Articles | Volume 25, issue 13
https://doi.org/10.5194/acp-25-6663-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-6663-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating spatiotemporal variations and exposure risk of ground-level ozone concentrations across China from 2000 to 2020 using high-resolution satellite-derived data
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095, United States
Jingru Cao
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Pablo E. Saide
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095, United States
Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, United States
Tong Ye
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Weihang Wang
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Ming Zhang
CORRESPONDING AUTHOR
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Jiejun Huang
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Related authors
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 18375–18391, https://doi.org/10.5194/acp-21-18375-2021, https://doi.org/10.5194/acp-21-18375-2021, 2021
Short summary
Short summary
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale analysis with MODIS MAIAC 1 km aerosol observations and ground measurements. The impact factors (vertical distribution, relative humidity and terrain) on the relationship are quantitatively studied. Our results provide significant information on PM2.5 and AOD, which is informative for mapping high-resolution PM2.5 and furthering the understanding of aerosol properties and the PM2.5 pollution status.
Richard Ferrare, Johnathan Hair, Taylor Shingler, Chris Hostetler, Amin Nehrir, Marta Fenn, Amy Jo Scarino, Sharon Burton, Marian Clayton, James Collins, Laura Judd, James Crawford, Katherine Travis, Travis Toth, Pablo Saide, Jose Luis Jimenez, Pedro Campuzano-Jost, Guy Symonds, Richard Moore, Luke Ziemba, Michael Shook, Glenn Diskin, Joshua P. DiGangi, Ryan Bennett, Chia-hsiang Ho, Lim-seok Chang, Adisak Aiampisanuvong, and Ittipol Pawarmart
EGUsphere, https://doi.org/10.5194/egusphere-2025-4812, https://doi.org/10.5194/egusphere-2025-4812, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a new method to retrieve atmospheric particulate matter concentrations using only airborne High Spectral Resolution Lidar measurements in machine learning algorithms. Retrieved concentrations agree well with surface measurements. These concentrations and our estimates of the particle mass extinction efficiency are also consistent with those retrieved from airborne in situ measurements. This methodology can also be applied to the Atmosphere Lidar on the EarthCARE satellite.
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
Atmos. Chem. Phys., 25, 7879–7902, https://doi.org/10.5194/acp-25-7879-2025, https://doi.org/10.5194/acp-25-7879-2025, 2025
Short summary
Short summary
Tiny atmospheric particles from wildfire smoke impact the climate by interacting with sunlight and clouds, the extent of which is uncertain due to gaps in understanding how smoke changes over time. We developed a new method using remote sensing instruments to track how these particles evolve during atmospheric transport. Our results show that the ability of these particles to absorb sunlight increases as they travel. This discovery could help improve predictions of future climate scenarios.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Amie Dobracki, Paquita Zuidema, Steven G. Howell, Pablo Saide, Steffen Freitag, Allison C. Aiken, Sharon P. Burton, Arthur J. Sedlacek III, Jens Redemann, and Robert Wood
Atmos. Chem. Phys., 23, 4775–4799, https://doi.org/10.5194/acp-23-4775-2023, https://doi.org/10.5194/acp-23-4775-2023, 2023
Short summary
Short summary
Southern Africa produces approximately one-third of the world’s carbon from fires. The thick smoke layer can flow westward, interacting with the southeastern Atlantic cloud deck. The net radiative impact can alter regional circulation patterns, impacting rainfall over Africa. We find that the smoke is highly absorbing of sunlight, mostly because it contains more black carbon than smoke over the Northern Hemisphere.
Emily D. Lenhardt, Lan Gao, Jens Redemann, Feng Xu, Sharon P. Burton, Brian Cairns, Ian Chang, Richard A. Ferrare, Chris A. Hostetler, Pablo E. Saide, Calvin Howes, Yohei Shinozuka, Snorre Stamnes, Mary Kacarab, Amie Dobracki, Jenny Wong, Steffen Freitag, and Athanasios Nenes
Atmos. Meas. Tech., 16, 2037–2054, https://doi.org/10.5194/amt-16-2037-2023, https://doi.org/10.5194/amt-16-2037-2023, 2023
Short summary
Short summary
Small atmospheric particles, such as smoke from wildfires or pollutants from human activities, impact cloud properties, and clouds have a strong influence on climate. To better understand the distributions of these particles, we develop relationships to derive their concentrations from remote sensing measurements from an instrument called a lidar. Our method is reliable for smoke particles, and similar steps can be taken to develop relationships for other particle types.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Michael S. Diamond, Pablo E. Saide, Paquita Zuidema, Andrew S. Ackerman, Sarah J. Doherty, Ann M. Fridlind, Hamish Gordon, Calvin Howes, Jan Kazil, Takanobu Yamaguchi, Jianhao Zhang, Graham Feingold, and Robert Wood
Atmos. Chem. Phys., 22, 12113–12151, https://doi.org/10.5194/acp-22-12113-2022, https://doi.org/10.5194/acp-22-12113-2022, 2022
Short summary
Short summary
Smoke from southern Africa blankets the southeast Atlantic from June-October, overlying a major transition region between overcast and scattered clouds. The smoke affects Earth's radiation budget by absorbing sunlight and changing cloud properties. We investigate these effects in regional climate and large eddy simulation models based on international field campaigns. We find that large-scale circulation changes more strongly affect cloud transitions than smoke microphysical effects in our case.
