Articles | Volume 14, issue 10
https://doi.org/10.5194/acp-14-5183-2014
https://doi.org/10.5194/acp-14-5183-2014
Research article
 | 
27 May 2014
Research article |  | 27 May 2014

H2O and HCl trace gas kinetics on crystalline HCl hydrates and amorphous HCl / H2O in the range 170 to 205 K: the HCl / H2O phase diagram revisited

R. Iannarelli and M. J. Rossi

Related authors

The influence of HCl on the evaporation rates of H2O over water ice in the range 188 to 210 K at small average concentrations
Christophe Delval and Michel J. Rossi
Atmos. Chem. Phys., 18, 15903–15919, https://doi.org/10.5194/acp-18-15903-2018,https://doi.org/10.5194/acp-18-15903-2018, 2018
Short summary
Formation of highly oxygenated organic molecules from aromatic compounds
Ugo Molteni, Federico Bianchi, Felix Klein, Imad El Haddad, Carla Frege, Michel J. Rossi, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018,https://doi.org/10.5194/acp-18-1909-2018, 2018
Short summary
Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland)
Carla Frege, Federico Bianchi, Ugo Molteni, Jasmin Tröstl, Heikki Junninen, Stephan Henne, Mikko Sipilä, Erik Herrmann, Michel J. Rossi, Markku Kulmala, Christopher R. Hoyle, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 17, 2613–2629, https://doi.org/10.5194/acp-17-2613-2017,https://doi.org/10.5194/acp-17-2613-2017, 2017
Short summary
Heterogeneous kinetics of H2O, HNO3 and HCl on HNO3 hydrates (α-NAT, β-NAT, NAD) in the range 175–200 K
Riccardo Iannarelli and Michel J. Rossi
Atmos. Chem. Phys., 16, 11937–11960, https://doi.org/10.5194/acp-16-11937-2016,https://doi.org/10.5194/acp-16-11937-2016, 2016
Short summary
The metastable HCl · 6H2O phase – IR spectroscopy, phase transitions and kinetic/thermodynamic properties in the range 170–205 K
S. Chiesa and M. J. Rossi
Atmos. Chem. Phys., 13, 11905–11923, https://doi.org/10.5194/acp-13-11905-2013,https://doi.org/10.5194/acp-13-11905-2013, 2013

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
Yuanyuan Luo, Ditte Thomsen, Emil Mark Iversen, Pontus Roldin, Jane Tygesen Skønager, Linjie Li, Michael Priestley, Henrik B. Pedersen, Mattias Hallquist, Merete Bilde, Marianne Glasius, and Mikael Ehn
Atmos. Chem. Phys., 24, 9459–9473, https://doi.org/10.5194/acp-24-9459-2024,https://doi.org/10.5194/acp-24-9459-2024, 2024
Short summary
Mechanistic insight into the kinetic fragmentation of norpinonic acid in the gas phase: an experimental and density functional theory (DFT) study
Izabela Kurzydym, Agata Błaziak, Kinga Podgórniak, Karol Kułacz, and Kacper Błaziak
Atmos. Chem. Phys., 24, 9309–9322, https://doi.org/10.5194/acp-24-9309-2024,https://doi.org/10.5194/acp-24-9309-2024, 2024
Short summary
Secondary reactions of aromatics-derived oxygenated organic molecules lead to plentiful highly oxygenated organic molecules within an intraday OH exposure
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024,https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024,https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Formation of Reactive Nitrogen Species Promoted by Iron Ions Through the Photochemistry of Neonicotinoid Insecticide
Zhu Ran, Yanan Hu, Yuanzhe Li, Xiaoya Gao, Can Ye, Shuai Li, Xiao Lu, Yongming Luo, Sasho Gligorovski, and Jiangping Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1116,https://doi.org/10.5194/egusphere-2024-1116, 2024
Short summary

Cited articles

Abbatt J. P. D., Beyer, K. D., Fucaloro, A. F., McMahon, J. R., Wooldridge, P. J., Zhang, R., and Molina, M. J.: Interaction of HCl Vapor with Water-ice: Implications for the Stratosphere, J. Geophys. Res. 97, 15819–15826, 1992.
Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013.
Banham, S. F., Sodeau, J. R., Horn, A. B., McCoustra, M. R. S., and Chesters, M. A.: Adsorption and ionization of HCl on an ice surface, J. Vac. Sci. Technol. A, 14, 1620–1626, 1996.
Broker, W. and Mossman, A. L.: Matheson Gas Data Book, 6th ed., Matheson Gas Products Inc., Lyndhurst, NJ, 1980.
Carslaw, K. S., Peter, Th., and Clegg, S. L.: Modeling the composition of liquid stratospheric aerosols, Rev. Geophys. 35, 125–154, 1997.
Download
Altmetrics
Final-revised paper
Preprint