.
Olson, J. D.: The vapor pressure of pure and aqueous glutaraldehyde, Fluid Phase Equilib., 150–151, 713–720, 1998.
Opresko, D. M., Young, R. A., Faust, R. A., Talmage, S. S., Watson, A. P., Ross, R. H., Davidson, K. A., and King, J.: Chemical warfare agents: estimating oral reference doses, Rev. Environ. Contam. Toxicol., 156, 1–183, 1998.
O'Sullivan, D. W., Lee, M., Noone, B. C., and Heikes, B. G.: Henry's law constant determinations for hydrogen peroxide, methyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid, J. Phys. Chem., 100, 3241–3247, 1996.
Otto, S., Riello, L., Düring, R.-A., Hummel, H. E., and Zanin, G.: Herbicide dissipation and dynamics modelling in three different tillage systems, Chemosphere, 34, 163–178, 1997.
Paasivirta, J. and Sinkkonen, S. I.: Environmentally relevant properties of all 209 polychlorinated biphenyl congeners for modeling their fate in different natural and climatic conditions, J. Chem. Eng. Data, 54, 1189–1213, 2009.
Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., and Wania, F.: Estimation of vapor pressures, solubilities and Henry's law constants of selected persistent organic pollutants as functions of temperature, Chemosphere, 39, 811–832, 1999.
Palmer, D. A., Ramette, R. W., and Mesmer, R. E.: The hydrolysis of iodine: Equilibria at high temperatures, J. Nucl. Mater., 130, 280–286, 1985.
Pandis, S. N. and Seinfeld, J. H.: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res., 94D, 1105–1126, 1989.
Pankow, J. F., Rathbun, R. E., and Zogorski, J. S.: Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams, Chemosphere, 33, 921–937, 1996.
Park, J. H., Hussam, A., Couasnon, P., Fritz, D., and Carr, P. W.: Experimental reexamination of selected partition coefficients from Rohrschneider's data set, Anal. Chem., 59, 1970–1976, 1987.
Park, J.-Y. and Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem., 92, 6294–6302, 1988.
Park, S.-J., Han, S.-D., and Ryu, S.-A.: Measurement of air/water partition coefficient (Henry's law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920, 1997.
Park, T., Rettich, T. R., Battino, R., Peterson, D., and Wilhelm, E.: Solubility of gases in liquids. 14. Bunsen coefficients for several fluorine-containing gases (Freons) dissolved in water at 298.15 K, J. Chem. Eng. Data, 27, 324–326, 1982.
Parsons, G. H., Rochester, C. H., and Wood, C. E. C.: Effect of 4-substitution on the thermodynamics of hydration of phenol and the phenoxide anion, J. Chem. Soc. B, 533–536, 1971.
Parsons, G. H., Rochester, C. H., Rostron, A., and Sykes, P. C.: The thermodynamics of hydration of phenols, J. Chem. Soc. Perkin Trans. 2, 136–138, 1972.
Pearson, C. R. and McConnell, G.: Chlorinated C1 and C2 hydrocarbons in the marine environment, Proc. R. Soc. Lond. B, 189, 305–332, 1975.
Pecsar, R. E. and Martin, J. J.: Solution thermodynamics from gas-liquid chromatography, Anal. Chem., 38, 1661–1669, 1966.
Peng, J. and Wan, A.: Measurement of Henry's constants of high-volatility organic compounds using a headspace autosampler, Environ. Sci. Technol., 31, 2998–3003, 1997.
Peng, J. and Wan, A.: Effect of ionic strength on Henry's constants of volatile organic compounds, Chemosphere, 36, 2731–2740, 1998.
Perlinger, J. A., Eisenreich, S. J., and Capel, P. D.: Application of headspace analysis to the study of sorption of hydrophobic organic chemicals to α-Al2O3, Environ. Sci. Technol., 27, 928–937, 1993.
Perry, R. H. and Chilton, C. H.: Chemical Engineers' Handbook, 5th edition, McGraw-Hill, Inc., 1973.
Petersen, G., Pleijel, J. M. K., Bloxam, R., and Vinod Kumar, A.: A comprehensive Eulerian modeling framework for airborne mercury species: Development and testing of the tropospheric chemistry module (TCM), Atmos. Environ., 32, 829–843, 1998.
Petrasek, A. C., Kugelman, I. J., Austern, B. M., Pressley, T. A., Winslow, L. A., and Wise, R. H.: Fate of toxic organic compounds in wastewater treatment plants, J. Water Pollut. Control Fed., 55, 1286–1296, 1983.
Pfeifer, O., Lohmann, U., and Ballschmiter, K.: Halogenated methyl-phenyl ethers (anisoles) in the environment: Determination of vapor pressures, aqueous solubilities, Henry's law constants, and gas/water- (Kgw), n-octanol/water- (Kow) and gas/n-octanol (Kgo) partition coefficients, Fresenius J. Anal. Chem., 371, 598–606, 2001.
Pierotti, G. J., Deal, C. H., and Derr, E. L.: Activity coefficients and molecular structure, Ind. Eng. Chem., 51, 95–102, (data in supplement, document no. 5782, American Documentation Institute, Library of Congress, Washington, D.C.), 1959.
Plassmann, M. M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and Berger, U.: Theoretical and experimental simulation of the fate of semifluorinated n-alkanes during snowmelt, Environ. Sci. Technol., 44, 6692–6697, 2010.
Plassmann, M. M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and Berger, U.: Laboratory studies on the fate of perfluoroalkyl carboxylates and sulfonates during snowmelt, Environ. Sci. Technol., 45, 6872–6878, 2011.
Plyasunov, A. V.: Thermodynamics of Si(OH)_4 in the vapor phase of water: Henry's and vapor-liquid distribution constants, fugacity and cross virial coefficients, Geochim. Cosmochim. Acta, 77, 215–231, 2012.
Podoll, R. T., Jaber, H. M., and Mill, T.: Tetrachlorodibenzodioxin: rates of volatilization and photolysis in the environment, Environ. Sci. Technol., 20, 490–492, 1986.
Pollien, P., Jordan, A., Lindinger, W., and Yeretzian, C.: Liquid-air partitioning of volatile compounds in coffee: dynamic measurements using proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom., 228, 69–80, 2003.
Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Le Calvé, S., and Monod, A.: In-cloud multiphase behaviour of acetone in the troposphere: Gas uptake, Henry's law equilibrium and aqueous phase photooxidation, Chemosphere, 81, 312–320, 2010.
Przyjazny, A., Janicki, W., Chrzanowski, W., and Staszewski, R.: Headspace gas chromatographic determination of distribution coefficients of selected organosulphur compounds and their dependence on some parameters, J. Chromatogr., 280, 249–260, 1983.
Ramachandran, B. R., Allen, J. M., and Halpern, A. M.: Air-water partitioning of environmentally important organic compounds, J. Chem. Educ., 73, 1058–1061, 1996.
Rathbun, R. E. and Tai, D. Y.: Volatilization of ketones from water, Water Air Soil Pollut., 17, 281–293, 1982.
Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., and Aumont, B.: Structure-activity relationships to estimate the effective Henry's law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, https://doi.org/10.5194/acp-10-7643-2010, 2010.
Régimbal, J.-M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829, 1997.
Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, PhD thesis, Technische Universität Berlin, Germany, 1995.
Rettich, T. R., Handa, Y. P., Battino, R., and Wilhelm, E.: Solubility of gases in liquids. 13. High-precision determination of Henry's constants for methane and ethane in liquid water at 275 to 328 K, J. Phys. Chem., 85, 3230–3237, 1981.
Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids. XVI. Henry's law coefficients for nitrogen in water at 5 to 50 °C, J. Solution Chem., 13, 335–348, 1984.
Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids. 18. High-precision determination of Henry fugacities for argon in liquid water at 2 to 40 °C, J. Solution Chem., 21, 987–1004, 1992.
Rex, A.: Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser, Z. Phys. Chem., 55, 355–370, 1906.
Reyes-Pérez, E., Le Calvé, S., and Mirabel, P.: UV absorption spectrum and Henry's law constant of EPTC, Atmos. Environ., 42, 7940–7946, 2008.
Reza, J. and Trejo, A.: Temperature dependence of the infinite dilution activity coefficient and Henry's law constant of polycyclic aromatic hydrocarbons in water, Chemosphere, 56, 537–547, 2004.
Rice, C. P., Chernyak, S. M., Hapeman, C. J., and Biboulian, S.: Air-water distribution of the endosulfan isomers, J. Environ. Qual., 26, 1101–1106, 1997a.
Rice, C. P., Chernyak, S. M., and McConnell, L. L.: Henry's law constants for pesticides measured as a function of temperature and salinity, J. Agric. Food Chem., 45, 2291–2298, 1997b.
Riederer, M.: Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model, Environ. Sci. Technol., 24, 829–837, 1990.
Rinker, E. B. and Sandall, O. C.: Physical solubility of hydrogen sulfide in several aqueous solvents, Can. J. Chem. Eng., 78, 232–236, 2000.
Riveros, P. A., Koren, D., McNamara, V. M., and Binvignat, J.: Cyanide recovery from a gold mill barren solution containing high levels of copper, CIM Bull., 91, 73–81, 1998.
Robbins, G. A., Wang, S., and Stuart, J. D.: Using the headspace method to determine Henry's law constants, Anal. Chem., 65, 3113–3118, 1993.
Roberts, D. D. and Pollien, P.: Analysis of aroma release during microwave heating, J. Agric. Food Chem., 45, 4388–4392, 1997.
Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.: N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol, Science, 321, 1059, https://doi.org/10.1126/science.1158777, 2008.
Roberts, J. M., Veres, P. R., Cochran, A. K., Warneke, C., Burling, I. R., Yokelson, R. J., Lerner, B., Gilman, J. B., Kuster, W. C., Fall, R., and de Gouw, J.: Isocyanic acid in the atmosphere and its possible link to smoke-related health effects, Proc. Natl. Acad. Sci. USA, 108, 8966–8971, 2011.
Rochester, H. and Symonds, J. R.: Thermodynamic studies of fluoroalcohols. Part 3. – The thermodynamics of transfer of five fluoroalcohols from the gas-phase to aqueous solution, J. Chem. Soc. Faraday Trans. 1, 69, 1577–1585, 1973.
Rohrschneider, L.: Solvent characterization by gas-liquid partition coefficients of selected solutes, Anal. Chem., 45, 1241–1247, 1973.
Ross, S. and Hudson, J. B.: Henry's law constants of butadiene in aqueous solutions of a cationic surfactant, J. Colloid Sci., 12, 523–525, https://doi.org/10.1016/0095-8522(57)90054-5, 1957.
Roth, J. A. and Sullivan, D. E.: Solubility of ozone in water, Ind. Eng. Chem. Fund., 20, 137–140, 1981.
Rubbiani, M.: CLH Report for Brodifacoum, Tech. rep., European Chemicals Agency (ECHA), available at: http://echa.europa.eu/documents/10162/13626/clh_proposal_brodifacoum_dd006368-57_en.pdf (last access: 10 April 2015), 2013.
Rudich, Y., Talukdar, R. K., Ravishankara, A. R., and Fox, R. W.: Reactive uptake of NO3 on pure water and ionic solutions, J. Geophys. Res., 101D, 21023–21031, 1996.
Russell, C. J., Dixon, S. L., and Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry's law constant, Anal. Chem., 64, 1350–1355, 1992.
Ryan, J. A., Bell, R. M., Davidson, J. M., and O'Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, 1988.
Rytting, J. H., Huston, L. P., and Higuchi, T.: Thermodynamic group contributions for hydroxyl, amino, and methylene groups, J. Pharm. Sci., 69, 615–618, 1978.
Ryu, S.-A. and Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, 1999.
Sabljić, A. and Güsten, H.: Predicting Henry's law constants for polychlorinated biphenyls, Chemosphere, 19, 1503–1511, 1989.
Saçan, M. T., Özkul, M., and Erdem, S. S.: Physico-chemical properties of PCDD/PCDFs and phthalate esters, SAR QSAR Environ. Res., 16, 443–459, 2005.
Sagebiel, J. C., Seiber, J. N., and Woodrow, J. E.: Comparison of headspace and gas-stripping methods for determining the Henry's law constant (H) for organic compounds of low to intermediate H, Chemosphere, 25, 1763–1768, 1992.