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys., 22, 1–46, https://doi.org/10.5194/acp-22-1-2022, https://doi.org/10.5194/acp-22-1-2022, 2022
Short summary
Short summary
Between July and October, biomass burning smoke is advected over the southeastern Atlantic Ocean, leading to climate forcing. Model calculations of forcing by this plume vary significantly in both magnitude and sign. This paper compares aerosol and cloud properties observed during three NASA ORACLES field campaigns to the same in four models. It quantifies modeled biases in properties key to aerosol direct radiative forcing and evaluates how these biases propagate to biases in forcing.
Amie Dobracki, Paquita Zuidema, Steve Howell, Pablo Saide, Steffen Freitag, Allison C. Aiken, Sharon P. Burton, Arthur J. Sedlacek III, Jens Redemann, and Robert Wood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1081, https://doi.org/10.5194/acp-2021-1081, 2022
Preprint withdrawn
Short summary
Short summary
The global maximum of shortwave-absorbing aerosol above cloud occurs above the southeast Atlantic, where the biomass-burning aerosol provides a distinct aerosol radiative warming of regional climate. The smoke aerosols are unusually highly absorbing of sunlight. This study seeks to understand the cause. We conclude the aerosol is already strongly absorbing at the fire emission source, but that chemical aging, through encouraging a net loss of organic aerosol, also contributes.
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 18375–18391, https://doi.org/10.5194/acp-21-18375-2021, https://doi.org/10.5194/acp-21-18375-2021, 2021
Short summary
Short summary
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale analysis with MODIS MAIAC 1 km aerosol observations and ground measurements. The impact factors (vertical distribution, relative humidity and terrain) on the relationship are quantitatively studied. Our results provide significant information on PM2.5 and AOD, which is informative for mapping high-resolution PM2.5 and furthering the understanding of aerosol properties and the PM2.5 pollution status.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo E. Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys., 21, 9643–9668, https://doi.org/10.5194/acp-21-9643-2021, https://doi.org/10.5194/acp-21-9643-2021, 2021
Short summary
Short summary
Using aircraft-based measurements off the Atlantic coast of Africa, we found the springtime smoke plume was strongly correlated with the amount of water vapor in the atmosphere (more smoke indicated more humidity). We see the same general feature in satellite-assimilated and free-running models. Our analysis suggests this relationship is not caused by the burning but originates due to coincident continental meteorology plus fires. This air is transported over the ocean without further mixing.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Cited articles
Ahammed, Y. N., Reddy, R. R., Gopal, K. R., and Narasimhulu, K.: Seasonal variation of the surface ozone and its precursor gases during 2001–2003, measured at Anantapur (14.62° N), a semi-arid site in India, Atmos. Res., 80, 151–164, https://doi.org/10.1016/j.atmosres.2005.07.002, 2006. a
Akimoto, H.: Global Air Quality and Pollution, Science, 302, 1716–1719, https://doi.org/10.1126/science.1092666, 2003. a
Alexeeff, S. E., Ananya, R., Jun, S., Xi, L., Kyle, M., Apte, J. S., Christopher, P., Stephen, S., and Van, D. E. S. K.: High-resolution mapping of traffic related air pollution with Google street view cars and incidence of cardiovascular events within neighborhoods in Oakland, CA, Environ. Health, 17, 38, https://doi.org/10.1186/s12940-018-0382-1, 2018. a
Burnett, R. T., Dales, R. E., Raizenne, M. E., Krewski, D., Summers, P. W., Roberts, G. R., Raadyoung, M., Dann, T., and Brook, J.: Effects of Low Ambient Levels of Ozone and Sulfates on the Frequency of Respiratory Admissions to Ontario Hospitals, Environ. Res., 65, 172–194, https://doi.org/10.1006/enrs.1994.1030, 1994. a
