Articles | Volume 15, issue 23
https://doi.org/10.5194/acp-15-13759-2015
https://doi.org/10.5194/acp-15-13759-2015
Research article
 | 
15 Dec 2015
Research article |  | 15 Dec 2015

Comparison of measured and calculated collision efficiencies at low temperatures

B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann

Related authors

Comparing contact and immersion freezing from continuous flow diffusion chambers
Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016,https://doi.org/10.5194/acp-16-8899-2016, 2016
Short summary
Ice nucleation efficiency of AgI: review and new insights
Claudia Marcolli, Baban Nagare, André Welti, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016,https://doi.org/10.5194/acp-16-8915-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ice Nucleating Properties of Glassy Organic and Organosulfate Aerosol
Christopher Nathan Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3935,https://doi.org/10.5194/egusphere-2024-3935, 2024
Short summary
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024,https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Secondary ice production – no evidence of efficient rime-splintering mechanism
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024,https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023,https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023,https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary

Cited articles

Andronache, C.: Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles, J. Aerosol Sci., 35, 1467–1482, https://doi.org/10.1016/j.jaerosci.2004.07.005, 2004.
Andronache, C., Grönholm, T., Laakso, L., Phillips, V., and Venäläinen, A.: Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations, Atmos. Chem. Phys., 6, 4739–4754, https://doi.org/10.5194/acp-6-4739-2006, 2006.
Ardon-Dryer, K., Huang, Y.-W., and Cziczo, D. J.: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis, Atmos. Chem. Phys., 15, 9159–9171, https://doi.org/10.5194/acp-15-9159-2015, 2015.
Bae, S. Y., Jung, C. H., and Kim, Y. P.: Relative contributions of individual phoretic effect in the below-cloud scavenging process, J. Aerosol Sci., 40, 621–632, https://doi.org/10.1016/j.jaerosci.2009.03.003, 2009.
Barlow, A. K. and Latham, J.: A laboratory study of the scavenging of sub-micron aerosol by charged raindrops, Q. J. Roy. Meteor. Soc., 109, 763–770, https://doi.org/10.1002/qj.49710946205, 1983.
Download
Short summary
We determined collision efficiencies of cloud droplets with aerosol particles experimentally and found that they were around 1 order of magnitude higher than theoretical formulations that include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This is most probably due to uncertainties and inaccuracies in the theoretical formulations of thermophoretic and diffusiophoretic processes.
Share
Altmetrics
Final-revised paper
Preprint