Sahsuvar, L., Helm, P. A., Jantunen, L. M., and Bidleman, T. F.: Henry's law constants for α-, β-, and γ-hexachlorocyclohexanes (HCHs) as a function of temperature and revised estimates of gas exchange in Arctic regions, Atmos. Environ., 37, 983–992, 2003.
Sander, R.: Modeling atmospheric chemistry: Interactions between gas-phase species and liquid cloud/aerosol particles, Surv. Geophys., 20, 1–31, 1999.
Sander, R. and Crutzen, P. J.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res., 101D, 9121–9138, https://doi.org/10.1029/95JD03793, 1996.
Sander, R., Lelieveld, J., and Crutzen, P. J.: Modelling of the nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud, J. Atmos. Chem., 20, 89–116, 1995.
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, available at: http://jpldataeval.jpl.nasa.gov (last access: 10 April 2015), 2006.
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, available at: http://jpldataeval.jpl.nasa.gov (last access: 10 April 2015), 2011.
Sanders, P. F. and Seiber, J. N.: A chamber for measuring volatilization of pesticides from model soil and water disposal systems, Chemosphere, 12, 999–1012, 1983.
Sanemasa, I.: The solubility of elemental mercury vapor in water, Bull. Chem. Soc. Jpn., 48, 1795–1798, 1975.
Sanemasa, I., Akari, M., Deguchi, T., and Nagai, H.: Solubilities of benzene and the alkylbenzenes in water – method for obtaining aqueous solutions saturated with vapours in equilibrium with organic liquids, Chem. Lett., 10, 225–228, 1981.
Sanemasa, I., Araki, M., Deguchi, T., and Nagai, H.: Solubility measurements of benzene and the alkylbenzenes in water by making use of solute vapor, Bull. Chem. Soc. Jpn., 55, 1054–1062, 1982.
Sanemasa, I., Arakawa, S., Araki, M., and Deguchi, T.: The effects of salts on the solubilities of benzene, toluene, ethylbenzene, and propylbenzene in water, Bull. Chem. Soc. Jpn., 57, 1539–1544, 1984.
Santl, H., Brandsch, R., and Gruber, L.: Experimental determination of Henry's law constant (HLC) for some lower chlorinated dibenzodioxins, Chemosphere, 29, 2209–2214, 1994.
Sarraute, S., Delepine, H., Costa Gomes, M. F., and Majer, V.: Aqueous solubility, Henry's law constants and air/water partition coefficients of n-octane and two halogenated octanes, Chemosphere, 57, 1543–1551, 2004.
Sarraute, S., Mokbel, I., Costa Gomes, M. F., Majer, V., Delepine, H., and Jose, J.: Vapour pressures, aqueous solubility, Henry's law constants and air/water partition coefficients of 1,8-dichlorooctane and 1,8-dibromooctane, Chemosphere, 64, 1829–1836, 2006.
Sato, A. and Nakajima, T.: Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil, Br. J. Ind. Med., 36, 231–234, 1979a.
Sato, A. and Nakajima, T.: A structure-activity relationship of some chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75, 1979b.
Sauer, F.: Bestimmung von H2O2 und organischen Peroxiden in Labor- und Feldmessungen mittels Umkehrphasen-Hochdruck-Flüssigkeitschromatographie und enzymatischer Nachsäulenderivatisierung, PhD thesis, Johannes Gutenberg-Universität, Mainz, Germany, 1997.
Savary, G., Hucher, N., Petibon, O., and Grisel, M.: Study of interactions between aroma compounds and acacia gum using headspace measurements, Food Hydrocolloids, 37, 1–6, 2014.
Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109, 1996.
Saylor, J. H., Stuckey, J. M., and Gross, P. M.: Solubility studies. V. the validity of Henry's law for the calculation of vapor solubilities, J. Am. Chem. Soc., 60, 373–376, 1938.
Sazonov, V. P. and Shaw, D. G.: Introduction to the solubility data series, available at: http://srdata.nist.gov/solubility/intro.aspx (last access: 10 April 2015), 2006.
Schaffer, D. L. and Daubert, T. E.: Gas-liquid chromatographic determination of solution properties of oxygenated compounds in water, Anal. Chem., 41, 1585–1589, 1969.
Scharlin, P. (Ed.): IUPAC Solubility Data Series, vol. 62 of Carbon Dioxide in Water and Aqueous Solutions, Oxford University Press, 1996.
Scharlin, P. and Battino, R.: Solubility of CCl2F2, CClF3, CF4 and c-C4F8 in H2O and D2O at 288 to 318 K and 101.325 kPa. Thermodynamics of transfer of gases from H2O to D2O, Fluid Phase Equilib., 95, 137–147, 1994.
Scheer, V., Frenzel, A., Behnke, W., Zetzsch, C., Magi, L., George, C., and Mirabel, P.: Uptake of nitrosyl chloride (NOCl) by aqueous solutions, J. Phys. Chem. A, 101, 9359–9366, 1997.
Schoene, K. and Steinhanses, J.: Determination of Henry's law constant by automated head space-gas chromatography, Fresenius J. Anal. Chem., 321, 538–543, 1985.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – An overview, Atmos. Environ., 32, 809–822, 1998.
Schroy, J. M., Hileman, F. D., and Cheng, S. C.: Physical/chemical properties of 2,3,7,8-TCDD, Chemosphere, 14, 877–880, 1985.
Schuhfried, E., Biasioli, F., Aprea, E., Cappellin, L., Soukoulis, C., Ferrigno, A., Märk, T. D., and Gasperi, F.: PTR-MS measurements and analysis of models for the calculation of Henry's law constants of monosulfides and disulfides, Chemosphere, 83, 311–317, 2011.
Schurath, U., Bongartz, A., Kames, J., Wunderlich, C., and Carstens, T.: Chapter 6.4: Laboratory determination of physico-chemical rate parameters pertinent to mass transfer into cloud and fog droplets, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag, Berlin, 182–189, 1996.
Schüürmann, G.: Prediction of Henry's law constant of benzene derivatives using quantum chemical continuum-solvation models, J. Comput. Chem., 21, 17–34, 2000.
Schwartz, S. E.: Gas- and aqueous-phase chemistry of HO2 in liquid water clouds, J. Geophys. Res., 89D, 11589–11598, 1984.