Chen, G., Chen, J., Dong, G.-H., Yang, B.-y., Liu, Y., Lu, T., Yu, P., Guo, Y., and Li, S.: Improving satellite-based estimation of surface ozone across China during 2008-2019 using iterative random forest model and high-resolution grid meteorological data, Sustainable Cities Soc., 69, 102807, https://doi.org/10.1016/j.scs.2021.102807, 2021. a, b, c, d
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, ACM, https://doi.org/10.1145/2939672.2939785, 2016. a
Chen, Y., Li, H., Karimian, H., Li, M., Fan, Q., and Xu, Z.: Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on Geodetector and Geospatial models, Chemosphere, 302, 134843, https://doi.org/10.1016/j.chemosphere.2022.134843, 2022. a
Dias, D. and Tchepel, O.: Spatial and Temporal Dynamics in Air Pollution Exposure Assessment, Int. J. Environ. Res. Publ. He., 15, 558, https://doi.org/10.3390/ijerph15030558, 2018. a
Fiore, A., Jacob, D. J., Liu, H., Yantosca, R. M., Fairlie, T. D., and Li, Q.: Variability in surface ozone background over the United States: Implications for air quality policy, J. Geophys. Res.-Atmos., 108, 4787, https://doi.org/10.1029/2003jd003855, 2003. a
Fu, Y. and Tai, A. P. K.: Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010, Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, 2015. a
He, Q.: High-quality atmospheric pollution dataset of China (2000–2020) (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.13623697, 2021. a
He, Q., Zhang, M., and Huang, B.: Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015, Atmos. Environ., 129, 79–90, https://doi.org/10.1016/j.atmosenv.2016.01.002, 2016. a
He, Q., Ye, T., Wang, W., Luo, M., Song, Y., and Zhang, M.: Spatiotemporally continuous estimates of daily 1-km PM2.5 concentrations and their long-term exposure in China from 2000 to 2020, J. Environ. Manage., 342, 118145, https://doi.org/10.1016/j.jenvman.2023.118145, 2023. a
He, Q., Cao, J., Saide, P. E., Ye, T., and Wang, W.: Unraveling the Influence of Satellite-Observed Land Surface Temperature on High-Resolution Mapping of Ground-Level Ozone Using Interpretable Machine Learning, Environ. Sci. Technol., 58, 15938–15948, https://doi.org/10.1021/acs.est.4c02926, 2024. a, b
Jaffe, D.: Relationship between Surface and Free Tropospheric Ozone in the Western U.S., Eci. Technol., 45, 432–438, https://doi.org/10.1021/es1028102, 2011.nviron. S a
Ke, L., Daniel J. J., Hong, L., Yulu, Q., Lu, S., Shixian, Z., Kelvin H, B., Melissa P, S., Shaojie, S., Xiao, L., Qiang, Z., Bo, Z., Yuli, Z., Jinqiang, Z., Hyun Chul, L., and Su Keun, K.: Ozone pollution in the North China Plain spreading into the late-winter haze season, P. Natl. Acad. Sci. USA, 118, e2015797118, https://doi.org/10.1073/pnas.2015797118, 2021. a
Li, J. and Li, Y.: Ozone deterioration over North China plain caused by light absorption of black carbon and organic carbon, Atmos. Environ., 313, 120048, https://doi.org/10.1016/j.atmosenv.2023.120048, 2023. a
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China, P. Natl. Acad. Sci. USA, 116, 422–427, https://doi.org/10.1073/pnas.1812168116, 2019. a, b, c
Li, R., Cui, L., Fu, H., Li, J., Zhao, Y., and Chen, J.: Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island, J. Clean. Prod., 244, 118773, https://doi.org/10.1016/j.jclepro.2019.118773, 2020. a
Li, S., Wang, T., Zanis, P., Melas, D., and Zhuang, B.: Impact of Tropospheric Ozone on Summer Climate in China, J. Meteorolog. Res., 32, 279–287, https://doi.org/10.1007/s13351-018-7094-x, 2018. a
Li, T. and Cheng, X.: Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach, Int. J. Appl. Earth Obs. Geoinf., 101, 102356, https://doi.org/10.1016/j.jag.2021.102356, 2021. a
Li, Z., Li, Q., and Chen, T.: Record-breaking High-temperature Outlook for 2023: An Assessment Based on the China Global Merged Temperature (CMST) Dataset, Adv. Atmos. Sci., 41, 369–376, 2024a.
