Articles | Volume 10, issue 13
https://doi.org/10.5194/acp-10-6435-2010
https://doi.org/10.5194/acp-10-6435-2010
14 Jul 2010
 | 14 Jul 2010

Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

N. D. Gordon and J. R. Norris

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024,https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024,https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024,https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary

Cited articles

Betts, A. K. and Harshvardhan: Thermodynamic constraint on the cloud liquid water feedback in climate models, J. Geophys. Res., 92, 8483–8485, 1987.
Bony, S., Dufresne, J.-L., Le Treut, H., Morcrette, J.-J., and Senior, C.: On dynamic and thermodynamic components of cloud changes, Clim. Dyn., 22, 71–86, 2004.
Cess, R. D. and Udelhofen, P. M.: Climate change during 1985–1999: cloud interactions determined from satellite measurements, Geophys. Res. Lett., 30, 1019, https://doi.org/10.1029/2002GL016128, 2003.
Chang, F.-L. and Coakley, J. A.: Relationships between marine stratus cloud optical depth and temperature: Inferences from AVHRR observations, J. Climate, 20, 2022–2036, 2007.
Charlock, T. P. and Ramanathan, V.: The Albedo Field and Cloud Radiative Forcing Produced by a General Circulation Model with Internally Generated Cloud Optics, J. Atmos. Sci., 42, 1408–1429, 1985.
Download
Altmetrics
Final-revised paper
Preprint