Articles | Volume 24, issue 18
https://doi.org/10.5194/acp-24-10305-2024
https://doi.org/10.5194/acp-24-10305-2024
Research article
 | 
18 Sep 2024
Research article |  | 18 Sep 2024

Beyond self-healing: stabilizing and destabilizing photochemical adjustment of the ozone layer

Aaron Match, Edwin P. Gerber, and Stephan Fueglistaler

Related authors

Protection without poison: Why tropical ozone maximizes in the interior of the atmosphere
Aaron Match, Edwin P. Gerber, and Stephan Fueglistaler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1552,https://doi.org/10.5194/egusphere-2024-1552, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Solar FTIR measurements of NOx vertical distributions – Part 2: Experiment-based scaling factors describing the daytime variation in stratospheric NOx
Pinchas Nürnberg, Sarah A. Strode, and Ralf Sussmann
Atmos. Chem. Phys., 24, 10001–10012, https://doi.org/10.5194/acp-24-10001-2024,https://doi.org/10.5194/acp-24-10001-2024, 2024
Short summary
Technical note: Evaluation of the Copernicus Atmosphere Monitoring Service Cy48R1 upgrade of June 2023
Henk Eskes, Athanasios Tsikerdekis, Melanie Ades, Mihai Alexe, Anna Carlin Benedictow, Yasmine Bennouna, Lewis Blake, Idir Bouarar, Simon Chabrillat, Richard Engelen, Quentin Errera, Johannes Flemming, Sebastien Garrigues, Jan Griesfeller, Vincent Huijnen, Luka Ilić, Antje Inness, John Kapsomenakis, Zak Kipling, Bavo Langerock, Augustin Mortier, Mark Parrington, Isabelle Pison, Mikko Pitkänen, Samuel Remy, Andreas Richter, Anja Schoenhardt, Michael Schulz, Valerie Thouret, Thorsten Warneke, Christos Zerefos, and Vincent-Henri Peuch
Atmos. Chem. Phys., 24, 9475–9514, https://doi.org/10.5194/acp-24-9475-2024,https://doi.org/10.5194/acp-24-9475-2024, 2024
Short summary
Analysis of a newly homogenised ozonesonde dataset from Lauder, New Zealand
Guang Zeng, Richard Querel, Hisako Shiona, Deniz Poyraz, Roeland Van Malderen, Alex Geddes, Penny Smale, Dan Smale, John Robinson, and Olaf Morgenstern
Atmos. Chem. Phys., 24, 6413–6432, https://doi.org/10.5194/acp-24-6413-2024,https://doi.org/10.5194/acp-24-6413-2024, 2024
Short summary
Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, Laura Saunders, and Marianna Linz
Atmos. Chem. Phys., 24, 4193–4215, https://doi.org/10.5194/acp-24-4193-2024,https://doi.org/10.5194/acp-24-4193-2024, 2024
Short summary
The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring
Yiran Zhang-Liu, Rolf Müller, Jens-Uwe Grooß, Sabine Robrecht, Bärbel Vogel, Abdul Mannan Zafar, and Ralph Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-671,https://doi.org/10.5194/egusphere-2024-671, 2024
Short summary

Cited articles

Ackerman, M.: Ultraviolet Solar Radiation Related to Mesospheric Processes, Springer, Dordrecht, 149–159, https://doi.org/10.1007/978-94-010-3114-1_11, 1971. a
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, ISBN 0-12-058576-6, 1987. a
Bates, D. R. and Nicolet, M.: The Photochemistry of Atmospheric Water Vapor, J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301, 1950. a, b
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Springer, Dordrecht, Netherlands, https://doi.org/10.1007/1-4020-3824-0, 2005. a, b, c, d, e, f, g, h
Cariolle, D. and Brard, D.: The Distribution of Ozone and Active Stratospheric Species: Results of a Two-Dimensional Atmospheric Model, in: Atmospheric Ozone, Greece, 77–81, https://doi.org/10.1007/978-94-009-5313-0_16, 1984. a
Download
Short summary
Earth's ozone layer absorbs incoming UV light, protecting life. Removing ozone aloft allows UV light to penetrate deeper, where it is known to produce new ozone, leading to "self-healing" that partially stabilizes total ozone. However, a photochemistry model shows that, above 40 km in the tropics, deeper-penetrating UV destroys ozone, destabilizing the total ozone. Photochemical theory reveals that this destabilizing regime occurs where overhead ozone is below a key threshold.
Altmetrics
Final-revised paper
Preprint