Schwartz, S. E.: Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in: Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. G6, edited by: Jaeschke, W., Springer Verlag, Berlin, 415–471, 1986.
Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by: Pfafflin, J. R. and Ziegler, E. N., Gordon and Breach Science Publishers, NY, vol. 4, 1–45, 1981.
Schwarz, F. P. and Wasik, S. P.: A fluorescence method for the measurement of the partition coefficients of naphthalene, 1-methylnaphthalene, and 1-ethylnaphthalene in water, J. Chem. Eng. Data, 22, 270–273, 1977.
Schwarz, H. A. and Bielski, B. H. J.: Reactions of HO2 and O2− with iodine and bromine and the I2− and I atom reduction potentials, J. Phys. Chem., 90, 1445–1448, 1986.
Schwarz, H. A. and Dodson, R. W.: Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of OH(aq), J. Phys. Chem., 88, 3643–3647, 1984.
Schwarzenbach, R. P., Stierli, R., Folsom, B. R., and Zeyer, J.: Compound properties relevant for assessing the environmental partitioning of nitrophenols, Environ. Sci. Technol., 22, 83–92, 1988.
Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution, Wiley-Interscience Publication, NY, 1986.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., 1998.
Servant, J., Kouadio, G., Cros, B., and Delmas, R.: Carboxylic monoacids in the air of Mayombe forest (Congo): Role of the forest as a source or sink, J. Atmos. Chem., 12, 367–380, 1991.
Setschenow, J.: Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure, Z. Phys. Chem., 4, 117–125, 1889.
Severit, P.: Experimentelle Untersuchung der Desorption von Quecksilber und Quecksilberverbindungen aus wässrigen Lösungen, diplomarbeit, Universität Köln, Germany, 1997.
Seyfioglu, R. and Odabasi, M.: Determination of Henry's law constant of formaldehyde as a function of temperature: Application to air-water exchange in Tahtali lake in Izmir, Turkey, Environ. Monit. Assess., 128, 343–349, 2007.
Shaw, D. G. (Ed.): IUPAC Solubility Data Series, vol. 37/38 of Hydrocarbons with Water and Seawater, Pergamon Press, Oxford, England, 1989.
Sheikheldin, S. Y., Cardwell, T. J., Cattrall, R. W., Luque de Castro, M. D., and Kolev, S. D.: Determination of Henry's law constants of phenols by pervaporation-flow injection analysis, Environ. Sci. Technol., 35, 178–181, 2001.
Shen, L. and Wania, F.: Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides, J. Chem. Eng. Data, 50, 742–768, 2005.
Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, 1982.
Shepson, P. B., Mackay, E., and Muthuramu, K.: Henry's law constants and removal processes for several atmospheric β-hydroxy alkyl nitrates, Environ. Sci. Technol., 30, 3618–3623, 1996.
Shi, Q., Davidovits, P., Jayne, J. T., Worsnop, D. R., and Kolb, C. E.: Uptake of gas-phase ammonia. 1. Uptake by aqueous surfaces as a function of pH, J. Phys. Chem. A, 103, 8812–8823, 1999.
Shimotori, T. and Arnold, W. A.: Measurement and estimation of Henry's law constants of chlorinated ethylenes in aqueous surfactant solutions, J. Chem. Eng. Data, 48, 253–261, 2003.
Shiu, W. Y. and Ma, K.-C.: Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, 2000.
Shiu, W. Y. and Mackay, D.: A critical review of aqueous solubilities, vapor pressures, Henry's law constants, and octanol-water partition coefficients of the polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 15, 911–929, 1986.
Shiu, W.-Y. and Mackay, D.: Henry's law constants of selected aromatic hydrocarbons, alcohols, and ketones, J. Chem. Eng. Data, 42, 27–30, 1997.
Shiu, W. Y., Doucette, W., Gobas, F. A. P. C., Andren, A., and Mackay, D.: Physical-chemical properties of chlorinated dibenzo-p-dioxins, Environ. Sci. Technol., 22, 651–658, 1988.
Shiu, W.-Y., Ma, K.-C., Varhaníčková, D., and Mackay, D.: Chlorophenols and alkylphenols: A review and correlation of environmentally relevant properties and fate in an evaluative environment, Chemosphere, 29, 1155–1224, 1994.
Shon, Z.-H., Kim, K.-H., Kim, M.-Y., and Lee, M.: Modeling study of reactive gaseous mercury in the urban air, Atmos. Environ., 39, 749–761, 2005.
Shunthirasingham, C., Cao, X., Lei, Y. D., and Wania, F.: Larger bubbles reduce the surface sorption artifact during inert gas stripping, J. Chem. Eng. Data, 58, 792–797, 2013.
Siebers, J. and Mattusch, P.: Determination of airborne residues in greenhouses after application of pesticides, Chemosphere, 33, 1597–1607, 1996.
Siebers, J., Gottschild, D., and Nolting, H.-G.: Pesticides in precipitation in northern Germany, Chemosphere, 28, 1559–1570, 1994.
Sieg, K., Fries, E., and Püttmann, W.: Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry, J. Chromatogr. A, 1178, 178–186, 2008.
Sieg, K., Starokozheva, E., Schmidt, M. U., and Püttmann, W.: Inverse temperature dependence of Henry's law coefficients for volatile organic compounds in supercooled water, Chemosphere, 77, 8–14, 2009.
Signer, R., Arm, H., and Daenicker, H.: Dampfdrücke, Dichten, thermodynamische Mischfunktionen und Brechungsindices der binären Systeme Wasser-Tetrahydrofuran und Wasser-Diäthyläther bei 25°, Helv. Chim. Acta, 52, 2347–2351, 1969.
Simpson, L. B. and Lovell, F. P.: Solubility of methyl, ethyl, and vinyl acetylene in several solvents, J. Chem. Eng. Data, 7, 498–552, 1962.
Slater, R. M. and Spedding, D. J.: Transport of dieldrin between air and water, Arch. Environ. Contam. Toxicol., 10, 25–33, 1981.
Smith, F. L. and Harvey, A. H.: Avoid common pitfalls when using Henry's law, Chem. Eng. Prog., 33–39, 2007.
