Articles | Volume 10, issue 4
Atmos. Chem. Phys., 10, 1577–1584, 2010
https://doi.org/10.5194/acp-10-1577-2010
Atmos. Chem. Phys., 10, 1577–1584, 2010
https://doi.org/10.5194/acp-10-1577-2010

  15 Feb 2010

15 Feb 2010

27-day variation in cloud amount in the Western Pacific warm pool region and relationship to the solar cycle

Y. Takahashi et al.

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
3D radiative heating of tropical upper tropospheric cloud systems derived from synergistic A-Train observations and machine learning
Claudia J. Stubenrauch, Giacomo Caria, Sofia E. Protopapadaki, and Friederike Hemmer
Atmos. Chem. Phys., 21, 1015–1034, https://doi.org/10.5194/acp-21-1015-2021,https://doi.org/10.5194/acp-21-1015-2021, 2021
Short summary
The potential of increasing man-made air pollution to reduce rainfall over southern West Africa
Gregor Pante, Peter Knippertz, Andreas H. Fink, and Anke Kniffka
Atmos. Chem. Phys., 21, 35–55, https://doi.org/10.5194/acp-21-35-2021,https://doi.org/10.5194/acp-21-35-2021, 2021
Short summary
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Jörg Schmidt, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15247–15263, https://doi.org/10.5194/acp-20-15247-2020,https://doi.org/10.5194/acp-20-15247-2020, 2020
Short summary
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – case studies
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020,https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Constraining the Twomey effect from satellite observations: issues and perspectives
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020,https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary

Cited articles

Damon, P. E. and Laut, P.: Pattern of strange errors plagues solar activity and terrestrial climate data, Eos Trans. AGU, 85(39), https://doi.org/10.1029/2004EO390005, 2004.
Gleisner, H. and Thejll, P.: Patterns of tropospheric response to solar variability, Geophys. Res. Lett., 30(13), 1711, https://doi.org/10.1029/2003GL017129, 2003.
Haigh, J. D.: The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 370, 544–546, 1994.
Hood, L. L.: The temporal behaviour of upper stratospheric ozone at low latitudes – Evidence from Nimbus 4 BUV data for short-term responses to solar ultraviolet variability, J. Geophys. Res. 89, 9557–9568, 1984.
Kirkby, J.: Cosmic rays and climate, Surv. Geophys., 28, 333–375, https://doi.org/10.1007/s10712-008-9030-6, 2007.
Download
Altmetrics
Final-revised paper
Preprint