Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-869-2024
https://doi.org/10.5194/acp-24-869-2024
Technical note
 | 
22 Jan 2024
Technical note |  | 22 Jan 2024

Technical note: Emulation of a large-eddy simulator for stratocumulus clouds in a general circulation model

Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen

Related authors

The future North Atlantic jet stream and storm track: relative contributions from sea ice and sea surface temperature changes
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3713,https://doi.org/10.5194/egusphere-2024-3713, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Polar winter climate change: strong local effects from sea ice loss, widespread consequences from warming seas
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman
EGUsphere, https://doi.org/10.5194/egusphere-2024-3458,https://doi.org/10.5194/egusphere-2024-3458, 2024
Short summary
Climate variability can outweigh the influence of climate mean changes for extreme precipitation under global warming
Kalle Nordling, Nora Fahrenbach, and Bjørn Samset
EGUsphere, https://doi.org/10.5194/egusphere-2024-1068,https://doi.org/10.5194/egusphere-2024-1068, 2024
Short summary
Technical note: Parameterising cloud base updraft velocity of marine stratocumuli
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022,https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
Kalle Nordling, Hannele Korhonen, Jouni Räisänen, Antti-Ilari Partanen, Bjørn H. Samset, and Joonas Merikanto
Atmos. Chem. Phys., 21, 14941–14958, https://doi.org/10.5194/acp-21-14941-2021,https://doi.org/10.5194/acp-21-14941-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Machine-learning-based investigation of the variables affecting summertime lightning occurrence over the Southern Great Plains
Siyu Shan, Dale Allen, Zhanqing Li, Kenneth Pickering, and Jeff Lapierre
Atmos. Chem. Phys., 23, 14547–14560, https://doi.org/10.5194/acp-23-14547-2023,https://doi.org/10.5194/acp-23-14547-2023, 2023
Short summary

Cited articles

Abdul‐Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res.-Atmos., 107, 4026, https://doi.org/10.1029/2001JD000483, 2002. a, b
Abdul-Razzak, H., Ghan, S. J., and Rivera-carpio, C.: A parameterization of aerosol activation: 1. Single aerosol type, J. Geophys. Res., 103, 6123–6131, https://doi.org/10.1029/97JD03735, 1998. a
Adler, R. F., Gu, G., and Huffman, G. J.: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP), J. Appl. Meteorol. Clim., 51, 84–99, https://doi.org/10.1175/JAMC-D-11-052.1, 2012. a
Ahola, J., Raatikainen, T., Alper, M. E., Keskinen, J.-P., Kokkola, H., Kukkurainen, A., Lipponen, A., Liu, J., Nordling, K., Partanen, A.-I., Romakkaniemi, S., Räisänen, P., Tonttila, J., and Korhonen, H.: Technical note: Parameterising cloud base updraft velocity of marine stratocumuli, Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m
Besombes, C., Pannekoucke, O., Lapeyre, C., Sanderson, B., and Thual, O.: Producing realistic climate data with generative adversarial networks, Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021, 2021. a
Download
Short summary
Our results show that the global model is stable and it provides meaningful results. This way we can include a physics-based presentation of sub-grid physics (physics which happens on a 100 m scale) in the global model, whose resolution is on a 100 km scale.
Altmetrics
Final-revised paper
Preprint