Smith, J. H. and Bomberger, D. C.: Prediction of volatilization rate of chemicals in water, in: Hydrocarbons and Halogenated Hydrocarbons in the Environment, edited by: Afghan, B. K. and Mackay, D., Plenum Press New York, 445–451, 1980.
Smith, J. H., Bomberger, D. C., and Haynes, D. L.: Volatilization rates of intermediate and low volatility chemicals from water, Chemosphere, 10, 281–289, 1981a.
Smith, J. R., Neuhauser, E. F., Middleton, A. C., Cunningham, J. J., Weightman, R. L., and Linz, D. G.: Treatment of organically contaminated groundwaters in municipal activated sludge systems, Water Environ. Res., 65, 804–818, 1993.
Smith, R. A., Porter, E. G., and Miller, K. W.: The solubility of anesthetic gases in lipid bilayers, Biochim. Biophys. Acta – Biomembranes, 645, 327–338, 1981b.
Snider, J. R. and Dawson, G. A.: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's law data, J. Geophys. Res., 90D, 3797–3805, 1985.
Sotelo, J. L., Beltrán, F. J., Benitez, F. J., and Beltrán-Heredia, J.: Henry's law constant for the ozone-water system, Wat. Res., 23, 1239–1246, 1989.
Southworth, G. R.: The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments, Bull. Environ. Contam. Toxicol., 21, 507–514, 1979.
St-Pierre, J., Wetton, B., Zhai, Y., and Gea, J.: Liquid water scavenging of PEMFC contaminants, J. Electrochem. Soc., 161, E3357–E3364, 2014.
Staffelbach, T. A. and Kok, G. L.: Henry's law constants for aqueous solutions of hydrogen peroxide and hydroxymethyl hydroperoxide, J. Geophys. Res., 98D, 12713–12717, 1993.
Staples, C. A., Peterson, D. R., Parkerton, T. F., and Adams, W. J.: The environmental fate of phthalate esters: A literature review, Chemosphere, 35, 667–749, 1997.
Staudinger, J. and Roberts, P. V.: A critical review of Henry's law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, 1996.
Staudinger, J. and Roberts, P. V.: A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, 2001.
Steward, A., Allott, P. R., Cowles, A. L., and Mapleson, W. W.: Solubility coefficients for inhaled anaesthetics for water, oil and biological media, Br. J. Anaesth., 45, 282–293, 1973.
Stock, A. and Kuß, E.: Zur Kenntnis des Kohlenoxysulfides COS, Ber. Dtsch. Chem. Ges., 50, 159–164, 1917.
Stoelting, R. K. and Longshore, R. E.: The effects of temperature on fluroxene, halothane, and methoxyflurane blood-gas and cerebrospinal fluid-gas partition coefficients, Anesthesiology, 36, 503–505, 1972.
Straver, E. J. M. and de Loos, T. W.: Determination of Henry's law constants and activity coefficients at infinite dilution of flavor compounds in water at 298 K with a gas-chromatographic method, J. Chem. Eng. Data, 50, 1171–1176, 2005.
Strekowski, R. S. and George, C.: Measurement of Henry's law constants for acetone, 2-butanone, 2,3-butanedione and isobutyraldehyde using a horizontal flow reactor, J. Chem. Eng. Data, 50, 804–810, 2005.
Sukuzi, T., Ohtaguchi, K., and Koide, K.: Application of principal components analysis to calculate Henry's constant from molecular structure, Comput. Chem., 16, 41–52, 1992.
Suleimenov, O. M. and Krupp, R. E.: Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320 °C and at saturation pressures, Geochim. Cosmochim. Acta, 58, 2433–2444, 1994.
Suntio, L. R., Shiu, W. Y., Mackay, D., Seiber, J. N., and Glotfelty, D.: Critical review of Henry's law constants for pesticides, Rev. Environ. Contam. Toxicol., 103, 1–59, 1988.
Swain, C. G. and Thornton, E. R.: Initial-state and transition-state isotope effects of methyl halides in light and heavy water, J. Am. Chem. Soc., 84, 822–826, 1962.
Tabai, S., Rogalski, M., Solimando, R., and Malanowski, S. K.: Activity coefficients of chlorophenols in water at infinite dilution, J. Chem. Eng. Data, 42, 1147–1150, 1997.
Taft, R. W., Abraham, M. H., Doherty, R. M., and Kamlet, M. J.: The molecular properties governing solubilities of organic nonelectrolytes in water, Nature, 313, 384–386, 1985.
Talmi, Y. and Mesmer, R. E.: Studies on vaporization and halogen decomposition of methyl mercury compounds using gc with a microwave detector, Wat. Res., 9, 547–552, 1975.
Tancrède, M. V. and Yanagisawa, Y.: An analytical method to determine Henry's law constant for selected volatile organic compounds at concentrations and temperatures corresponding to tap water use, J. Air Waste Manage. Assoc., 40, 1658–1663, 1990.
Teja, A. S., Gupta, A. K., Bullock, K., Chai, X.-S., and Zhu, J.: Henry's constants of methanol in aqueous systems containing salts, Fluid Phase Equilib., 185, 265–274, 2001.
Templeton, J. C. and King, E. L.: Kinetic and equilibrium studies on azidochromium(III) ion in concentrated perchloric acid, J. Am. Chem. Soc., 93, 7160–7166, 1971.
ten Hulscher, T. E. M., van der Velde, L. E., and Bruggeman, W. A.: Temperature dependence of Henry's law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, Environ. Toxicol. Chem., 11, 1595–1603, 1992.
Terraglio, F. P. and Manganelli, R. M.: The absorption of atmospheric sulfur dioxide by water solutions, J. Air Pollut. Control Assoc., 17, 403–406, 1967.
Thomas, K., Volz-Thomas, A., Mihelcic, D., Smit, H. G. J., and Kley, D.: On the exchange of NO3 radicals with aqueous solutions: Solubility and sticking coefficient, J. Atmos. Chem., 29, 17–43, 1998.
Thompson, A. M. and Zafiriou, O. C.: Air-sea fluxes of transient atmospheric species, J. Geophys. Res., 88C, 6696–6708, 1983.
Timmermans, J.: The Physico-Chemical Constants of Binary Systems in Concentrated Solutions, Vol. 4, Interscience Publisher, Inc., New York, NY, 1960.