Li, Z., Wang, W., He, Q., Chen, X., Huang, J., and Zhang, M.: Estimating ground-level high-resolution ozone concentration across China using a stacked machine-learning method, Atmos. Pollut. Res., 15, 102114, https://doi.org/10.1016/j.apr.2024.102114, 2024b. a
Liu, R., Ma, Z., Liu, Y., Shao, Y., Zhao, W., and Bi, J.: Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach, Environ. Int., 142, 105823, https://doi.org/10.1016/j.envint.2020.105823, 2020. a, b, c, d
Liu, X., Zhu, Y., Xue, L., Desai, A. R., and Wang, H.: Cluster‐Enhanced Ensemble Learning for Mapping Global Monthly Surface Ozone From 2003 to 2019, Geophys. Res. Lett., 49, 1–13, https://doi.org/10.1029/2022gl097947, 2022. a
Ma, R., Ban, J., Wang, Q., Zhang, Y., Yang, Y., Li, S., Shi, W., Zhou, Z., Zang, J., and Li, T.: Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on a multi-variable random forest model, Earth Syst. Sci. Data, 14, 943–954, https://doi.org/10.5194/essd-14-943-2022, 2022a. a, b, c, d
Ma, Z., Dey, S., Christopher, S., Liu, R., Bi, J., Balyan, P., and Liu, Y.: A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data, Remote Sens. Environ., 269, 112827, https://doi.org/10.1016/j.rse.2021.112827, 2022b. a, b
Maji, K. J. and Namdeo, A.: Continuous increases of surface ozone and associated premature mortality growth in China during 2015–2019, Environ. Pollut., 269, 116183, https://doi.org/10.1016/j.envpol.2020.116183, 2021. a
Mao, J., Wang, L., Lu, C., Liu, J., Li, M., Tang, G., Ji, D., Zhang, N., and Wang, Y.: Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017, J. Environ. Sci., 92, 187–199, 2020. a
Mashat, A. W. S., Awad, A. M., Alamoudi, A. O., and Assiri, M. E.: Monthly and seasonal variability of dust events over northern Saudi Arabia, Int. J. Climatol., 40, 1607–1629, https://doi.org/10.1002/joc.6290, 2020. a
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015. a
Mu, X., Wang, S., Jiang, P., and Wu, Y.: Estimation of surface ozone concentration over Jiangsu province using a high-performance deep learning model, J. Environ. Sci., 132, 122–133, 2023a. a
Mu, X., Wang, S., Jiang, P., Wang, B., Wu, Y., and Zhu, L.: Full-coverage spatiotemporal estimation of surface ozone over China based on a high-efficiency deep learning model, Int. J. Appl. Earth Obs. Geoinf., 118, 103284, https://doi.org/10.1016/j.jag.2023.103284, 2023b. a
Mukherjee, A., Agrawal, S. B., and Agrawal, M.: Intra-urban variability of ozone in a tropical city – characterization of local and regional sources and major influencing factors, Air Qual. Atmos. Health, 11, 965–977, https://doi.org/10.1007/s11869-018-0600-6, 2018. a
Nicholas, N., Keith, S., Neal, F., Christopher G, N., Patrick, D., Tanya L, S., Perry, S., and Gregory A, W.: Ozone-related asthma emergency department visits in the US in a warming climate, Environ. Res., 183, 109206, https://doi.org/10.1016/j.envres.2020.109206, 2020. a
Qiao, X., Guo, H., Wang, P., Tang, Y., Ying, Q., Zhao, X., Deng, W., and Zhang, H.: Fine particulate matter and ozone pollution in the 18 cities of the sichuan basin in southwestern china: Model performance and characteristics(Article), Aerosol Air Qual. Res., 19, 2308–2319, https://doi.org/10.4209/aaqr.2019.05.0235, 2019. a
Ramya, A., Dhevagi, P., Poornima, R., Avudainayagam, S., Watanabe, M., and Agathokleous, E.: Effect of ozone stress on crop productivity: A threat to food security, Environ. Res., 236, 116816, https://doi.org/10.1016/j.envres.2023.116816, 2023. a
Rose, A., McKee, J., Sims, K., Bright, E., Reith, A., and Urban, M.: LandScan Global 2019 (2019), Oak Ridge National Laboratory [data set], https://doi.org/10.48690/1524214, 2020. a
Shang, N., Gui, K., Li, F., Li, B., Zhang, X., Zeng, Z., Zheng, Y., Li, L., Fei, Y., Peng, Y., Zhao, H., Yao, W., Liu, Y., Wang, H., Wang, Z., Wang, Y., Che, H., and Zhang, X.: Toward an Operational Machine-Learning-Based Model for Deriving the Real-Time Gapless Diurnal Cycle of Ozone Pollution in China with CLDAS Data, Environ. Sci. Technol. Lett., 11, 553–559, https://doi.org/10.1021/acs.estlett.4c00106, 2024. a