Tittlemier, S. A., Halldorson, T., Stern, G. A., and Tomy, G. T.: Vapor pressures, aqueous solubilities, and Henry's law constants of some brominated flame retardants, Environ. Toxicol. Chem., 21, 1804–1810, 2002.
Tittlemier, S. A., Braekevelt, E., Halldorson, T., Reddy, C. M., and Norstrom, R. J.: Vapour pressures, aqueous solubilities, Henry's Law constants, and octanol/water partition coefficients of a series of mixed halogenated dimethyl bipyrroles, Chemosphere, 57, 1373–1381, 2004.
Trampe, D. B. and Eckert, C. A.: A dew point technique for limiting activity coefficients in nonionic solutions, AIChE J., 39, 1045–1050, 1993.
Tremp, J., Mattrel, P., Fingler, S., and Giger, W.: Phenols and nitrophenols as tropospheric pollutants: Emissions from automobile exhausts and phase transfer in the atmosphere, Water Air Soil Pollut., 68, 113–123, 1993.
Treves, K., Shragina, L., and Rudich, Y.: Henry's law constants of some β-, γ-, and δ-hydroxy nitrates of atmospheric interest, Environ. Sci. Technol., 34, 1197–1203, 2000.
Tse, G., Orbey, H., and Sandler, S. I.: Infinite dilution activity coefficients and Henry's law coefficients of some priority water pollutants determined by a relative gas chromatographic method, Environ. Sci. Technol., 26, 2017–2022, 1992.
Tsibul'skii, V. V., Tsibul'skaya, I. A., and Yaglitskaya, N. N.: Sampling and storage of samples for the gas-chromatographic Determination of aromatic-hydrocarbons as microimpurities in gases, J. Anal. Chem. USSR, 34, 1052–1055, 1979.
Tsonopoulos, C. and Wilson, G. M.: High-temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane and n-hexane, AIChE J., 29, 990–999, 1983.
Tucker, E. E., Lane, E. H., and Christian, S. D.: Vapor pressure studies of hydrophobic interactions. formation of benzene-benzene and cyclohexane-cyclohexanol dimers in dilute aqueous solution, J. Solution Chem., 10, 1–20, 1981.
Turner, L. H., Chiew, Y. C., Ahlert, R. C., and Kosson, D. S.: Measuring vapor-liquid equilibrium for aqueous-organic systems: Review and a new technique, AIChE J., 42, 1772–1788, 1996.
Ueberfeld, J., Zbinden, H., Gisin, N., and Pellaux, J. P.: Determination of Henry's constant using a photoacoustic sensor, J. Chem. Thermodyn., 33, 755–764, 2001.
Van Krevelen, D. W., Hoftijzer, P. J., and Huntjens, F. J.: Composition and vapor pressures of aqueous solutions of ammonia, carbon dioxide and hydrogen sulfide, Recl. Trav. Chim. Pays-Bas, 68, 191–216, 1949.
van Roon, A., Parsons, J. R., Kloeze, A. M. T., and Govers, H. A. J.: Fate and transport of monoterpenes through soils. Part I. Prediction of temperature dependent soil fate model input-parameters, Chemosphere, 61, 599–609, 2005.
Vane, L. M. and Giroux, E. L.: Henry's law constants and micellar partitioning of volatile organic compounds in surfactant solutions, J. Chem. Eng. Data, 45, 38–47, 2000.
Villalta, P. W., Lovejoy, E. R., and Hanson, D. R.: Reaction probability of peroxyacetyl radical on aqueous surfaces, Geophys. Res. Lett., 23, 1765–1768, 1996.
Vitenberg, A. G. and Dobryakov, Y. G.: Gas-chromatographic determination of the distribution ratios of volatile substances in gas-liquid systems, Russ. J. Appl. Chem., 81, 339–359, 2008.
Vitenberg, A. G., Ioffe, B. V., and Borisov, V. N.: Application of phase equilibria to gas chromatographic trace analysis, Chromatographia, 7, 610–619, 1974.
Vitenberg, A. G., Ioffe, B. V., Dimitrova, Z. S., and Butaeva, I. L.: Determination of gas-liquid partition coefficients by means of gas chromatographic analysis, J. Chromatogr., 112, 319–327, 1975.
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, https://doi.org/10.1038/383327A0, 1996.
Volkamer, R., Ziemann, P. J., and Molina, M. J.: Secondary Organic Aerosol Formation from Acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907–1928, https://doi.org/10.5194/acp-9-1907-2009, 2009.
von Hartungen, E., Wisthaler, A., Mikoviny, T., Jaksch, D., Boscaini, E., Dunphy, P. J., and Märk, T. D.: Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids. Determination of Henry's law constants and axillary odour investigations, Int. J. Mass Spectrom., 239, 243–248, 2004.
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11, suppl. 2, 1982.
Wagner, W. and Pruss, A.: International equations for the saturation properties of ordinary water substance. Revised according to the international temperature scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987), J. Phys. Chem. Ref. Data, 22, 783–787, 1993.
Wang, C., Lei, Y. D., Endo, S., and Wania, F.: Measuring and modeling the salting-out effect in ammonium sulfate solutions, Environ. Sci. Technol., 48, 13238–13245, 2014.
Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, 1994.
Wang, Y. H. and Wong, P. K.: Mathematical relationships between vapor pressure, water solubility, Henry's law constant, n-octanol/water partition coefficent and gas chromatographic retention index of polychlorinated-dibenzo-dioxins, Wat. Res., 36, 350–355, 2002.
Wania, F. and Dugani, C. B.: Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models, Environ. Toxicol. Chem., 22, 1252–1261, 2003.
Warneck, P.: Chemistry of the Natural Atmosphere, Acad., San Diego, CA, 1988.
Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, 1999.
Warneck, P.: The solubility of ozone in water, in: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, edited by: Fogg, P. and Sangster, J., John Wiley & Sons, Inc., 225–228, 2003.
Warneck, P.: Multi-phase chemistry of C2 and C3 organic compounds in the marine atmosphere, J. Atmos. Chem., 51, 119–159, 2005.
Warneck, P.: A note on the temperature dependence of Henry's Law coefficients for methanol and ethanol, Atmos. Environ., 40, 7146–7151, 2006.
Warneck, P.: A review of Henry's law coefficients for chlorine-containing C1 and C2 hydrocarbons, Chemosphere, 69, 347–361, 2007.
Warneck, P. and Williams, J.: The Atmospheric Chemist's Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, 2012.
Warneck, P., Mirabel, P., Salmon, G. A., van Eldik, R., Vinckier, C., Wannowius, K. J., and Zetzsch, C.: Chapter 2: Review of the activities and achievements of the EUROTRAC subproject HALIPP, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag, Berlin, 7–74, 1996.
Warner, H. P., Cohen, J. M., and Ireland, J. C.: Determination of Henry's law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA, 1980.
Warner, M. J. and Weiss, R. F.: Solubilities of chlorofluorocarbons 11 and 12 in water and seawater, Deep-Sea Res. A, 32, 1485–1497, 1985.
Wasik, S. P. and Tsang, W.: Gas chromatographic determination of partition coefficients of some unsaturated hydrocarbons and their deuterated isomers in aqueous silver nitrate solutions, J. Phys. Chem., 74, 2970–2976, 1970.
Watanabe, T.: Relationship between volatilization rates and physicochemical properties of some pesticides, J. Pestic. Sci., 18, 201–209, 1993.
Watts, S. F. and Brimblecombe, P.: The Henry's law constant of dimethyl sulphoxide, Environ. Technol. Lett., 8, 483–486, 1987.
Webster, G. R. B., Friesen, K. J., Sarna, L. P., and Muir, D. C. G.: Environmental fate modelling of chlorodioxins: Determination of physical constants, Chemosphere, 14, 609–622, 1985.
Weinstein-Lloyd, J. and Schwartz, S. E.: Low-intensity radiolysis study of free-radical reactions in cloudwater: H2O2 production and destruction, Environ. Sci. Technol., 25, 791–800, 1991.
Weiss, R. F.: Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347–359, 1980.
Wen, W.-Y. and Muccitelli, J. A.: Thermodynamics of some perfluorocarbon gases in water, J. Solution Chem., 8, 225–246, 1979.
Westcott, J. W., Simon, C. G., and Bidleman, T. F.: Determination of polychlorinated biphenyl vapor pressures by a semimicro gas saturation method, Environ. Sci. Technol., 15, 1375–1378, 1981.
Westheimer, F. H. and Ingraham, L. L.: The entropy of chelation, J. Phys. Chem., 60, 1668–1670, 1956.
WHO: Environmental Health Criteria 101 – methylmercury, Tech. rep., World Health Organization, available at: http://www.inchem.org/documents/ehc/ehc/ehc101.htm (last access: 10 April 2015), 1990.
Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, 1977.
Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K.-H., and Jaeschke, W.: Organic acid gas and liquid-phase measurements in Po valley fall-winter conditions in the presence of fog, Tellus, 40B, 348–357, 1988.
Winkler, L. W.: Die Löslichkeit der Gase in Wasser (erste Abhandlung), Ber. Dtsch. Chem. Ges., 24, 89–101, 1891a.
Winkler, L. W.: Die Löslichkeit der Gase in Wasser (zweite Abhandlung), Ber. Dtsch. Chem. Ges., 24, 3602–3610, 1891b.
Winkler, L. W.: Löslichkeit des Broms in Wasser, Chem. Ztg., 23, 687–689, 1899.
Winkler, L. W.: Die Löslichkeit der Gase in Wasser (dritte Abhandlung), Ber. Dtsch. Chem. Ges., 34, 1408–1422, 1901.
Winkler, L. W.: Gesetzmässigkeit bei der Absorption der Gase in Flüssigkeiten, Z. Phys. Chem., 55, 344–354, 1906.
Winkler, L. W.: Math. Termesz. Ertesitö, 25, 86, 1907.
Wisegarver, D. P. and Cline, J. D.: Solubility of trichlorofluoromethane (F-11) and dichlorodifluoromethane (F-12) in seawater and its relationship to surface concentrations in the North Pacific, Deep-Sea Res. A, 32, 97–106, 1985.
Wolfe, N. L., Burns, L. A., and Steen, W. C.: Use of linear free energy relationships and an evaluative model to assess the fate and transport of phthalate esters in the aquatic environment, Chemosphere, 9, 393–402, 1980.
Wolfe, N. L., Zepp, R. G., Schlotzhauer, P., and Sink, M.: Transformation pathways of hexachlorocyclopentadiene in the aquatic environment, Chemosphere, 11, 91–101, 1982.
Wolfenden, R.: Free energies of hydration and hydrolysis of gaseous acetamide, J. Am. Chem. Soc., 98, 1987–1988, 1976.
Wolfenden, R. and Williams, R.: Affinities of phosphoric acids, esters, and amides for solvent water, J. Am. Chem. Soc., 105, 1028–1031, 1983.
Wong, P. K. and Wang, Y. H.: Determination of the Henry's law constant for dimethyl sulfide in seawater, Chemosphere, 35, 535–544, 1997.
Woodrow, J. E., McChesney, M. M., and Seiber, J. N.: Modeling the volatilization of pesticides and their distribution in the atmosphere, in: Long Range Transport of Pesticides, edited by: Kurtz, D. A., CRC Press, 61–81, 1990.
Worthington, E. K. and Wade, E. A.: Henry's Law coefficients of chloropicrin and methyl isothiocyanate, Atmos. Environ., 41, 5510–5515, 2007.
Wright, D. A., Sandler, S. I., and DeVoll, D.: Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures, Environ. Sci. Technol., 26, 1828–1831, 1992.
Wu, Y. and Chang, V. W.-C.: The effect of surface adsorption and molecular geometry on the determination of Henry's law constants for fluorotelomer alcohols, J. Chem. Eng. Data, 56, 3442–3448, 2011.
Xiao, H., Li, N., and Wania, F.: Compilation, evaluation, and selection of physical-chemical property data for α-, β-, and γ-hexachlorocyclohexane, J. Chem. Eng. Data, 49, 173–185, 2004.
Xiao, H., Shen, L., Su, Y., Barresi, E., DeJong, M., Hung, H., Lei, Y.-D., Wania, F., Reiner, E. J., Sverko, E., and Kang, S.-C.: Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau, Environ. Pollut., 161, 154–161, 2012.