Sharma, S., Sharma, P., and Khare, M.: Photo-chemical transport modelling of tropospheric ozone: A review, Atmos. Environ., 159, 34–54, https://doi.org/10.1016/j.atmosenv.2017.03.047, 2017. a, b
Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q., and Wang, W.: Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015, Atmos. Chem. Phys., 19, 1455–1469, https://doi.org/10.5194/acp-19-1455-2019, 2019. a
Tu, J., Xia, Z., Wang, H., and Li, W.: Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China, Atmos. Res., 85, 310–337, https://doi.org/10.1016/j.atmosres.2007.02.003, 2007. a
Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating O3 pollution due to NOx emission control in eastern China, Sci. Total Environ., 677, 732–744, https://doi.org/10.1016/j.scitotenv.2019.04.388, 2019. a
Wang, P., Yang, Y., Li, H., Chen, L., Dang, R., Xue, D., Li, B., Tang, J., Leung, L. R., and Liao, H.: North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures, Atmos. Chem. Phys., 22, 4705–4719, https://doi.org/10.5194/acp-22-4705-2022, 2022a. a
Wang, T., Xue, L., Feng, Z., Dai, J., Zhang, Y., and Tan, Y.: Ground-level ozone pollution in China: a synthesis of recent findings on influencing factors and impacts, Environ. Res. Lett., 17, 063003, https://doi.org/10.1088/1748-9326/ac69fe, 2022b. a
Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue, W., and Cribb, M.: Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China, Remote Sens. Environ., 270, 112775, https://doi.org/10.1016/j.rse.2021.112775, 2022. a, b, c, d
Xia, Y., Hu, Y., Huang, Y., Bian, J., Zhao, C., Wei, J., Yan, Y., Xie, F., and Lin, J.: Concurrent hot extremes and high ultraviolet radiation in summer over the Yangtze Plain and their possible impact on surface ozone, Environ. Res. Lett., 17, 064001, https://doi.org/10.1088/1748-9326/ac6c3c, 2022. a
Xu, K., Lu, R., Mao, J., and Chen, R.: Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia, Atmos. Ocean. Sc. Lett., 12, 231–237, https://doi.org/10.1080/16742834.2019.1617626, 2019. a
Xue, T., Zheng, Y., Geng, G., Xiao, Q., Meng, X., Wang, M., Li, X., Wu, N., Zhang, Q., and Zhu, T.: Estimating Spatiotemporal Variation in Ambient Ozone Exposure during 2013–2017 Using a Data-Fusion Model, Environ. Sci. Technol., 54, 14877–14888, https://doi.org/10.1021/acs.est.0c03098, 2020. a, b, c
Yang, Y., Zhou, Y., Wang, H., Li, M., Li, H., Wang, P., Yue, X., Li, K., Zhu, J., and Liao, H.: Meteorological characteristics of extreme ozone pollution events in China and their future predictions, Atmos. Chem. Phys., 24, 1177–1191, https://doi.org/10.5194/acp-24-1177-2024, 2024. a
Zhan, Y., Luo, Y., Deng, X., Grieneisen, M., Zhang, M., and Di, B.: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment, Environ. Pollut., 233, 464–473, https://doi.org/10.1016/j.envpol.2017.10.029, 2018. a
Zhang, X. Y., Zhao, L. M., Cheng, M. M., and Chen, D. M.: Estimating Ground-Level Ozone Concentrations in Eastern China Using Satellite-Based Precursors, IEEE Trans. Geosci. Remote, 58, 4754–4763, https://doi.org/10.1109/tgrs.2020.2966780, 2020. a
Short summary
We analyzed ground-level ozone variations and exposure hotspots across China (2000–2020) at multiple scales using daily 1 km ozone data derived from satellite-sourced land-surface temperature data via a machine-learning hindcasting model. The dataset was validated using cross-validation and external measurements. A non-monotonic trend with regional and seasonal variations emerged, with turning points around 2008 and 2015. Ozone levels >100 μg m‾³ shifted from June to May, while levels >160 μg m‾³ expanded in the North China Plain.
We analyzed ground-level ozone variations and exposure hotspots across China (2000–2020) at...
Altmetrics
Final-revised paper
Preprint