Xie, W.-H., Shiu, W.-Y., and Mackay, D.: A review of the effect of salt on the solubility of organic compounds in seawater, Mar. Environ. Res., 44, 429–444, 1997.
Xie, Z., Le Calvé, S., Feigenbrugel, V., Preuß, T. G., Vinken, R., Ebinghaus, R., and Ruck, W.: Henry's law constants measurements of the nonylphenol isomer 4(3',5'-dimethyl-3'-heptyl)-phenol, tertiary octylphenol and γ-hexachlorocyclohexane between 278 and 298 K, Atmos. Environ., 38, 4859–4868, 2004.
Xu, S. and Kropscott, B.: A method for simultaneous determination of partition coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol, Anal. Chem., 84, 1948–1955, 2012.
Xu, S. and Kropscott, B.: Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (KOW, KOA, and KAW) for volatile methylsiloxanes and trimethylsilanol, Environ. Toxicol. Chem., 33, 2702–2710, 2014.
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., and Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry's law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, 2003.
Yates, S. R. and Gan, J. Y.: Volatility, adsorption, and degradation of propargyl bromide as a soil fumigant, J. Agric. Food Chem., 46, 755–761, 1998.
Yaws, C. L. (Ed.): Chemical Properties Handbook, McGraw-Hill, Inc., 1999.
Yaws, C. L. and Yang, H.-C.: Henry's law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by: Yaws, C. L., Gulf Publishing Company, Houston, TX, 181–206, 1992.
Yaws, C. L., Hopper, J. R., Sheth, S. D., Han, M., and Pike, R. W.: Solubility and Henry's law constant for alcohols in water, Waste Manage., 17, 541–547, 1997.
Yaws, C. L., Sheth, S. D., and Han, M.: Using solubility and Henry's law constant data for ketones in water, Pollut. Eng., 30, 44–46, 1998.
Yaws, C. L., Hopper, J. R., Mishra, S. R., and Pike, R. W.: Solubility and Henry's law constants for amines in water, Chem. Eng., 108, 84–88, 2001.
Yaws, C. L., Narasimhan, P. K., Lou, H. H., and Pike, R. W.: Solubility & Henry's law constants for chlorinated compounds in water, Chem. Eng., 112, 50–56, 2005.
Yin, C. and Hassett, J. P.: Gas-partitioning approach for laboratory and fiels studies of mirex fugacity in water, Environ. Sci. Technol., 20, 1213–1217, 1986.
Yoo, K.-P., Lee, S. Y., and Lee, W. H.: Ionization and Henry's law constants for volatile, weak electrolyte water pollutants, Korean J. Chem. Eng., 3, 67–72, 1986.
Yoshida, K., Shigeoka, T., and Yamauchi, F.: Non-steady state equilibrium model for the preliminary prediction of the fate of chemicals in the environment, Ecotoxicol. Environ. Saf., 7, 179–190, 1983.
Yoshida, K., Shigeoka, T., and Yamauchi, F.: Evaluation of aquatic environmental fate of 2,4,6-trichlorophenol with a mathematical model, Chemosphere, 16, 2531–2544, 1987.
Yoshizumi, K., Aoki, K., Nouchi, I., Okita, T., Kobayashi, T., Kamakura, S., and Tajima, M.: Measurements of the concentration in rainwater and of the Henry's law constant of hydrogen peroxide, Atmos. Environ., 18, 395–401, 1984.
Young, C. L. (Ed.): IUPAC Solubility Data Series, vol. 5/6 of Hydrogen and Deuterium, Pergamon Press, Oxford, England, 1981a.
Young, C. L. (Ed.): IUPAC Solubility Data Series, vol. 8 of Oxides of Nitrogen, Pergamon Press, Oxford, England, 1981b.
Young, C. L. (Ed.): IUPAC Solubility Data Series, vol. 12 of Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides, Pergamon Press, Oxford, England, 1983.
Yu, X. and Yu, R.: Setschenow constant prediction based on the IEF-PCM calculations, Ind. Eng. Chem. Res., 52, 11182–11188, 2013.
Yurteri, C., Ryan, D. F., Callow, J. J., and Gurol, M. D.: The effect of chemical composition of water on Henry's law constant, J. Water Pollut. Control Fed., 59, 950–956, 1987.
Zafiriou, O. C. and McFarland, M.: Determination of trace levels of nitric oxide in aqueous solution, Anal. Chem., 52, 1662–1667, 1980.
Zhang, S. B. L., Wang, S., and Franzblau, A.: Partition coefficients for the trihalomethanes among blood, urine, water, milk and air, Sci. Total Environ., 284, 237–247, 2002.
Zhang, W., Huang, L., Yang, C., and Ying, W.: Experimental method for estimating Henry's law constant of volatile organic compound, Asian J. Chem., 25, 2647–2650, 2013.
Zhang, X., Brown, T. N., Wania, F., Heimstad, E. S., and Goss, K.-U.: Assessment of chemical screening outcomes based on different partitioning property estimation methods, Environ. Int., 36, 514–520, 2010.
Zhang, Z. and Pawliszyn, J.: Headspace solid-phase microextraction, Anal. Chem., 65, 1843–1852, 1993.
Zheng, D.-Q., Guo, T.-M., and Knapp, H.: Experimental and modeling studies on the solubility of CO2, CHClF2, CHF3, C2H2F4 and C2H4F2 in water and aqueous NaCl solutions under low pressures, Fluid Phase Equilib., 129, 197–209, 1997.
Zhou, X. and Lee, Y.-N.: Aqueous solubility and reaction kinetics of hydroxymethyl hydroperoxide, J. Phys. Chem., 96, 265–272, 1992.
Zhou, X. and Mopper, K.: Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869, 1990.
Zhu, J. Y., Liu, P. H., Chai, X. S., Bullock, K. R., and Teja, A. S.: Henry's law constant of methanol in pulping spent liquors, Environ. Sci. Technol., 34, 1742–1746, 2000.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
Please read the editorial note first before accessing the article.
- Article
(11967 KB) - Metadata XML
- Corrigendum
- Version 2023
-
Supplement
(6221 KB) - BibTeX
- EndNote
Altmetrics
Final-revised paper
Preprint